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Abstract

An s-graph is a graph with two kinds of edges: subdivisible edges and real
edges. A realisation of an s-graph B is any graph obtained by subdividing
subdivisible edges of B into paths of arbitrary length (at least one). Given an
s-graph B, we study the decision problem IIp whose instance is a graph G and
question is “Does G contain a realisation of B as an induced subgraph?”. For
several B’s, the complexity of IIp is known and here we give the complexity for
several more.

Our NP-completeness proofs for IIg’s rely on the NP-completeness proof of
the following problem. Let S be a set of graphs and d be an integer. Let l"‘fg
be the problem whose instance is (G, z,y) where G is a graph whose maximum
degree is at most d, with no induced subgraph in S and z,y € V(G) are two
non-adjacent vertices of degree 2. The question is “Does G contain an induced
cycle passing through x,y?”. Among several results, we prove that I‘% is NP-
complete. We give a simple criterion on a connected graph H to decide whether
I‘Erflo} is polynomial or NP-complete. The polynomial cases rely on the algorithm
three-in-a-tree, due to Chudnovsky and Seymour.
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1 Introduction

In this paper graphs are simple and finite. A subdivisible graph (s-graph for
short) is a triple B = (V, D, F) such that (V, DUF) is a graph and DN F = ().
The edges in D are said to be real edges of B while the edges in F' are said to
be subdivisible edges of B. A realisation of B is a graph obtained from B by
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Figure 1: s-graphs yielding trivially polynomial problems

Figure 2: Pyramids, prisms and thetas

subdividing edges of F into paths of arbitrary length (at least one). The problem
IIp is the decision problem whose input is a graph G and whose question is
"Does G contain a realisation of B as an induced subgraph?”. On figures, we
depict real edges of an s-graph with straight lines, and subdivisible edges with
dashed lines.

Several interesting instance of IIg are studied in the literature. For some
of them, the existence of a polynomial time algorithm is trivial, but efforts are
devoted toward optimized algorithms. For example, Alon, Yuster and Zwick [2]
solve II7 in time O(m!*!) (instead of the obvious O(n?) algorithm), where T is
the s-graph depicted on Figure[Il This problem is known as triangle detection.
Rose, Tarjan and Lueker [I0] solve ITz in time O(n+m) where H is the s-graph
depicted on Figure [Tl

For some Ilp’s, the existence of a polynomial time algorithm is non-trivial.
A pyramid (resp. prism, theta) is any realisation of the s-graph By (resp. Ba,
B3) depicted on Figure 2l Chudnovsky and Seymour [5] gave an O(n?)-time
algorithm for I, (or equivalently, for detecting a pyramid). As far as we know,
that is the first example of a solution to a IIg whose complexity is non-trivial
to settle. In contrast, Maffray and Trotignon [8] proved that IIp, (or detecting
a prism) is NP-complete. Chudnovsky and Seymour [4] gave an O(n'!)-time
algorithm for Pp, (or detecting a theta). Their algorithm relies on the solution
of a problem called “three-in-a-tree”, that we will define precisely and use in
Section 2l The three-in-tree algorithm is quite general since it can be used to
solve a lot of IIp problems, including the detection of pyramids.

These facts are a motivation for a systematic study of IlIz. A further moti-
vation is that very similar s-graphs can lead to a drastically different complex-
ity. The following example may be more striking than pyramid/prism/theta :
IIp,,IIp, are polynomial and Ilp,, Iz, are NP-complete, where By, ..., By are
the s-graphs depicted on Figure[3l This will be proved in section Bl
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Figure 3: Some s-graphs with pending edges

Figure 4: I,

Notation and remarks

By C% (k > 3) we denote the cycle on k vertices, by K; (I > 1) the clique on
[ vertices. A hole in a graph is an induced cycle on at least four vertices. We
denote by I; (I > 1) the tree on [ + 5 vertices obtained by taking a path of
length [ with ends a, b, and adding four vertices, two of them adjacent to a, the
other two to b; see Figure[dl When a graph G contains a graph isomorphic to
H as an induced subgraph, we will often say “G contains an H”.

Let (V,D,F) be an s-graph. Suppose that (V, D U F) has a vertex of de-
gree one incident to an edge e. Then Iy pufe},r\fe}) and (v, p\{e}, Fufe})
have the same complexity, because a graph G contains a realisation of (V, D U
{e}, F'\ {e}) if and only if it contains a realisation of (V,D \ {e}, F U {e}).
For the same reason, if (V,D U F) has a vertex of degree two incident to
the edges e # f then I, p\(epugsy.pif3u(ed): Lvipvisiute), Piepusy) and
v, p\fe, },Fu{e,f}) have the same complexity. If |[F| < 1 then Iy p gy is
clearly polynomial. Thus in the rest of the paper, we will consider only s-graphs
(V, D, F') such that:

o |F| =2
e no vertex of degree one is incident to an edge of F;

e every induced path of (V, DU F') with all interior vertices of degree 2 and
whose ends have degree # 2 has at most one edge in F'. Moreover, this
edge is incident to an end of the path;

e every induced cycle with at most one vertex v of degree at least 3 in
(V,D U F) has at most one edge in F' and this edge is incident to v if v
exists (if it does not then the cycle is a component of (V, D U F)).

