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CONNECTIVITY OF ADDITION CAYLEY GRAPHS

DAVID GRYNKIEWICZ, VSEVOLOD F. LEV, AND ORIOL SERRA

Abstract. For any finite abelian group G and any subset S ⊆ G, we determine
the connectivity of the addition Cayley graph induced by S on G. Moreover, we
show that if this graph is not complete, then it possesses a minimum vertex cut of
a special, explicitly described form.

1. Background: addition Cayley graphs

For a subset S of the abelian group G, we denote by Cay+G(S) the addition Cayley

graph induced by S on G; recall that this is the undirected graph with the vertex set

G and the edge set {(g1, g2) ∈ G × G : g1 + g2 ∈ S}. Note that S is not assumed to

be symmetric, and that if S is finite, then Cay+G(S) is regular of degree |S| (if one

considers each loop to contribute 1 to the degree of the corresponding vertex).

The twins of the usual Cayley graphs, addition Cayley graphs (also called sum

graphs) received much less attention in the literature; indeed, [A] (independence

number), [CGW03] and [L] (hamiltonicity), [C92] (expander properties), and [Gr05]

(clique number) is a nearly complete list of papers, known to us, where addition

Cayley graphs are addressed. To some extent, this situation may be explained by

the fact that addition Cayley graphs are rather difficult to study. For instance, it is

well-known and easy to prove that any connected Cayley graph on a finite abelian

group with at least three elements is hamiltonian, see [Mr83]; however, apart from the

results of [CGW03], nothing seems to be known on hamiltonicity of addition Cayley

graphs on finite abelian groups. Similarly, the connectivity of a Cayley graph on a

finite abelian group is easy to determine, while determining the connectivity of an

addition Cayley graph is a non-trivial problem, to the solution of which the present

paper is devoted. The reader will see that investigating this problem leads to studying

rather involved combinatorial properties of the underlying group.
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2. Preliminaries and summary of results

Let Γ be a graph on the finite set V . The (vertex) connectivity of Γ, denoted by

κ(Γ), is the smallest number of vertices which are to be removed from V so that

the resulting graph is either disconnected or has only one vertex. Clearly, if Γ is

complete, then κ(Γ) = |V | − 1, while otherwise we have κ(Γ) ≤ |V | − 2, and κ(Γ)

can be alternatively defined as the size of a minimum vertex cut of Γ. (A complete

graph does not have vertex cuts.) Evidently, vertex cuts and connectivity of a graph

are not affected by adding or removing loops.

Our goal is to determine the connectivity of the addition Cayley graphs, induced

on finite abelian groups by their subsets, and accordingly we use additive notation

for the group operation. In particular, for subsets A and B of an abelian group, we

write

A± B := {a± b : a ∈ A, b ∈ B},

which is abbreviated by A± b in the case where B = {b} is a singleton subset.

For the rest of this section, we assume that S is a subset of the finite abelian group

G.

It is immediate from the definition that, for a subset A ⊆ G, the neighborhood of

A in Cay+
G(S) is the set S−A, and it is easy to derive that Cay+G(S) is complete if and

only if either S = G, or S = G\{0} and G is an elementary abelian 2-group (possibly

of zero rank). Furthermore, it is not difficult to see that Cay+G(S) is connected if and

only if S is not contained in a coset of a proper subgroup of G, with the possible

exception of the non-zero coset of a subgroup of index 2; this is [L, Proposition 1].

Also, since Cay+G(S) is |S|-regular, we have the trivial bound κ(Cay+G(S)) ≤ |S|.

If H is a subgroup of G and g is an element of G with 2g ∈ S +H , then g +H ⊆

S − (g +H); consequently, the boundary of g +H in Cay+G(S) has size

|(S − (g +H)) \ (g +H)| = |S +H| − |H|.

Assuming in addition that S+H 6= G, we obtain (S−(g+H))∪(g+H) = S+H−g 6=

G, implying κ(Cay+G(S)) ≤ |S +H| − |H|. Set

2 ∗G := {2g : g ∈ G},

so that the existence of g ∈ G with 2g ∈ S + H is equivalent to the condition

(S + 2 ∗G) ∩H 6= ∅. Motivated by the above observation, we define

HG(S) := {H ≤ G : (S + 2 ∗G) ∩H 6= ∅, S +H 6= G}

and let

ηG(S) := min{|S +H| − |H| : H ∈ HG(S)}.
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In the latter definition and throughout, we assume that the minimum of an empty

set is infinite, and we allow comparison between infinity and real numbers according

to the “naıve” rule. Thus, for instance, we have κ(Cay+G(S)) ≤ ηG(S) even if HG(S)

is vacuous.

Another important family of sets with small boundary is obtained as follows. Sup-

pose that the subgroups L ≤ G0 ≤ G and the element g0 ∈ G0 satisfy

(i) |G0/L| is even and larger than 2;

(ii) S + L = (G \G0) ∪ (g0 + L).

Fix g ∈ G0 \ L with 2g ∈ L and consider the set A := (g + L) ∪ (g + g0 + L). The

neighborhood of this set in Cay+
G(S) is

S −A = (G \G0) ∪ (g + L) ∪ (g + g0 + L) = (G \G0) ∪A,

whence (S−A)∪A 6= G and |(S−A) \A| = |G \G0| = |S +L| − |L|. Consequently,

κ(Cay+G(S)) ≤ |S + L| − |L|. With this construction in mind, we define LG(S) to be

the family of all those subgroups L ≤ G for which a subgroup G0 ≤ G, lying above

L, and an element g0 ∈ G0 can be found so that properties (i) and (ii) hold, and we

let

λG(S) := min{|S + L| − |L| : L ∈ LG(S)}.

Thus, κ(Cay+G(S)) ≤ λG(S).

Our first principal result is the following.

Theorem 1. If S is a proper subset of the finite abelian group G, then

κ(Cay+G(S)) = min{ηG(S), λG(S), |S|}.

Let Γ be a graph on the vertex set V . We say that the non-empty subset V0 ⊂ V

is a fragment of Γ if the neighborhood N(V0) of V0 satisfies |N(V0) \ V0| = κ(Γ) and

N(V0) ∪ V0 6= V ; that is, the boundary of V0 is a minimum vertex-cut, separating V0

from the (non-empty) remainder of the graph. Notice that if Γ is not complete, then

it has fragments; for instance, if Γ′ is obtained from Γ by removing a minimum vertex

cut, then the set of vertices of any connected component of Γ′ is a fragment of Γ.

As the discussion above shows, if κ(Cay+
G(S)) = ηG(S), then Cay+G(S) has a frag-

ment which is a coset of a subgroup H ∈ HG(S) with |S+H|−|H| = ηG(S); similarly,

if κ(Cay+
G(S)) = λG(S), then Cay+G(S) has a fragment which is a union of at most

two cosets of a subgroup L ∈ LG(S) with |S + L| − |L| = λG(S).

