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Abstract 

In this paper we present three different results dealing with the number of (< k)-
facets of a set of points: 

(i) We give structural properties of sets in the plañe that achieve the optimal 
lower bound 3( ^ ) of (< /c)-edges for a fixed k < |_rz/3j — 1; 

(ii) We show that the new lower bound 3(fc+2) + 3(k L ¡ J + 2 ) for the number of 
(< /c)-edges of a planar point set is optimal in the range [n/3\ < 
k < [5n/12j - 1; 



(iii) We show that for k < n/A the number of (< fc)-facets of a set of n points 
in R3 in general position is at least 4( ^ ), and that this bound is tight in that 
range. 
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1 I n t r o d u c t i o n 

In this paper we deal with the problem of giving lower bounds to the number 
of (< fc)-facets of a set of points S: An oriented simplex with vértices at points 
of S is said to be a j-facet of S if it has exactly j points in the positive side 
of its affine hull. Similarly, the simplex is said to be an (< k)-facet if it has 
at most k points in the positive side of its affine hull. 

The number of j-facets of S is denoted by 6j(S) and Ek(S) = J2j=o ej(S) 
is the number of (< fc)-facets (the set S can be omitted if it is clear from 
the context). Giving bounds on these quantities, and on the number of the 
companion concept of k-set, is one of the central problems in Discrete and 
Computational Geometry, and has a long history that we will not try to 
summarize here. Chapter 8.3 is a complete and up to date survey 
of results and open problems in the área. 

Regarding lower bounds for Ek(S), which is the main topic of this paper, 
the problem was first studied by Edelsbrunner et al. in IR2 due to its 
connections with the complexity of higher order Voronoi diagrams. In that 
paper it was stated that Ek(S) > 3(fe^2) and an example was given showing 
that the bound is tight if k < [n/3\ — 1. Unfortunately, the proof of the 
bound was not correct and a correct proof, based on circular sequences, was 
independently found by Ábrego and Fernández-Merchant and Lovász et 
al. where the problem was revisited due to its strong connection with the 
rectiiinear crossing number of the complete graph or, equivalently, with the 
number of convex quadrilaterals in a set of points. 



This lower bound was slightly improved for k > |_f J by Balogli and Salazar 
, again using circular sequences. Recently, and based on the observation 

that it suffices to proof the bound for sets with triangular convex hull, we have 
shown that, in IR2, 

Ek(S)>3(k+
2

2)+ ¿ ( 3 j - n + 3). (1) 

In this paper we deal with three different problems related to lower bounds 
for Ek(S) in IR2 and IR3. Due to the lack of space, proofs will be omitted from 
this extended abstract. 

2 Optimal (< fc)-set vectors 

For S C IR2 and for fixed k < |_f J — 1, we say that Ek(S) is optimal if 
Ek(S) = 3(k+

2
2). 

Theorem 2.1 If Ek(S) is optimal, then S has a triangular convex hull. 

Corollary 2.2 If Ek{S) is optimal, then the outermost |~§] layers of S are 
triangles. 

Theorem 2.3 If Ek{S) is optimal, then Ej(S), 0 < j < k, is optimal. 

3 Tightness of the lower bound for (< fc)-edges in IR2 

In this section we show a point configuration which proves that the lower 
bound for Ek{S) is tight for 0 < k < |_ff J — 1. This solves an open 
conjecture Consider the configuration in Figure 1, which is composed 
of three rotationally symmetric chains, each one associated to a convex hull 
vértex, fulfilling the following properties (where left and right are considered 
with respect to the corresponding convex hull vértex): 

• The first part of the chain is slightly convex to the right and contains j% 
points, with a hole between the first | | points (which we cali subchain A) 
and the remaining y| points (called subchain B). 

• Each chain is completed with a subchain C, composed of another y| points 
slightly convex to the left. 

• All the lines spanned by two points in A U B leave to the right the next 
chain in counterclockwise order, and to the left both the points in C and 
those in the remaining chain. 



Fig. 1. Configuration for which the bound for Ek(S) is tight. 

• All the lines spanned by two points in C sepárate subchains A and B. 
Furthermore, they leave to the right both other subchains of type C. 

• The triangle defined by the innermost points of chains of type B contains 
all the chains of type C. 

Theorem 3.1 For the point configuration S defined above and |_f J < k < 
|_—J - 1 

4 A lower bound for (< fc)-facets in IR3 

Throughout this section 5 C R 3 will be a set of n points in general position. 
Given p,q,r e S, recall that the triangle pqr is a j-facet of S if the plañe 
containing it partitions S into two subsets with cardinality j and n — 3 — j 
(we consider unoriented j-facets and, therefore, j < ñ^). In this section we 
give a lower bound for the number of (< fc)-facets of S. To the best of our 
knowledge, this is the first lower bound for this quantity. 

Motivated by the standard definition of convex position, we say that a set 
of points is in simplicial position if its convex hull is a simplex. As in [2], 
we first try to show that the number of (< fc)-facets is minimized for sets in 
simplicial position using continuous motion. The events when the number of 
j-facets changes are called mutations and have been previously considered by 
Andrzejak 

Unlike in the planar case, when a vértex of the convex hull is moved to 



infinity, there are mutations for which the number of (< fc)-facets increases. 
Using the concept of centerpoint what we can prove is the following: 

Theorem 4.1 Let S be a set of n points with h > 4 extreme points. There 
exists a set Si of n points in simplicial position and such that Ek{S\) < Ek(S) 
for every 0 < k < j . 

Using this result we can apply induction and show that: 

Theorem 4.2 Let S be a set of n points in IR3 in general position. If k <j, 

the number of (< k)-facets of S is at least Ay ) . Furthermore, this bound 

is tight. 
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