2 Detection of holes with prescribed vertices

Let A(G) be the maximum degree of G. Let S be a set of graphs and d be
an integer. Let I'4 be the problem whose instance is (G,z,y) where G is a
graph such that A(G) < d, with no induced subgraph in § and z,y € V(G)



are two non-adjacent vertices of degree 2. The question is “Does G contain a
hole passing through x, y?”. For simplicity, we write I's instead of I‘jgoo (so, the
graph in the instance of I's has unbounded degree). Also we write I'Y instead
of 1"% (so the graph in the instance of I'® has no restriction on its induced
subgraphs). Bienstock [3] proved that I = T'y is NP-complete. For S = {K3}
and § = {K14}, I's can be shown to be NP-complete, and a consequence is the
NP-completeness of several problems of interest: see [8] and [9].

In this section, we try to settle I‘ds for as many S’s and d’s as we can. In
particular, we give the complexity of I's when S contains only one connected
graph and of I'? for all d. We also settle I'4 for some cases when S is a set of
cycles. The polynomial cases are either trivial, or are a direct consequence of
an algorithm of Chudnovsky and Seymour. The NP-complete cases follow from
several extensions of Bienstock’s construction.

2.1 Polynomial cases

Chudnovsky and Seymour [4] proved that the problem whose instance is a graph
G together with three vertices a, b, ¢ and whose question is ”Does G contain a
tree passing through a,b,c as an induced subgraph?” can be solved in time
O(n*). We call this algorithm “three-in-a-tree”. Three-in-a-tree can be used
directly to solve I's for several S’s. Let us call subdivided claw any tree with
one vertex u of degree 3, three vertices vy, ve,vs of degree 1 and all the other
vertices of degree 2.

Theorem 2.1 Let H be a graph on k vertices that is either a path or a subdi-
vided claw. There is an O(n")-time algorithm for T (gy.

PROOF — Here is an algorithm for I';zy. Let (G, ,y) be an instance of I'y. If
H is a path on k vertices then every hole in G is on at most k vertices. Hence, by
a brute-force search on every k-tuple, we will find a hole through x, y if there is
any. Now we suppose that H is a subdivided claw. So k& > 4. For convenience,
we put 1 = x, y1 = y. Let zo,x2 (resp. yo,y2) be the two neighbors of x;
(vesp. y1).

First check whether there is in G a hole C through z1,y; such that the
distance between x7 and y; in C is at most k — 2. If k = 4 or kK = 5 then
{zo, z1, 22, Y0, Y1, y2} either induces a hole (that we output) or a path P that
is contained in every hole through x,y. In this last case, the existence of a
hole through z,y can be decided in linear time by deleting the interior of P,
deleting the neighbors in G \ P of the interior vertices of P and by checking
the connectivity of the resulting graph. Now suppose k > 6. For every [-tuple
(x3,...,2142) of vertices of G, with [ < k — 5, test whether P = xg—x1—---—
ZTi+2—Y2—Y1—Yo is an induced path, and if so delete the interior vertices of P
and their neighbors except zg, y9, and look for a shortest path from xg to yo.
This will find the desired hole if there is one, after possibly swapping xg, z2 and
doing the work again. This takes time O(n*~3).

Now we may assume that in every hole through x4, y1, the distance between
x1,y1 is at least k — 1.

Let k; be the length of the unique path of H from u to v;, ¢ = 1,2,3.
Note that k = k1 + ko + ks + 1. Let us check every (k — 4)-tuple z =



(T35 ey Thy+1,Y3s - - - Ykotky) Of vertices of G. For such a (k — 4)-tuple, test
whether zog—21 -+ =), 41 and P = yo—y1 — - —Yko+ks are induced paths
of G with no edge between them except possibly T, +1Yk,+ks- 1f nOt, go to
the next (k — 4)-tuple, but if yes, delete the interior vertices of P and their
neighbors except Yo, Yk, +ks- Also delete the neighbors of zs,...,xk,, except
T1,T2,. .., Thy, Thy4+1- Call G, the resulting graph and run three-in-a-tree in
G for the vertices 21, Yk, +ks, Yo We claim that the answer to three-in-a-tree
is YES for some (k — 4)-tuple if and only if G contains a hole through z1, 31
(after possibly swapping zg, z2 and doing the work again).

To prove this, first assume that G contains a hole C' through x1,y; then up
to a symmetry this hole visits zg, 21, z2,y2,y1,y0 in this order. Let us name
X3, ..., Tk, +1 the vertices of C that follow after x1,x2 (in this order), and let
us name ys, ..., Yk, +ks those that follow after y1,ys (in reverse order). Note
that all these vertices exist and are pairwise distinct since in every hole through
x1,y1 the distance between x1,y; is at least k — 1. So the path from yg to
Ykotks 0 C'\ y1 is a tree of G, passing through x1, Yk, +ks, Yo, where z is the
(k —4)-tuple (z3,...,Tky4+1,Y3s- -« Ykotks)-