The reader will easily verify that Theorem 1 is an immediate corollary of Theorem 2

below. The latter shows that the minimum in the statement of Theorem 1 is attained,

with just one exception, on either ηG(S) or |S|. Being much subtler, Theorem 2 is
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also more technical, and to state it we have to bring into consideration a special sub-

family of LG(S). Specifically, let L
∗

G(S) be the family of those subgroups L ≤ G such

that for some G0 ≤ G, lying above L, and some g0 ∈ G0, the following conditions

hold:

(L1) G0/L is a cyclic 2-group of order |G0/L| ≥ 4, and 〈g0〉+ L = G0;

(L2) G/G0 is an elementary abelian 2-group (possibly of zero rank);

(L3) exp(G/L) = exp(G0/L);

(L4) S + L = (G \ G0) ∪ (g0 + L) and S ∩ (g0 + L) is not contained in a proper

coset of L.

A little meditation shows that L∗

G(S) ⊆ LG(S) and that conditions (L1)–(L3) imply

G/L ∼= (G0/L)⊕ (Z/2Z)r ∼= (Z/2kZ)⊕ (Z/2Z)r,

for some k ≥ 2 and r ≥ 0. Notice also that if L, G0, and g0 are as in (L1)–(L4),

and G0 = G, then L is a subgroup of G of index at least 4, and S is contained in an

L-coset, whence Cay+
G(S) is disconnected.

Theorem 2. Let S be a proper subset of the finite abelian group G. There exists at

most one subgroup L ∈ L∗

G(S) with |S + L| − |L| ≤ |S| − 1. Moreover,

(i) if L is such a subgroup, then κ(Cay+
G(S)) = λG(S) = |S + L| − |L| and

ηG(S) ≥ |S|;

(ii) if such a subgroup does not exist, then κ(Cay+
G(S)) = min{ηG(S), |S|}.

Postponing the proof to Section 4, we now list some of the consequences.

Corollary 1. Let S be a proper subset of the finite abelian group G such that Cay+
G(S)

is connected. If either |S| ≤ |G|/2 or G does not contain a subgroup isomorphic to

(Z/4Z)⊕ (Z/2Z), then κ(Cay+
G(S)) = min{ηG(S), |S|}.

Proof. If κ(Cay+G(S)) 6= min{ηG(S), |S|}, then by Theorem 2 there exists L ∈ L∗

G(S)

with |S + L| − |L| ≤ |S| − 1. Choose L ≤ G0 ≤ G and g0 ∈ G0 satisfying (L1)–(L4).

Since Cay+
G(S) is connected, the subgroup G0 is proper. Consequently,

|S| ≥ |S + L| − |L|+ 1 = |G| − |G0|+ 1 >
1

2
|G|,

and it also follows that G/L contains a subgroup isomorphic to (Z/4Z) ⊕ (Z/2Z),
which implies that G itself contains such a subgroup. �

Our next result shows that under the extra assumption κ(Cay+G(S)) < |S|, the

conclusion of Theorem 1 can be greatly simplified.
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Theorem 3. Let S be a proper subset of the finite abelian group G. If κ(Cay+G(S)) <

|S|, then

κ(Cay+
G(S)) = min{|S +H| − |H| : H ≤ G, S +H 6= G}.

Theorem 3 will be derived from Theorem 2 in Section 4. Note that the assumption

κ(Cay+G(S)) < |S| of Theorem 3 cannot be dropped: say, if S is the non-zero coset

of a subgroup H ≤ G of index 2, then Cay+G(S) is a complete bipartite graph of

connectivity |G|/2, while |S + H| − |H| = 0 and S + H 6= G. We also notice that,

despite its simple and neat conclusion (and one which mirrors the corresponding result

for usual Cayley graphs), Theorem 3 gives no way to determine whether κ(Cay+G(S)) <

|S| holds, and hence no way to find the connectivity unless it is known to be smaller

than |S| a priori. Of course, a necessary and sufficient condition for κ(Cay+G(S)) < |S|

to hold follows readily from Theorem 2.

Corollary 2. If S is a proper subset of the finite abelian group G, then in order

for κ(Cay+G(S)) < |S| to hold it is necessary and sufficient that there is a subgroup

K ∈ HG(S) ∪ L∗

G(S) with |S +K| ≤ |S|+ |K| − 1.

Observe that if g is an element of G with 2g ∈ S, then g is a neighbor of itself

in Cay+
G(S); consequently, the boundary of {g} contains |S| − 1 elements so that

κ(Cay+G(S)) < |S|. Hence Theorem 3 implies the following corollary.

Corollary 3. Let S be a proper subset of the finite abelian group G. If S∩(2∗G) 6= ∅,

and in particular if G has odd order and S is non-empty, then

κ(Cay+
G(S)) = min{|S +H| − |H| : H ≤ G, S +H 6= G}.

We conclude this section with two potentially useful lower-bound estimates for

κ(Cay+G(S)).

Corollary 4. Let S be a proper subset of the finite abelian group G. If Cay+G(S) is

connected, then in fact

κ(Cay+
G(S)) ≥

1

2
|S|.

Corollary 4 follows from Theorem 3 and the observation that if |S + H| − |H| =

κ(Cay+G(S)) > 0 for a subgroup H ≤ G, then S intersects at least two cosets of H ,

so that |S +H| ≥ 2|H|, and therefore |S +H| − |H| ≥ 1
2
|S +H| ≥ 1

2
|S|.

Corollary 5. Let S be a proper subset of the finite, non-trivial abelian group G, and

let p denote the smallest order of a non-zero subgroup of G. If Cay+G(S) is connected,

then in fact

κ(Cay+G(S)) ≥ min{|S| − 1, p}.
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The proof is similar to that of the previous corollary: if κ(Cay+
G(S)) < |S|−1, then

by Theorem 3 there exists a subgroup H ≤ G with |S +H| − |H| = κ(Cay+
G(S)) > 0;

this subgroup is non-zero and hence |S +H| − |H| ≥ |H| ≥ p.

3. Auxiliary results

In this section, we gather the tools needed for the proof of Theorems 2 and 3. This

includes a simple consequence from [Gk01] or [Gk02] (rephrased), a classical theorem

of Kneser on periodicity of sumsets, a result from [L05], which is a ‘dual’ version of

a well-known structure theorem of Kemperman [Km60], and three original lemmas.

Given a subgroup H of the abelian group G, by ϕH we denote the canonical homo-

morphism fromG ontoG/H . Though the notation ϕH does not specify the underlying

group G, it is always implicit from the context and no confusion will arise.

For a subset S of the abelian group G, the (maximal) period of S will be denoted

by π(S); recall that this is the subgroup of G defined by

π(S) := {g ∈ G : S + g = S},

and that S is called periodic if π(S) 6= {0} and aperiodic otherwise. Thus, S is a

union of π(S)-cosets, and π(S) lies above any subgroup H ≤ G such that S is a union

of H-cosets. Observe also that π(S) = G if and only if either S = ∅ or S = G, and

that ϕπ(G)(S) is an aperiodic subset of the group G/π(S).