Conversely, suppose that G, contains a tree T' passing through =1, Yk, +ks, Yo,
for some (k—4)-tuple z. We suppose that T is vertex-inclusion-wise minimal. If
T is a path visiting yo, 1, Yk,+ks in this order, then we obtain the desired hole
of G by adding y1, Y2, - - - s Yko+ks—1 to T. If T is a path visiting =1, yo, Yke+ks i
this order, then we denote by yr,+k,+1 the neighbor of yi, 1k, along T'. Note
that T' contains either xg or zo. If T' contains z(, then there are three paths in
G: yo—T—xo—21——Thy, Yo~ T —Ykptks+1—" " —Yks+2 and Yo—y1— - —Yks-
These three paths form a subdivided claw centered at yg that is long enough to
contain an induced subgraph isomorphic to H, a contradiction. If T contains
x2 then the proof works similarly with yo—71 —xk, 41—k, — - - —21 instead of
Yyo—T—x0—21— - —xk,. If T is a path visiting 1, Yx,+ks, Yo in this order,
the proof is similar, except that we find a subdivided claw centered at yx,+ .-
If T is not a path, then it is a subdivided claw centered at a vertex u of G.
We obtain again an induced subgraph of G isomorphic to H by adding to T
sufficiently many vertices of {xo, ... Tk, +1,Y0,- -+ Ykotks |- |

2.2 NP-complete cases (unbounded degree)

Many NP-completeness results can be proved by adapting Bienstock’s con-
struction. We give here several polynomial reductions from the problem 3-
SATISFIABILITY of Boolean functions. These results are given in a framework
that involves a few parameters, so that our result can possibly be used for
different problems of the same type. Recall that a Boolean function with n
variables is a mapping f from {0,1}" to {0,1}. A Boolean vector £ € {0,1}"
is a truth assignment satisfying f if f(€§) = 1. For any Boolean variable z on
{0,1}, we write Z := 1 — z, and each of z,% is called a literal. An instance of
3-SATISFIABILITY is a Boolean function f given as a product of clauses, each
clause being the Boolean sum V of three literals; the question is whether f is
satisfied by a truth assignment. The NP-completeness of 3-SATISFIABILITY is
a fundamental result in complexity theory, see [6].



Let f be an instance of 3-SATISFIABILITY, consisting of m clauses C1, ..., Cy,
on n variables z1,...,z,. For every integer k > 3 and parameters o € {1,2},
g € {0,1}, v € {0,1}, § € {0,1,2,3}, ¢ € {0,1}, ¢ € {0,1} such that if

= 2 then ¢ = 8 = ~, let us build a graph Gy(k,«, S3,7,9d,¢,{) with two
specified vertices z,y of degree 2. There will be a hole containing z and y in
Gy(k,a, B,7,90,¢,¢) if and only if there exists a truth assignment satisfying f.
In Gy(k,a, 8,7, 9,¢,() (we will sometimes write Gy for short), there will be two
kinds of edges: blue and red. The reason for this distinction will appear later.
Let us now describe G'y.

Pieces of Gy arising from variables

For each variable z; (i =1,...,n), prepare a graph G(z;) with 4k vertices a; ,,
b, @)y b € {1, k} and 4(m + 2)2k vertices t; opktr, fi2pkrs t’i72pk+r,

{12pk+r, p € {0,....m+1}, r € {0,...,2k — 1}. Add blue edges so that
the four sets {am, ceeGiky 005y T 2k(mr2)—15 bii,... ;bi,k}; {az Ty--- Q4 ks
fior - figkema)—1, b1, bkt {aiy,al, tooo Eopimya)—1
b;l, e b;k}, {a;)l, .. .a;k, {70, ce {72k(m+2)71, b;)l, . ,b;k} all induce paths

(and the vertices appear in this order along these paths). See Figure
Add red edges according to the value of «, 3, v, as follows:

e If « = 1 then, for every p = 1,...,m + 1, add all edges be-
tween {tjokp, ti2kp+st and {fiorp, fi2kp+~}, between {fionp, fi2kpt~y}
and {t;,2kp7t;,2kp+6}7 between {t;,2kp7t;,2kp+6} and {fi/,2k:p7fi/,2kp+'y}7 be-
tween {f] opps fi okprr } a0 {ti2kp, ti 2kp+ 5}

o If « = 2 then, for every p = 1,...,m, add all edges between
{ti,2kp+k71;ti,2kp+kfl+5} and {fi 2kp+k—1, fi2kpth—14~} ; for every p =
1,...,m + 1, add all edges between {f;okp+k—1,fi2kpth—14+~} and

{tz 2kp? tz 2kp+,8} between {tz 2kp? tz 2kp+,8} and {fz 2kp? le 2k7P+V} between
fl 2kp> fl akptry ) A {2k (p 1) 4k 15 ti2k(p— 1)+ k- 148
See Figures [6] [1

Pieces of Gy arising from clauses

For each clause C; (j = 1,...,m), with C; = yjl Vv y]2 Vv y?, where each
y; (¢ = 1,2,3) is a literal from {z1, ..., zn, Z1, ..., Zn}, prepare a
graph G(Cj) with 2k vertices ¢;p, djp, p € {1,...,k} and 6k vertices u
qg € {1,2,3}, p € {1,...,2k}. Add blue edges so that the three sets
{cin e Cipuf gy ul gy, din, . djk}, ¢ € {1,2,3} all induce paths (and
the vertices appear in this order along these paths).