Proposition A (Grynkiewicz, [Gk01, (c.5)]; see also [Gk02, Proposition 5.2]). Let A

be a finite, non-empty subset of an abelian group. If |π(A\ {a})| > 2 for some a ∈ A,

then |π(A \ {a′})| = 1 for every group element a′ 6= a.

Theorem A (Kneser, [Kn53, Kn55]; see also [Mn76]). Let A and B be finite, non-

empty subsets of an abelian group G. If

|A+B| ≤ |A|+ |B| − 1,

then, letting H := π(A+B), we have

|A+B| = |A+H|+ |B +H| − |H|.

We now turn to the (somewhat involved) statement of [L05, Theorem 2]; the reader

can consult the source for the explanations and comments.

By an arithmetic progression in the abelian group G with difference d ∈ G, we

mean a set of the form {g+d, g+2d, . . . , g+kd}, where g is an element of G and k is

a positive integer. Thus, cosets of finite cyclic subgroups (and in particular, singleton



CONNECTIVITY OF ADDITION CAYLEY GRAPHS 7

sets) are considered arithmetic progressions, while the empty set is not. For finite

subsets A and B of an abelian group and a group element c, we write

νc(A,B) := |{(a, b) ∈ A× B : c = a + b}|;

that is, νc(A,B) is the number of representations of c as a sum of an element of A and

an element of B. Observe that νc(A,B) > 0 if and only if c ∈ A + B. The smallest

number of representations of an element of A+B will be denoted by µ(A,B):

µ(A,B) := min{νc(A,B) : c ∈ A +B}.

Following Kemperman [Km60], we say that the pair (A,B) of finite subsets of the

abelian group G is elementary if at least one of the following conditions holds:

(I) min{|A|, |B|} = 1;

(II) A and B are arithmetic progressions sharing a common difference, the order

of which in G is at least |A|+ |B| − 1;

(III) A = g1 + (H1 ∪ {0}) and B = g2 − (H2 ∪ {0}), where g1, g2 ∈ G, and where

H1 and H2 are non-empty subsets of a subgroup H ≤ G such that H =

H1 ∪H2 ∪ {0} is a partition of H ; moreover, c := g1 + g2 is the only element

of A +B with νc(A,B) = 1;

(IV) A = g1 +H1 and B = g2 − H2, where g1, g2 ∈ G, and where H1 and H2 are

non-empty, aperiodic subsets of a subgroup H ≤ G such that H = H1 ∪H2 is

a partition of H ; moreover, µ(A,B) ≥ 2.

We say that the pair (A,B) of subsets of an abelian group satisfies Kemperman’s

condition if either A +B is aperiodic or µ(A,B) = 1 holds.

Theorem B (Lev, [L05, Theorem 2]). Let A and B be finite, non-empty subsets of

the abelian group G. A necessary and sufficient condition for (A,B) to satisfy both

|A+B| ≤ |A|+ |B| − 1

and Kemperman’s condition is that there exist non-empty subsets A0 ⊆ A and B0 ⊆ B

and a finite, proper subgroup F < G such that

(i) each of A0 and B0 is contained in an F -coset, |A0 + B0| = |A0| + |B0| − 1,

and the pair (A0, B0) satisfies Kemperman’s condition;

(ii) each of A \ A0 and B \B0 is a (possibly empty) union of F -cosets;

(iii) the pair (ϕF (A), ϕF (B)) is elementary; moreover, either F is trivial, or ϕF (A0)+

ϕF (B0) has a unique representation as a sum of an element of ϕF (A) and an

element of ϕF (B).

Lemma 1. Let L ≤ G0 ≤ G be finite abelian groups. If G0/L is a cyclic 2-group and

2 ∗ (G/L) is a proper subgroup of G0/L, then exp(G0/L) = exp(G/L).
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Proof. Write |G0/L| = 2k so that k is a positive integer. Since |2 ∗ (G/L)| is a

proper divisor of 2k, we have 2k−1g = 0 for every g ∈ 2 ∗ (G/L). Equivalently,

2kg ∈ L for every g ∈ G, whence exp(G/L) ≤ 2k = exp(G0/L). The inverse estimate

exp(G0/L) ≤ exp(G/L) is trivial. �

The following lemma is similar in flavor to a lemma used by Kneser to prove

Theorem A; cf. [Kn55, Km60].

Lemma 2. Suppose that S is a finite subset, and that H and L are finite subgroups

of the abelian group G satisfying |L| ≤ |H| and S +H 6= S +H +L. Let I := H ∩L.

If

max{|S +H| − |H|, |S + L| − |L|} ≤ |S + I| − |I|,

then in fact

|S +H| − |H| = |S + L| − |L| = |S + I| − |I|;

moreover, there exists g ∈ G such that (S + I) \ (g + H + L) is a (possibly empty)

union of (H + L)-cosets, and one of the following holds:

(i) (S + I) ∩ (g +H + L) = g + I;

(ii) (S + I) ∩ (g +H + L) = (g +H + L) \ (g + (H ∪ L)) and |H| = |L|.

Proof. Factoring by I, we assume without loss of generality that I = {0}. Since

S + H 6= S + H + L, there exists s0 ∈ S with s0 + L * S + H , and we let S0 :=

S∩(s0+H+L). It is instructive to visualize the coset s0+H+L as the grid formed by

|L| horizontal lines (corresponding to the H-cosets contained in s0 +H +L) and |H|

vertical lines (corresponding to the L-cosets contained in s0+H+L). The intersection

points of these two families of lines correspond to the elements of s0+H+L, and the

condition s0+L * S +H implies that there is a horizontal line free of elements of S.

Let h := ϕL(S0) (the number of vertical lines that intersect S0) and l := ϕH(S0)

(the number of horizontal lines that intersect S0); thus, 1 ≤ h ≤ |H| and 1 ≤ l < |L|.

We also have, in view of the hypotheses,

(|H| − h)l ≤ |(S0 +H) \ S0| ≤ |(S +H) \ S| ≤ |H| − 1, (1)

whence

(|H| − h)(l − 1) ≤ h− 1, (2)

and similarly,

(|L| − l)(h− 1) ≤ l − 1. (3)

To begin with, suppose that l = 1, and hence h = 1 by (3). In this case, |S0| = 1,

whence S ∩ (s0+H+L) = {s0}. Furthermore, (1) yields (S0+H)\S0 = (S+H)\S,
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and likewise we have (S0 + L) \ S0 = (S + L) \ S. This shows that

|S +H| − |S| = |H| − 1, |S + L| − |S| = |L| − 1, (4)

and S \ S0 is a union of (H +L)-cosets, thus establishing the assertion (with g = s0)

in the case l = 1. So we assume l > 1 below.

Observe that (2) and (3) imply

l − 1 ≥ (|L| − l)(h− 1) ≥ (|L| − l)(|H| − h)(l − 1),

whence it follows from l > 1 that

(|L| − l)(|H| − h) ≤ 1. (5)

If |H| = h, then (3) gives

l − 1 ≥ (|H| − 1)(|L| − l) ≥ (|L| − 1)(|L| − l) ≥ 2|L| − l − 2 ≥ l,

which is wrong. Therefore |H| > h. Thus we deduce from (5) and l < |L| that

h = |H| − 1 and l = |L| − 1, whence (3) gives |H| = |L|. Consequently, (1) yields

(S0 + H) \ S0 = (S + H) \ S, and similarly (S0 + L) \ S0 = (S + L) \ S, which (as

above) proves (4) and shows that S \ S0 is a union of (H + L)-cosets. Furthermore,

S+H misses exactly one H-coset in s0+H+L, and S+L misses exactly one L-coset

in s0 +H + L. Let g ∈ s0 + H + L be the common element of these two cosets, so

that S0 +H = (s0 +H + L) \ (g +H) and S0 + L = (s0 +H + L) \ (g + L). Then

S0 ⊆ (s0 +H + L) \ (g + (H ∪ L)) = (g +H + L) \ (g + (H ∪ L)),

and thus

|L| − 1 = |H| − 1 ≥ |(S +H) \ S| = |(S0 +H) \ S0| = (|L| − 1)|H| − |S0|,

so that

|S0| ≥ (|H| − 1)(|L| − 1) = |(g +H + L) \ (g + (H ∪ L))|.

Hence, in fact S0 = (g +H + L) \ (g + (H ∪ L)), completing the proof. �

Lemma 3. Let G be a finite abelian group, and suppose that the proper subset S ⊂ G,

the subgroups L ≤ G0 ≤ G, and the element g0 ∈ G0 satisfy conditions (L1)–(L4) in

the definition of L∗

G(S). Suppose, moreover, that |S + L| − |S| ≤ |L| − 1. If H is a

subgroup of G with |S + H| − |S| ≤ |H| − 1 and S + H 6= G, then H is actually a

subgroup of G0.

Proof. Suppose for a contradiction that H � G0 and fix h ∈ H \G0. For each g ∈ G0,

we have g+h ∈ G \G0 ⊆ S+L, whence g ∈ S+H +L. Hence G0 ⊆ S+H +L, and

since, on the other hand, we have G \G0 ⊆ S + L ⊆ S +H + L, we conclude that

S +H + L = G. (6)
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In view of S + H 6= G, this leads to L � H , and we let I := H ∩ L. Thus I is a

proper subgroup of L.

Write n := |G0/L| so that G0 consists of n ≥ 4 cosets of L, of which n− 1 are free

of elements of S. Let {gi : 0 ≤ i ≤ n − 1} be a system of representatives of these n

cosets.

Fix i ∈ [1, n − 1]. Since H � G0 and gi ∈ G0, we have gi + H * G0, whence

(G \ G0) ∩ (gi +H) 6= ∅; as G \ G0 ⊆ S + L, this yields S ∩ (gi +H + L) 6= ∅. On

the other hand, from gi + L ⊆ G0 \ (g0 + L) it follows that (S + L) ∩ (gi + L) = ∅.

Therefore,

0 < |(S + I) ∩ (gi +H + L)| < |H + L|; i ∈ [1, n− 1]. (7)

In view of (6) and the hypotheses S +H 6= G, we have S +H 6= S +H + L and

S + L 6= S +H + L. Also, our assumptions imply

max{|S +H| − |H|, |S + L| − |L|} < |S| ≤ |S + I|,

and since both the left and right hand side are divisible by |I|, we actually have

max{|S +H| − |H|, |S + L| − |L|} ≤ |S + I| − |I|.

Thus we can apply Lemma 2. Choose g ∈ G such that (S + I) \ (g + H + L) is a

union of (H + L)-cosets. Then it follows from (7) that

gi +H + L = g +H + L; i ∈ [1, n− 1], (8)

and consequently G0 \ (g0 + L) ⊆ g +H + L. Hence n ≥ 4 implies G0 ≤ H + L and

g ∈ H +L. Thus, since S ∩ (g0 +L) is not contained in a coset of a proper subgroup

of L, and in particular in a coset of I, we conclude that

|(S + I) ∩ (g +H + L)| = |(S + I) ∩ (g0 + L)| ≥ 2|I|.

This shows that Lemma 2 (i) fails. On the other hand, (8) gives gi +L ⊆ g+H +L,

and hence g +H + L contains at least n − 1 ≥ 3 cosets of L, all free of elements of

S + I. Thus Lemma 2 (ii) fails too, a contradiction. �

4. Proofs of Theorems 2 and 3

Our starting point is the observation that if S is a subset of the finite abelian group

G such that Cay+
G(S) is not complete, then

κ(Cay+G(S)) = min{|(S − A) \ A| : ∅ 6= A ⊆ G, (S −A) ∪A 6= G}.

For the following proposition, the reader may need to recall the notion of a fragment,

introduced in Section 2 after the statement of Theorem 1.



CONNECTIVITY OF ADDITION CAYLEY GRAPHS 11

Proposition 1. Let S be a subset of the finite abelian group G, and suppose that

κ(Cay+G(S)) < |S|. If A is a fragment of Cay+G(S), then, writing H := π(S − A), we

have

A ⊆ S −A, (9)

A+H = A, (10)

κ(Cay+G(S)) = |S +H| − |H|, (11)

and

κ(Cay+G/H ϕH(S)) = |ϕH(S)| − 1. (12)

Proof. Fix a ∈ A. Since a has |S| neighbors, all lying in S−A, and since |(S−A)\A| =

κ(Cay+G(S)) < |S| by the assumptions, it follows that a has a neighbor in A; in other

words, there is a′ ∈ A with a+ a′ ∈ S. Consequently, a ∈ S − A, and (9) follows.

By (9) we have

(S − (A +H)) ∪ (A+H) = S −A +H = S − A 6= G,

and obviously,

|(S − (A+H)) \ (A +H)| = |(S − A) \ (A+H)| ≤ |(S − A) \ A|.

Since A is a fragment, we conclude that in fact |(S − A) \ (A +H)| = |(S − A) \ A|

holds, which gives (10).

By (9) and the assumptions, we have

|S −A| = |(S −A) \ A|+ |A| = κ(Cay+
G(S)) + |A| ≤ |S|+ |A| − 1.

Hence it follows from Theorem A and (10) that

|S − A| = |S +H|+ |A+H| − |H| = |S +H|+ |A| − |H|. (13)

Thus

κ(Cay+G(S)) = |(S −A) \ A| = |S − A| − |A| = |S +H| − |H|,

yielding (11).

Finally, we establish (12). The neighborhood of ϕH(A) in the graph Cay+G/H(ϕH(S))

is ϕH(S)− ϕH(A) = ϕH(S −A), and it follows in view of (9) that

ϕH(S − A) ∪ ϕH(A) = ϕH(S − A) 6= G/H.