Add red edges according to the value of §:
e If 6 =0, add no edge.
e If§=1, add uj 1uj 1> })%ui%.

ul o w2 1,3 .1 .3
o If § =2, add uj u? ,, WS ok U5 ogy Uj1UT 15 Uj o)W o
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Figure 5: The graph G(z;) (only blue edges are depicted)
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See Figure [

Gluing the pieces of Gy

The graph G¢(k, o, 8,7, 6, ¢, () is obtained from the disjoint union of the G(z;)’s
and the G(Cj)’s as follows. For i =1,...,n — 1, add blue edges b; xa;+1,1 and
b; k@it1,1- Add a blue edge b, yc11. For j = 1,...,m — 1, add a blue edge
dj kCjt1,1- Introduce the two special vertices x,y and add blue edges za1,1, za) ;
and yd, k, Ybn k. See Figure

Add red edges according to f,e,(. For ¢ = 1,2,3, if y = z;, then add
all possible edges between { f; okj+x—1, fi,2kj+k— 1+5} and {uj oo U k+<} and be-
tween {f] opisx—1s fionjrh_14e) and {uf,uf, )i if yf = Z; then add all pos-
sible edges between {ti2kj+k—1,ti 2]€J+k 1+e} and {ugk, §7k+<} and between
{tz 2kj+k—1> 1 2k]+k 1+s} and {ug k> j k+<} See Flgure

Clearly the size of G t(k, @, B8,7,6,¢,¢) is polynomial (actually quadratic) in
the size n +m of f, and x,y are non-adjacent and both have degree two.

Lemma 2.2 f is satisfied by a truth assignment if and only if
Gk, B,7,0,€,C) contains a hole passing through x,y.

PROOF — Recall that if @« = 2 then ¢ = 8 = v. We will prove the lemma for
B =0,v=0,e =0, =0 because the proof is essentially the same for the
other possible values.

Suppose that f is satisfied by a truth assignment £ € {0,1}"™. We can build
a hole in G by selecting vertices as follows. Select z,y. For ¢ = 1,...,n, select
i ps bip, @, b5, for all p € {1,. k} For j =1,...,m, select ¢;p,d;, for all
pe{l,....;k} If& =1 select tlp, ipforallpe {O 2k(m +2) — 1}, If
& =0 select fips fip forallp € {0,...,2k(m+2)—1}. Forj =1,...,m,since £
is a truth assignment satisfying f, at least one of the three literals of C} is equal
to 1, say yj = 1 for some ¢ € {1,2,3}. Then select uj , for all p € {1,...,2k}.
Now it is a routine matter to check that the selected vertices induce a cycle Z
that contains x,y, and that Z is chordless, so it is a hole. The main point is
that there is no chord in Z between some subgraph G(C;) and some subgraph
G(z;), for that would be either an edge tipuj, with y! = z; and & = 1, or,
symmetrically, an edge fupug,r with yj =7Z; and & = 0, and in either case this
would contradict the way the vertices of Z were selected.

Conversely, suppose that G (k, o, 8,7, d,¢,¢) admits a hole Z that contains
z,y.
(1) Fori=1,...,n, Z contains at least 4k + 4k(m + 2) vertices of G(z;): 4k of
these are ajp,a; ,, b; )p,b;p where p € {1,...,k}, and the others are either the
tip i, s or the fip, fi ’s where p € {0,...,2k(m +2) — 1},

Py Y1,p
Let us first deal with the case ¢ = 1. Since z € Z has degree 2, Z contains

ar,--- a1k and aj q,...,a} ;. Hence exactly one of 1 ¢, f1,0 is in Z. Likewise
exactly one of t] o, fi o is in Z. If t1 ¢, fi o are both in Z then there is a con-
tradiction: indeed, if o = 1 then, t10,...,t12¢ and f{g,..., f] 5, must all be

in Z, and since ¢; o1, sees f{y%, Z cannot go through y; and if @ = 2 the proof
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Figure 9: The whole graph Gy

Figure 10: Red edges between G(z;) and G(C;) whene =( =0



is similar. Similarly, #} o, f1,0 cannot both be in Z. So, there exists a largest
integer p < 2k(m + 2) — 1 such that either ¢10,...,t1, and ¢} o,...,#] , are all
in Zor fio,---, fipand f{g,..., f{, are allin Z.

We claim that p = 2k(m+2) — 1. For otherwise, some vertex w in {t; p, t ,,
fip> fi,} is incident to a red edge e of Z. If a = 1 then, up to a symmetry, we
assume that t10,...,t1, and #} o,..., %] , are all in Z. Let w’ be the vertex of
e that is not w. Then w’ (which is either an f ., an f] = or a u; ) is a neighbor
of both t; p, t’l)p. Hence, Z cannot go through y, a contradiction. This proves
our claim when a = 1. If a = 2, we distinguish between the following six cases.
Case 1: p=4k — 1. Then e =t1 g1 f] 5. Clearly t10,...,t1,,—1 must all be in
Z. 1t 1 g, t] o, arve in Z, there is a contradiction because of t) o1 f1 21, and
if fio,---,f101 are in Z, there is a contradiction because of e.