Consequently, the set ϕH(S −A) \ ϕH(A) is a vertex cut in Cay+
G/H(ϕH(S)), whence

using (9), (10), and (13) we obtain

κ(Cay+G/H(ϕH(S))) ≤ |ϕH(S −A) \ ϕH(A)| = |ϕH(S − A)| − |ϕH(A)|

= (|S − A| − |A|)/|H| = |S +H|/|H| − 1 = |ϕH(S)| − 1.
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To prove the inverse estimate, notice that the graph Cay+G/H(ϕH(S)) is not complete

(we saw above that it has vertex cuts) and choose A′ ⊆ G such that ϕH(A
′) is a

fragment of this graph. Replacing A′ with A′ + H , we can assume without loss of

generality that A′ +H = A′. Since

ϕH((S − A′) ∪ A′) = (ϕH(S)− ϕH(A
′)) ∪ ϕH(A

′) 6= G/H,

we have (S − A′) ∪ A′ 6= G. Hence in view of (11) it follows that

κ(Cay+G/H(ϕH(S))) = |(ϕH(S)− ϕH(A
′)) \ ϕH(A

′)|

= |ϕH(S − A′) \ ϕH(A
′)|

= |(S − A′) \ A′|/|H|

≥ |κ(Cay+G(S))|/|H|

= |ϕH(S)| − 1,

as desired. �

For a subset S of a finite abelian group G, write

λ∗

G(S) := min{|S + L| − |L| : L ∈ L∗

G(S)}.

Clearly, we have λ∗

G(S) ≥ λG(S).

Lemma 4. Let S be a proper subset of the finite abelian group G. If g ∈ G, then

HG(S − 2g) = HG(S), L∗

G(S − 2g) = L∗

G(S), and Cay+
G(S − 2g) is isomorphic to

Cay+G(S); consequently,

ηG(S − 2g) = ηG(S), λ∗

G(S − 2g) = λ∗

G(S),

and

κ(Cay+G(S − 2g)) = κ(Cay+
G(S)).

Proof. The isomorphism between Cay+
G(S − 2g) and Cay+

G(S) is established by map-

ping every group element x to x − g, and the equality HG(S − 2g) = HG(S) is

immediate from the observation that S + 2 ∗ G − 2g = S + 2 ∗ G. To show that

L∗

G(S − 2g) = L∗

G(S), suppose that L ∈ L∗

G(S) and let G0 ≤ G (lying above

L) and g0 ∈ G0 be as in (L1)–(L4). By (L2) we have 2g ∈ G0. Consequently,

(G \G0)− 2g = G \G0, and hence it follows from (L4) that

S − 2g + L = (G \G0) ∪ (g0 − 2g + L).

Furthermore, since ϕL(g0) is a generator of the cyclic 2-group G0/L, so is ϕL(g0 −

2g); that is, 〈g0 − 2g〉 + L = G0. This shows that L ∈ L∗

G(S − 2g), and hence
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L∗

G(S) ⊆ L∗

G(S− 2g). By symmetry, we also have L∗

G(S− 2g) ⊆ L∗

G(S), implying the

assertion. �

We now pass to our last lemma, which will take us most of the way towards the

proof of Theorem 2; the reader may compare the statement of this lemma with that

of Theorem 1.

Lemma 5. If S is a proper subset of the finite abelian group G, then

κ(Cay+G(S)) = min{ηG(S), λ
∗

G(S), |S|}. (14)

Proof. Since each of ηG(S), λ
∗

G(S), and |S| is an upper bound for κ(Cay+G(S)), it

suffices to show that κ(Cay+G(S)) is greater than or equal to one of these quantities.

Thus we can assume that κ(Cay+G(S)) ≤ |S|−1 ≤ |G|−2. Hence S 6= ∅ and Cay+
G(S)

is not complete.

It is not difficult to see that the assertion holds true if |G| ≤ 2; we leave verification

to the reader. The case |S| = 1 is also easy to establish as follows. Suppose that

|G| > 2 and S = {s}, where s is an element of G. If 〈s〉 6= G, then 〈s〉 ∈ HG(S)

and |S + 〈s〉| − |〈s〉| = 0, implying κ(Cay+G(S)) = ηG(S) = 0. Next, if G is not a

2-group, then there exists an element g ∈ G which is an odd multiple of s and such

that the subgroup 〈g〉 is proper; in this case g ∈ (S + 2 ∗ G) ∩ 〈g〉 showing that

〈g〉 ∈ HG(S) and leading to κ(Cay+
G(S)) = ηG(S) = 0, as above. In both cases the

proof is complete, so we assume that 〈s〉 = G is a 2-group. Since |G| > 2, in this case

we have {0} ∈ L∗

G(S) (take G0 = G and g0 = s in (L1)–(L4)) and |S+{0}|−|{0}| = 0,

whence κ(Cay+G(S)) = λ∗

G(S) = 0.

Having finished with the cases |S| = 1 and |G| ≤ 2, we proceed by induction on

|G|, assuming that κ(Cay+G(S)) ≤ |S| − 1. Choose A ⊆ G such that A is a fragment

of Cay+G(S) and fix arbitrarily a ∈ A. In view of Lemma 4, and since the set A− a is

a fragment of the graph Cay+
G(S − 2a), by passing from S to S − 2a, and from A to

A− a, we ensure that

0 ∈ A. (15)

Also, by Proposition 1 we have A ⊆ S −A 6= G.

If each of S and A is contained in a coset of a proper subgroup K < G, then from

A ⊆ S − A and (15) it follows that in fact S and A are contained in K, whence

K ∈ HG(S); furthermore, |S +K| − |K| = 0, showing that κ(Cay+
G(S)) = ηG(S) = 0.

Accordingly, we assume for the rest of the proof that for any proper subgroup of G,

at least one of the sets S and A is not contained in a coset of this subgroup.

Let H := π(S − A). We distinguish two major cases according to whether or not

H is trivial.
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Case 1: H is non-trivial. Applying the induction hypothesis to Cay+G/H(ϕH(S)) and

using (12), we conclude that either ηG/H(ϕH(S)) = |ϕH(S)| − 1 or λ∗

G/H(ϕH(S)) =

|ϕH(S)| − 1, giving two subcases.

Subcase 1.1. Assume first that ηG/H(ϕH(S)) = |ϕH(S)| − 1, and hence that there

exists a subgroup H ′ ≤ G, lying above H , such that H ′/H ∈ HG/H(ϕH(S)) and

|ϕH(S) +H ′/H| − |H ′/H| = ηG/H(ϕH(S)) = |ϕH(S)| − 1.

The former easily implies that H ′ ∈ HG(S), while the latter, in conjunction with (11),

implies that

|S +H ′| − |H ′| = |S +H| − |H| = κ(Cay+G(S)).

This shows that κ(Cay+G(S)) ≥ ηG(S), whence in fact κ(Cay+
G(S)) = ηG(S).

Subcase 1.2. Assume now that λ∗

G/H(ϕH(S)) = |ϕH(S)| − 1, and let L ≤ G be a

subgroup, lying above H , such that L/H ∈ L∗

G/H(ϕH(S)) and

|ϕH(S) + L/H| − |L/H| = λ∗

G/H(ϕH(S)) = |ϕH(S)| − 1.