Case 2: p =2kl where 1 <1 <m+1 and w = t’mkl. Then e is tl1,2sz1,2kl+k—1
or t/1,2klf{,2kl' In either case, t1,2k1, - - - , t1,2ki+k—1 are all in Z, and there is a con-
tradiction because of the red edge fi 2ki+k—1t1,2k1+k—1 OF t1,2(l—1)k+k—1f{72klu
or when [ = m + 1 because of by ;.

Case 8: p = 2kl where 1 < I < m+ 1 and w = f{,zkl' Then
e is f{,2klt1>2(l—1)k+k—1 or t/1,2klf{,2kl' In either case, f1,2kl7 ceey f1)2k1+k_1
are all in Z, and there is a contradiction because of the red edge
t1,20— 1) k+k—1J1,2(-1)k4k—1 OF 1 o3y f1,2k14+k—1, or when [ = 1 because of a .
Case 4: p = 2kl +k — 1 where 1 <1 < m and w = t; opi+x—1. Then e is
t1 2kl +k—1 1,2kl k—1, t1,2kl+k—1f{)2(l+1)k, or 1y ok1k—1u] ;, for some j,¢. In the
last case, there is a contradiction since ] 5y, ; € Z also sees ugk For the
same 1eason, ) oy, U] ;. is not an edge of Z and ] oy 4, - b1 2(41)k BTC
all in Z. So there is a contradiction because of the red edge tll)lefl,le+k_1 or
t/1,2(l+1)kf{,2(l+l)k'

Case 5: p = 2kl + k — 1 where 2 <1 < m and w = fi2k+k—1. Then e is
either fi oki+k—1%1,2k1+k—1 OF f12k14+k—1t) 937 OF f1,2k14k—1u] , for some j, ¢. In
the last case, there is a contradiction since f] 54,1 € Z also sees ujk For
the same reason, f{,QkH-k—lu?,k is not an edge of Z and f] 5110315+ -+ f{,2(l+1)k
are all in Z. So there is a contradiction because of the red edge t} o, f] o) Or
b1 2ki+k—1f1 241

Case 6: p =2k(m +1)+k —1 and w = f1 2p(m+1)+k—1- Then there is a con-
tradiction because of the red edge t/1,2k(m+1)f{,2k(m+1)' This proves our claim.

Since p = 2k(m +2) — 1, by is in Z. We claim that by is in Z. For
otherwise, the two neighbors of b1 in Z are t; sp(m+2)—1 and fi ok(m+2)—1-
This is a contradiction because of the red edges tl_ygkark_lf{’%(

m—+1)’
t/1,2k(m+1)~f172k(m+1)+k—1 (iffa =2)or t172k(m+1)f{,2k(m+1)7 tll,2k(m+l)f1>2k(m+1)
(if @ = 1). Similarly, b} 1,0, are in Z. So b11,...,b1x and b} 1,..., b}, are
all in Z.

This proves () for i = 1. The proof for i = 2,...,n is essentially the same
as for ¢ = 1. This proves (1).

(2)1 For j :1 1,... ,T)’2L, Z conéains cj,l?: cee Cj"ké dj1,...,dj, and exactly one of
{ujqs- - ’uj,2k}7 {uf s, uj,zk}’ {ugq, ,umk}.

. ) P
Let us first deal with the case j = 1. By (), b, isin Z and so c11,...,c1k
are all in Z. Consequently exactly one of u} ;,uf ;,u} ; is in Z, say ui ; up to a
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symmetry. Note that the neighbour of u{ in Z \ ¢; ; cannot be a vertex among
uil, uil for this would imply that Z contains a triangle. Hence uiz, e 7“},1@
are all in Z. The neighbour of u}, in Z \ uj, , cannot be in some G(z;)
(1 <4 < n). Else, up to a symmétry we assume that this neighbor is ¢ p,
p € {0,...,2k(m+2) — 1}. If t1, € Z, there is a contradiction because then
t1, is also in Z by (@) and #; , would be a third neighbour of u}, in Z. If
t1p ¢ Z, there is a contradiction because then the neighbor of ¢, in Z \ uj
must be t1 41 (or symmetrically ¢; ,—1) for otherwise Z contains a triangle.
S0, t1,p+1,t1,p+2, ... must be in Z, till reaching a vertex having a neighbor f; ,
or f{ , in Z (whatever ). Thus the neighbour of uj ; in Z \ uj,_; is uf 5.
Similarly, we prove that wq gy2,...,u%1,2% are in Z, that dy1,...,d; , are in Z,
and so the claim holds for ;7 = 1. The proof of the claim for j = 2,...,m is
essentially the same. This proves (2).