In view of (11) and the assumptions, the last equality yields

|S + L| − |L| = |S +H| − |H| = κ(Cay+
G(S)) ≤ |S| − 1. (16)

Since L/H ∈ L∗

G/H(ϕH(S)), we can find a subgroup G0 ≤ G, lying above L, and an

element g0 ∈ G0 \L, so that G/G0 is an elementary abelian 2-group, G0/L is a cyclic

2-group of order at least 4 generated by ϕL(g0), and S + L = (G \ G0) ∪ (g0 + L).

Without loss of generality, we can assume that g0 ∈ S.

If S0 := S ∩ (g0 + L) is not contained in a coset of a proper subgroup of L,

then L ∈ L∗

G(S), and hence it follows in view of (16) that κ(Cay+G(S)) = λ∗

G(S).

Therefore we assume that there exists a proper subgroup R < L such that S0 is

contained in an R-coset, and we choose R to be minimal subject to this property;

thus, S0 = S ∩ (g0 +R) and 〈(S − g0) ∩ L〉 = R.

Since S0 is contained in an R-coset, from (16) we obtain

|(S \ S0) + L| − |S \ S0| = |S + L| − |L| − |S|+ |S0| < |S0| ≤ |R|.

Hence every R-coset in G \G0 = (S \S0)+L contains at least one element of S; that

is,

S +R = (G \G0) ∪ (g0 +R). (17)

Consequently, using (16) once again, we obtain

|S +R| − |R| = |G \G0| = |S + L| − |L| = κ(Cay+G(S)). (18)

Applying the previously completed singleton case to the set ϕR(S0) ⊆ G0/R, we

get two further subcases.
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Subcase 1.2.1. Suppose that κ(Cay+
G0/R

(ϕR(S0))) = ηG0/R(ϕR(S0)). Choose a sub-

group R′ ≤ G0, lying above R, such that R′/R ∈ HG0/R(ϕR(S0)). Since R ≤ R′ ≤ G0,

it follows in view of (17) and (18) that

|S +R′| − |R′| = |S +R| − |R| = κ(Cay+G(S)).

Thus, since R′ ∈ HG0
(S0) ⊆ HG(S), we conclude that κ(Cay+G(S)) = ηG(S).

Subcase 1.2.2. Assume now that κ(Cay+G0/R
(ϕR(S0))) 6= ηG0/R(ϕR(S0)). As |G0/R| ≥

|G0/L| ≥ 4, from the singleton case analysis at the beginning of the proof it follows

that G0/R is a cyclic 2-group generated by ϕR(S0) = {ϕR(g0)}.

If R ∈ HG(S), then it follows in view of (18) that κ(Cay+
G(S)) = ηG(S); therefore,

we assume that R /∈ HG(S). Hence in view of S + R ⊆ S + L 6= G we infer

that 2 ∗ (G/R) ∩ ϕR(S) = ∅. Consequently, since (17) implies that ϕR(S) contains

(G/R) \ (G0/R) as a proper subset, we have 2 ∗ (G/R) � G0/R.

Applying Lemma 1, we conclude that exp(G0/R) = exp(G/R). Thus (17), the

remark at the beginning of the present subcase, and the above-made observation

that G/G0 is an elementary 2-group show that R ∈ L∗

G(S), whence (18) yields

κ(Cay+G(S)) = λ∗

G(S).

Case 2: H is trivial. Thus by (11) we have κ(Cay+
G(S)) = |S| − 1, and therefore (9)

gives

|S − A| − |A| = |(S −A) \ A| = κ(Cay+
G(S)) = |S| − 1.

Applying Theorem B to the pair (S,−A), we find a subgroup F < G such that

conclusions (i)–(iii) of Theorem B hold true; in particular, (ϕF (S),−ϕF (A)) is an

elementary pair in G/F of one of the types (I)–(IV), and |S +F | ≤ |S|+ |F | − 1. By

the last inequality, we have

|S + F | − |F | ≤ |S| − 1 = κ(Cay+G(S)).

Hence, if F ∈ HG(S), then κ(Cay+
G(S)) = ηG(S); consequently, we assume that

F /∈ HG(S). (19)

Observe that if ϕF (S) = G/F , then F is non-zero, whence by Theorem B (iii) we

have |ϕF (A)| = 1. Thus, if (ϕF (S),−ϕF (A)) is not of type (I), then

S + F 6= G. (20)

We proceed by cases corresponding to the type of the pair (ϕF (S),−ϕF (A)).
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Subcase 2.1. Suppose that (ϕF (S),−ϕF (A)) is of type (IV). In this case, we have

µ(ϕF (S),−ϕF (A)) ≥ 2, whence it follows by Theorem B (iii) that F is trivial. Hence

(S,−A) is an elementary pair of type (IV). Thus, since S and A are not both contained

in a coset of the same proper subgroup, it follows that A = g+(G\S) for some g ∈ G,

implying −g /∈ S − A. Therefore (9) yields −g /∈ g + (G \ S) and thus −2g ∈ S;

consequently, {0} = F ∈ HG(S), contradicting (19).

Subcase 2.2. Suppose that (ϕF (S),−ϕF (A)) is of type (III), but not of type (I). Then,

since S and A are not both contained in a coset of the same proper subgroup and

since S −A 6= G, it follows that F is non-zero, that

ϕF (S) = ϕF (g1) + (H1 ∪ {0}), −ϕF (A) = ϕF (g2)− (H2 ∪ {0})

for some g1, g2 ∈ G, where H1 ∪H2 ∪ {0} is a partition of G/F , and that g1 + g2 + F

has a non-empty intersection with S−A, while every F -coset, other than g1+g2+F ,

is contained in S − A; moreover, from π(S −A) = {0} we derive that

g1 + g2 + F * S −A. (21)

By Theorem B, all F -cosets corresponding to

(−ϕF (A)) \ {ϕF (g2)} = ϕF (g2)−H2,

are contained in −A. Hence, if

−ϕF (g1 + g2) ∈ ϕF (g2)−H2,

then −g1− g2+F ⊆ −A, and it follows in view of (9) that g1+ g2+F ⊆ A ⊆ S−A,

contradicting (21). Therefore, assume instead that −ϕF (g1 + g2) /∈ ϕF (g2) − H2, so

that ϕF (g1 + 2g2) ∈ H1 ∪ {0}. Then 2ϕF (g1 + g2) ∈ ϕF (g1) + (H1 ∪ {0}) = ϕF (S),

whence by (20) we have F ∈ HG(S), contradicting (19).

Subcase 2.3. Suppose that (ϕF (S),−ϕF (A)) is of type (II), but not of type (I). Letting

u := |ϕF (S)| and v := |ϕF (A)|, and choosing s0 ∈ S, a0 ∈ A, and d ∈ G \ {0}

appropriately, we write

ϕF (S) = {ϕF (s0), ϕF (s0) + ϕF (d), . . . , ϕF (s0) + (u− 1)ϕF (d)}

and

−ϕF (A) = {ϕF (a0), ϕF (a0) + ϕF (d), . . . , ϕF (a0) + (v − 1)ϕF (d)}.