Together with z,y, the vertices of Z found in () and (@) actually induce
a cycle. So, since Z is a hole, they are the members of Z and we can replace
“at least” by “exactly” in ({l). We can now make a Boolean vector £ as follows.
For i = 1,...,n, if Z contains t;,t;, set & = 1; if Z contains f;, f] o set
& = 0. By (0) this is consistent. Consider any clause C; (1 < j < m). By @)
and up to symmetry we may assume that u;k isin Z. If yjl = z; for some
i € {1,..,n}, then the construction of G implies that f;okj1k—1,f;9; 1 are
not in Z, so ti,2kj+k—1,t/i,2kj+k,1 are in Z, so & = 1, so clause C} is satisfied by
x;. If yjl =%, for some i € {1,...,n}, then the construction of G implies that
ti2kj+h—1:1; opjsp_1 ar€ N0t in Z, 80 fiokjtk—1, fiopjipr_1 are in Z, so & =0,
so clause C} is satisfied by Z;. Thus ¢ is a truth assignment satisfying f. a

Theorem 2.3 Let kK > 5 be an integer. Then Tic,,.cuK1 6} and
Uin o1 Cs,. O K10y 0T€ NP-complete.

PROOF — It is a routine matter to check that the graph Gy(k,2,0,0,0,0,0)
contains no C; (3 <1 < k) and no K; ¢ (in fact it has no vertex of degree at
least 6). So Lemma 2.2 implies that 'y, .. o, K, ¢ is NP-complete.

It is a routine matter to check that the graph Gy(k,1,1,1,3,1,1) contains
no Ki 4, n0 Cy (5 <1<k)and no Iy (1 <! <k). So Lemma [2.2 implies that
Uk 4,05, ,Cuh,.. 1,y 18 NP-complete. O

2.3 Complexity of I'yyy when H is a connected graph
Theorem 2.4 Let H be a connected graph. Then one of the following holds:

e H is a path or a subdivided claw and I' (g is polynomial.
o H contains one of K14, I for some k > 1, or Cp for some | > 3 as an

induced subgraph and Iy is NP-complete.

PROOF — If H contains one of K 4, I;, for some k£ > 1, or C; for some [ > 3
as an induced subgraph then I'(z) is NP-complete by Theorem 2.3l Else, H is
a tree since it contains no Cj, I > 3. If H has no vertex of degree at least 3,
then H is a path and I';zy is polynomial by Theorem LIl If H has a single
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vertex of degree at least 3, then this vertex has degree 3 because H contains
no Ki 4. So, H is a subdivided claw and I'{z} is polynomial by Theorem 2.1
If H has at least two vertices of degree at least 3 then H contains an I;, where
[ is the minimum length of a path of H joining two such vertices. This is a
contradiction. |

Interestingly, the following analogous result for finding maximum stable sets
in H-free graphs was proved by Alekseev:

Theorem 2.5 (Alekseev, [I]) Let H be a connected graph that is not a path
nor a subdivided claw. Then the problem of finding a mazrimum stable set in
H-free graphs is NP-hard.

But the complexity of the maximum stable set problem is not known in
general for H-free graphs when H is a path or a subdivided claw. See [7] for a
survey.

2.4 NP-complete cases (bounded degree)

Here, we will show that I'? is NP-complete when d > 3 and polynomial when
d=2. If S is any finite list of cycles Cf,, Ck,,-. ., Ck,,, then we will also show
that I'} is NP-complete as long as Cg ¢ S.

Let f be an instance of 3-SATISFIABILITY, consisting of m clauses C1, ..., Cy,
on n variables z1, ..., z,. For each clause C; (j =1,...,m), with C; = y3;_2 V
y3j—1 V ysj, then y; (i =1,...,3m) is a literal from {z1, ..., 2n, Z1, ..., Zn}-

Let us build a graph Gy with two specified vertices x and y of degree 2 such
that A(G¢) =3 . There will be a hole containing  and y in Gy if and only if
there exists a truth assignment satisfying f.

For each literal y; (j = 1,...,3m), prepare a graph G(y;) on 20 vertices a,

o, ot Lot ol ot B B B, L B, B, L B (We drop
the subscript j in the labels of the vertices for clarity).
For i = 1,2,3 add the edges o'TalitD+ —pgitglith+ = gi—qlit)—

BB+ = . Also add the edges o't~ o'~ g, ot B4, ot B, aalt,
aal™, ot oo/, BB, BB, BT, BB See Figure Il

For each clause C; (j = 1,...,m), prepare a graph G(C;) with 10 vertices
At At At et 2 BT O e 07 27 (We drop the subscript j in
the labels of the vertices for clarity).

Add the edges c'?tclt, c12tc?t, cl27¢lm,) 1272, Otel?t, cOtedt,
P27, "= ¢3~. See Figure 12

For each variable z; (i = 1,...,n), prepare a graph G(z;) with 2z; + 22;"
vertices, where z; is the number of times Z; appears in clauses 1, ..., C,, and
zz+ is the number of times z; appears in clauses C1, ..., Cy,.

Let G(2;) consist of two internally disjoint paths P;" and P;” with common
endpoints d:r and d; and lengths 1 + 2z, and 1 + 2zi+ respectively. Label the
vertices of P/ as dj, p;fl, c p;f2 s, d; and label the vertices of P~ as di, Pits
-+ Diog,» d; - See Figure [[3]

The final graph G (see Figure [[4) will be constructed from the disjoint
union of all the graphs G(y;), G(C;), and G(z;) with the following modifications:

12



alt a’t a3t it
«
ol o2 R ol
61-0- 62+ 63+ 54+
g
e B 8% Ch
Figure 11: The graph G(y;)
ot ol
012+
A p
AF

ﬁ/

Figure 14: The final graph G
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It is

For j =1,...,3m — 1, add the edges a1 and 3} 8j41.
. 0— 0+
For j=1,...,m — 1, add the edge ¢ ¢l
Fori=1,...,n— 1, add the edge d; d;,,.
Fori=1,...,n,let yn,, ..., yn _ be the occurrences of Z; over all literals.