Since (ϕF (S),−ϕF (A)) is not of type (I), we have u, v ≥ 2. Next, it follows from (9)

that

−ϕF (a0) = ϕF (s0) + ϕF (a0) + rϕF (d),
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and therefore ϕF (s0) = −2ϕF (a0) − rϕF (d), for some integer r. Thus either ϕF (s0)

(if r is even) or ϕF (s0) + ϕF (d) (if r is odd) belongs to 2 ∗ (G/F ). In either case, in

view of u ≥ 2 we have ϕF (S) ∩ (2 ∗ (G/F )) 6= ∅, which by (20) leads to F ∈ HG(S),

contradicting (19).

Subcase 2.4. Finally, suppose that (ϕF (S),−ϕF (A)) is of type (I); that is, either

|ϕF (S)| = 1 or |ϕF (A)| = 1 holds.

Suppose first that |ϕF (S)| = 1. In this case, F is non-zero (as |S| > 1) and

S + F 6= G (as F is a proper subgroup); moreover, from (9) we obtain

ϕF (S)− ϕF (A) = ϕF (A). (22)

By Theorem B, we can write A = A1∪A0, where A1 is a union of F -cosets and A0 is a

non-empty subset of an F -coset disjoint from A1. If ϕF (S)−ϕF (A0) ⊆ ϕF (A1), then

S−A0 +F ⊆ A1 +F = A1 ⊆ S −A, whence S −A = (S −A1)∪ (S−A0) is a union

of F -cosets, contradicting the assumption that S − A is aperiodic. Therefore (22)

gives ϕF (S)−ϕF (A0) = ϕF (A0), which together with S+F 6= G implies F ∈ HG(S),

contradicting (19). So we assume for the remainder of the proof that |ϕF (S)| >

|ϕF (A)| = 1, and consequently in view of (15) that A ⊆ F .

Thus from (9) we derive that 0 ∈ ϕF (S), and it follows in view of (19) that

S + F = G. Hence F is nontrivial, and Theorem B shows that there exists s0 ∈ S

such that S = (G \ (s0 + F )) ∪ S0, where S0 ⊂ s0 + F .

If there exists g ∈ G with ϕF (g) 6= −ϕF (g) + ϕF (s0), then it follows in view of

ϕF (S) = G/F that ϕF (g) ∈ −ϕF (g) + ϕF (S \ S0), whence

g ∈ −g + (S \ S0) + F ⊆ −g + S;

consequently, {0} ∈ HG(S) and κ(Cay+G(S)) = ηG(S). Therefore we assume that

ϕF (g) = −ϕF (g) + ϕF (s0) for all g ∈ G. Hence 2 ∗ (G/F ) = {ϕF (s0)}, which implies

that G/F is an elementary 2-group and that ϕF (s0) = 0; consequently, S0 = S ∩ F .

From A ⊆ F and (9), it follows that A ⊆ (S−A)∩F = S0−A, and since S−A 6= G

and S + F = G we have S0 −A 6= F . Consequently, Theorem B (i) yields

κ(Cay+F (S0)) ≤ |(S0 − A) \ A| = |S0 −A| − |A| ≤ |S0| − 1. (23)

Since S0 is a proper subset of F , it follows in view of (23) that κ(Cay+
F (S0)) ≤ |F |−2,

whence Cay+F (S0) is not complete. Let A′ ⊆ F be a fragment of Cay+
F (S0). By (9)

and 23, we have A′ ⊆ S0 − A′ 6= F , and consequently A′ ⊆ S − A′ 6= G. Hence

from (23) and S \ S0 = G \ F we obtain

|S| − 1 = κ(Cay+G(S)) ≤ |(S − A′) \ A′| ≤ |G \ F |+ |(S0 −A′) \ A′|

= |S \ S0|+ κ(Cay+
F (S0)) ≤ |S| − 1,
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implying κ(Cay+
F (S0)) = |S0| − 1 and

κ(Cay+
G(S)) = |S \ S0|+ κ(Cay+

F (S0)).

Consequently, if F ′ ≤ F has the property that κ(Cay+
F (S0)) = |S0 + F ′| − |F ′|, then

κ(Cay+
G(S)) = |S + F ′| − |F ′|. (24)

With (23) in mind, we apply the induction hypothesis to the graph Cay+F (S0). If

κ(Cay+F (S0)) = ηF (S0), then by (24) any subgroup F ′ ∈ HF (S0) ⊆ HG(S) with

κ(Cay+F (S0)) = |S0 + F ′| − |F ′| satisfies κ(Cay+
G(S)) = |S + F ′| − |F ′|, whence

κ(Cay+G(S)) = ηG(S). Therefore we assume instead that κ(Cay+F (S0)) = λ∗

F (S0).

Choose L ∈ L∗

F (S0) with λ∗

F (S0) = |S0 + L| − |L|, and let G0 and g0 ∈ G0 be as in

(L1)–(L4), with F playing the role of G. Then it follows in view of (24) that

κ(Cay+G(S)) = |S + L| − |L|. (25)

If ϕL(S)∩ 2 ∗ (G/L) 6= ∅, then L ∈ HG(S), whence (25) yields κ(Cay+
G(S)) = ηG(S).

Therefore we assume that

ϕL(S) ∩ 2 ∗ (G/L) = ∅ (26)

and we proceed to show that L ∈ L∗

G(S); in view of (25), this will complete the proof.

Since L ∈ L∗

F (S0), and by the choice of G0 and g0, we see that G0/L is a cyclic 2-

group with |G0/L| ≥ 4 and 〈g0〉+L = G0; furthermore, S∩(g0+L) is not contained in

a proper coset of L, and S0+L = (F \G0)∪(g0+L), which in view of S = (G\F )∪S0

and L ≤ F yields

S + L = (G \G0) ∪ (g0 + L). (27)

It remains to show that exp(G/L) = exp(G0/L) and that G/G0 is an elementary

2-group. To prove the former, we observe that (26) and (27) yield 2 ∗ (G/L) � G0/L

and invoke Lemma 1. To establish the latter, simply observe that 2 ∗ (G/L) � G0/L

implies 2 ∗G ≤ G0 + L = G0, whence 2(g +G0) = G0 for every g ∈ G. �

We can now prove Theorem 2.

Proof of Theorem 2. We first show that there is at most one subgroup L ∈ L∗

G(S)

with

|S + L| − |L| ≤ |S| − 1. (28)

For a contradiction, assume that L, L′ ∈ L∗

G(S) are distinct, L satisfies (28), and

|S+L′| − |L′| ≤ |S| − 1. Find G0 ≤ G and g0 ∈ G0 such that (L1)–(L4) hold, and let

S0 = S ∩ (g0 + L). It follows from Lemma 3 that L′ ≤ G0, whence

|L′| − 1 ≥ |S + L′| − |S| ≥ |S0 + L′| − |S0|. (29)
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Suppose that L � L′ and L′ � L, and write t = ϕL′(S0); that is, t is the number of

L′-cosets that intersect S0. Since S0 is not contained in a proper coset of L, and since

L � L′, we have t ≥ 2. Consequently, from L′ � L it follows that

|S0 + L′| − |S0| ≥ t(|L′| − |L ∩ L′|) ≥ t|L′|/2 ≥ |L′|,

contradicting (29). So we may assume either L ≤ L′ or L′ ≤ L; switching the

notation, if necessary, and recalling that L′ 6= L, we assume that L < L′.