For j = 1,...,%;, delete the édge p:2j_1p;-f2j and add the four edges
Piloj 10t s Piog 1Bty Pilay oty PlaBat

Fori=1,...,n,let y,,, ..., Yn be the occurrences of z; over all literals.
For j = 1,2,.. .,z;r, delete theledge Pi2j_1Pio; and add the four edges
Piaj-10m1 + Pigj-1Pn) s Piaj®ny» PiaiB -

Fori=1,...,mand j=1,2,3, add the edges ag@_1)+j05+, ag(_i_l)ﬂcg_,
[33(_1'—1)+ijr7 ﬂg(_i—l)Jr o

Add the edges a},,d] and B, )"

Add the vertex x and add the edges xa; and zf;.

Add the vertex y and add the edges yc'~ and yd,, .

easy to verify that A(Gy) = 3, that the size of G is polynomial (actually

linear) in the size n + m of f, and that z,y are non-adjacent and both have
degree two.

Lemma 2.6 f is satisfied by a truth assignment if and only if Gy contains a

hole

passing through x and y.

PROOF — First assume that f is satisfied by a truth assignment & € {0,1}".
We will pick a set of vertices that induce a hole containing x and y.

1.
2.
3.

Pick vertices x and y.
For i =1,...,3m, pick the vertices «;, o, Bi, 5.

For i =1,...,3m, if y; is satisfied by &, then pick the vertices aZH, oz?Jr,

a3t ol BT, BET, B2F, and 81T, Otherwise, pick the vertices aj —, i,

57 41— g g3 4—
o , Qp 7[31' aﬂi 7ﬂi ,andﬂi .

Fori=1,...,n,if § = 1, then pick all the vertices of the path Pf and
all the neighbors of the vertices in P;" of the form ai"’ or ozer for any k.

Fori=1,...,n,if § = 0, then pick all the vertices of the path P, and

2

all the neighbors of the vertices in P, of the form ai+ or a? for any k.
. For ¢ = 1,...,m, pick the vertices C?Jr and c?f. Choose any j € {3i —

2,3i — 1,3i} such that & satisfies y;. Pick vertices ai_, and 045?_. If

7 = 3¢ — 2, then pick the vertices B2t el 0112_. If j =3i—1, then

T ) 7
pick t;le vertices c}2+, cf+, cf_, clm_. If 7 = 3¢, then pick the vertices c?+
and ¢; .
K3

It suffices to show that the chosen vertices induce a hole containing x and

2+ 3+

y. The only potential problem is that for some k, one of the vertices a;", o},
aiﬂ or af was chosen more than once. If aiJr and aiJr were picked in Step 3,
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then yy, is satisfied by £. Therefore, aiJr and oziJr were not chosen in Step 4 or
Step 5. Similarly, if af and aii were picked in Step 6, then yy is satisfied by
¢ and aii and 0427 were not picked in Step 3. Thus, the chosen vertices induce
a hole in G containing vertices x and y.

Now assume Gy contains a hole H passing through x and y. The hole H
must contain a; and (5 since they are the only two neighbors of . Next, either
both a;™ and ;T are in H, or both o}~ and £~ are in H.

Without loss of generality, let aﬁ and 511+ be in H (the same reasoning
that follows will hold true for the other case). Since 3;~ and aj  are both
neighbors of two members in H, they cannot be in H. Thus, a%"” and Bf"’
must be in H. Since o™ and B;" have the same neighbor outside G(y;), it
follows that H must contain a5 and 87". Also, H must contain o™ and ;7.
Suppose that i~ and B~ are in H. Because o~ has the same neighbor as
Bi_ outside G(y1) for ¢ = 2,3, it follows that H must contain a7, a7, and
a1~ . But then H is not a hole containing b, a contradiction. Therefore, o/}~
and 1~ cannot both be in H, so H must contain o, 3}, az, and fa.

By induction, we see for i = 1,2,...,3m that H must contain «;, o, B, Bi.
Also, for each i, either H contains o', o™, o1, a;H, BiH, [31-2+, ﬂer, B;H or

i Gy Gy

: 1— 2— 3— _4— l— p2— p3— pd—
H contains o; , o], 0, a; , B; 7, Bi 66 , B
As a result, H must also contain df‘ and cl+. By symmetry, we may assume

H contains py; and oziJr for some k. Since 04,1;r is adjacent to two vertices

in H, H must contain aif Similarly, H cannot contain afr, so H contains
pfz and pfg. By induction, we see that H contains pL fori =1,2,...,2;"
and d; . If H contains Py - then H must contain p;; for i = 2;7,...,1, a
contradiction. Thus, H must contain d; By induction, for i = 1,2,...,n, we

see that H contains all the vertices of the path Pf or P, and by symmetry,

we may assume H contains all the neighbors of the vertices in P;" or P, of the

form aer or ai+ for any k.