Since L′ ∈ L∗

G(S), there exists a subgroup G′

0 ≤ G, lying above L′, and an element

g′0 ∈ G′

0 such that |G′

0| ≥ 4|L′|, (S + L′) \ (g′0 + L′) = G \ G′

0, and (g′0 + L′) ∩ S

is not contained in a proper coset of L′. If ϕL′(g′0) = ϕL′(g0), then (g′0 + L′) ∩ S =

(g0 + L′) ∩ S, while, in view of L′ ≤ G0, the right-hand side is contained in an L-

coset, which, in view of L < L′, contradicts that (g′0 + L′) ∩ S is not contained in

a proper coset of L′. Therefore, we conclude instead that ϕL′(g0) 6= ϕL′(g′0). Thus,

since |π(ϕL′(S) \ {ϕL′(g′0)})| = |π(G′

0/L
′)| ≥ 4, it follows from Proposition A that

|π(ϕL′(S) \ {ϕL′(g0)})| = 1, which is equivalent to

π((S + L′) \ (g0 + L′)) = L′.

Hence, since L < L′ ≤ G0, so that (S + L′) \ (g0 + L′) = G \ G0, it follows that

L′ = G0, whence S + L′ = S + G0 = G, contradicting the assumption L′ ∈ L∗

G(S).

This establishes uniqueness of L ∈ L∗

G(S) satisfying (28).

Clearly, Lemma 5 implies assertion (ii) of Theorem 2, and therefore it remains to

establish assertion (i). To this end, suppose that L ∈ L∗

G(S) satisfies (28), and that

G0 and g0 are as in (L1)–(L4). We will show that ηG(S) ≥ |S| and κ(Cay+G(S)) =

λG(S) = λ∗

G(S) = |S + L| − |L|.

Suppose that there exists H ∈ HG(S) with

|S +H| − |H| ≤ |S| − 1. (30)

Then H ≤ G0 by Lemma 3. If H ≤ L, then from (S + 2 ∗ G) ∩ H 6= ∅ we obtain

(S + 2 ∗G) ∩ L 6= ∅, contradicting (L1)–(L4). Therefore H � L.

Let S0 = (g0 + L) ∩ S, and denote by t the number of H-cosets intersecting S0. In

view of (30), and taking into account H ≤ G0 and H � L, we obtain

|H| − 1 ≥ |S +H| − |S| ≥ |S0 +H| − |S0| ≥ t(|H| − |H ∩ L|) ≥ t|H|/2.

Hence t = 1. Thus, since S0 is not contained in a coset of a proper subgroup of L, we

conclude that L ≤ H . Consequently, from (L1)–(L3) we get 2 ∗ (G/H) = 2 ∗ (G0/H),

and thus, in view of (S + 2 ∗G) ∩H 6= ∅ and taking into account (L4), we have

∅ 6= ϕH(S) ∩ 2 ∗ (G/H) = ϕH(S) ∩ 2 ∗ (G0/H) = {ϕH(g0)} ∩ 2 ∗ (G0/H). (31)
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Since ϕL(g0) generates G0/L, it follows from H ≥ L that ϕH(g0) generates the cyclic

2-group G0/H . Thus (31) implies that H = G0, whence S + H = S + G0 = G, a

contradiction. So we conclude that there are no subgroupsH ∈ HG(S) satisfying (30);

that is, ηG(S) ≥ |S|. Thus it follows by Lemma 5 that

κ(Cay+G(S)) = min{λ∗

G(S), |S|}. (32)

The uniqueness of L, established above, implies that λ∗

G(S) = |S + L| − |L|, and

now (28) shows that

κ(Cay+G(S)) ≤ λG(S) ≤ λ∗

G(S) = |S + L| − |L| ≤ |S| − 1.

Comparing this with (32), we see that, indeed, the first two inequalities are actually

equalities. �

Finally, we prove Theorem 3.

Proof of Theorem 3. By Theorem 2, we have κ(Cay+G(S)) = |S + L| − |L| with a

subgroup L ≤ G, belonging to either HG(S) or L∗

G(S). Let F ≤ G be a subgroup

that minimizes |S + F | − |F | over all subgroups with S + F 6= G. Assuming that

|S + F | − |F | < |S + L| − |L| ≤ |S| − 1, (33)

we will obtain a contradiction; evidently, this will prove the assertion.

¿From Lemma 2 and (33), it follows that either S+F +L = S+L or S+F +L =

S + F ; in either case,

S + F + L 6= G. (34)

Suppose first that |L| ≤ |F |. Then Lemma 2 yields S + F + L = S + F , and thus

|S + F + L| − |F + L| = |S + F | − |F + L|.

The minimality of F now implies that |F + L| = |F |, whence L ≤ F . If L ∈

HG(S), then it follows in view of L ≤ F and S + F 6= G that F ∈ HG(S), implying

κ(Cay+G(S)) ≤ |S + F | − |F |. However, since κ(Cay+G(S)) = |S + L| − |L|, this

contradicts (33). Therefore we may assume L ∈ L∗

G(S). Let G0 be the subgroup from

the definition of L∗

G(S). By Lemma 3 we then have L ≤ F ≤ G0, whence

|S + F | = |G \G0|+ |F | = (|S + L| − |L|) + |F |,

which contradicts (33) once more.

Next, suppose that |F | ≤ |L|. Thus it follows by Lemma 2 that S+L = S+F +L.

Hence

|S + F + L| − |F + L| = |S + L| − |F + L|. (35)

If L ∈ HG(S), then it follows in view of L ≤ F + L and (34) that F + L ∈ HG(S);

now (35) and the minimality of L give |F + L| = |L|, leading to F ≤ L. We proceed
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to show that this holds in the case L ∈ L∗

G(S) as well. In this case, in view of (35)

and (33), Lemma 3 gives F + L ≤ G0, where G0 is the subgroup from the definition

of L∗

G(S). Thus (as in the previous paragraph)

|S + F + L| = |G \G0|+ |F + L| = (|S + L| − |L|) + |F + L|.

Hence, since |S + F + L| = |S + L|, we obtain |F + L| = |L|, and therefore F ≤ L,

as desired.

We have just shown that F ≤ L holds true in either case. Consequently, from

|S + L| − |L| < |S| ≤ |S + F | and divisibility considerations, it follows that indeed

|S + L| − |L| ≤ |S + F | − |F |, contradicting (33) and completing the proof. �
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[Mr83] D. Marušič, Hamiltonian circuits in Cayley graphs, Discrete Math. 46 (1) (1983), 49–54.



22 DAVID GRYNKIEWICZ, VSEVOLOD F. LEV, AND ORIOL SERRA
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