Similarly, for ¢ = 1,2,...,m, it follows that H must contain c?+ and c?f.
Also, H contains one of the following:

° c%2+, CZH, c}_, 0}2_ and either a?‘ and oz}o?_ or 5]2-_ and [35’_ (where oz?‘

is adjacent to ¢; ).

124 2+ 2— 12— . 2— 3— 2— 3— 2—
o ;7" ¢, ¢, ¢;7 and either o and o or ﬁj and Bj (where aj
is adjacent to c7 ).

e ¢/t and ¢}~ and either a?7 and a?i or 6?7 and ﬁ?i (where a?i is

adjacent to ¢3).
We can recover the satisfying assignment & as follows. For ¢ = 1,2,...,n,
set & = 1 if the vertices of PZ-‘L are in H and set & = 0 if the vertices of P,

are in H. By construction, it is easy to verify that at least one literal in every
clause is satisfied, so £ is indeed a satisfying assignment. O

Note that the graph Gy used above contains several Cs’s that we could not
eliminate, induced for instance by a, o', 1=, 3, 8+, al~.
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Theorem 2.7 The following statements hold:

e For any d € Z with d > 2, the problem T'? is NP-complete when d > 3 and
polynomial when d = 2.

o IfH is any finite list of cycles Ck,,Chr,, ..., Ck
1"?_[ is NP-complete.

such that Cs ¢ H, then

m

PROOF — In the above reduction, A(Gy) = 3 so I'% is NP-complete for d > 3.
When d = 2, there is a simple O(n) algorithm. Any hole containing  and y
must be a component of G so pick the vertex x and consider the component C
of G that contains z. It takes O(n) time to verify whether C is a hole containing
2 and y or not.

To show the second statement, let K be the length of the longest cycle in
H. In the above reduction, do the following modifications.

e For i = 172’3 and .] = 1527"'73ma replace the edges a§+a(‘i+l)+a

. . . . . J
alm a7 g gUIT fand g 80T by paths of length K.

e For j =1,2,...,3m — 1, replace the edges o1 and B)3;11 by paths
of length K.

e Replace the edges ra; and x5, by paths of length K.

This new reduction is polynomial in 7, m and contains no graph of the list
H. The proof of Lemma still holds for this new reduction therefore I'}, is
NP-complete. O

3 IIp for some special s-graphs

3.1 Holes with pending edges and trees

Here, we study Ilg,, ..., IIp, where By,..., By are the s-graphs depicted on
Figure[Bl Our motivation is simply to give a striking example and to point out
that surprisingly, pending edges of s-graphs matter and that even an s-graph
with no cycle can lead to NP-complete problems.

Theorem 3.1 There is an O(n'3)-time algorithm for I, but lg, is NP-
complete.

PROOF — A realisation of B4 has exactly one vertex of degree 3 and one
vertex of degree 4. Let us say that the realisation H is short if the dis-
tance between these two vertices in H is at most 3. Detecting short real-
isations of By can be done in time nY as follows: for every 6-tuple F =
(a,b,x1,x2,23,24) such that G[F] has edge-set {x1a,axs,x2b, brs,brs} and
for every 7-tuple F = (a,b,21,%2,%3,%4,25) such that G[F] has edge-set
{10, axa, x223, x3b, bxyg, b5}, delete 1, ..., x5 and their neighbors except a, b.
In the resulting graph, check whether a and b are in the same component. The
answer is YES for at least one 7-or-6-tuple if and only if G contains at least one
short realisation of By.
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Here is an algorithm for Ilg,, assuming that the entry graph G has no short
realisation of By. For every 9-tuple F = (a,b,c,21,...,x¢) such that G[F]
has edge-set {x1a,bxs, Tox3, T34, CT5, X523, X326} delete x1,...,x6 and their
neighbors except a,b,c. In the resulting graph, run three-in-a-tree for a, b, c.
It is easily checked that the answer is YES for some 9-tuple if and only if G
contains a realisation of By.

Let us prove that Iz, is NP-complete by a reduction of I'® to Ilp,. Since
by Theorem 2.7, T'® is NP-complete, this will complete the proof. Let (G, z,y)
be an instance of I'3. Prepare a new graph G’: add four vertices &/, 2", ',y to
G and add four edges xz’, xz”, yy', yy”. Since A(G) < 3, it is easily seen that
G contains a hole passing through z,y if and only if G’ contains a realisation
of B5. O

The proof of the theorem below is omitted since it is similar to the proof of
Theorem 311

Theorem 3.2 There is an O(n'*)-time algorithm for Np, but g, is NP-
complete.

3.2 Induced subdivisions of Kj

Here, we study the problem of deciding whether a graph contains an induced
subdivision of K5. More precisely, we put : sK5 = ({a,b,c,d, e}, 0, ({a’b’g’d’e})).

b
d
Figure 15: Graphs G’ and G”
Theorem 3.3 Ik, is NP-complete.
PROOF — We consider an instance (G,z,y) of I'. Let us denote by

a',2” the two neighbors of x and by y’,y” the two neighbors of y.
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Let us build a graph G’ by adding five vertices a,b,c,d,e. We add
the edges ab,bd,dc,ca,ea,eb,ec,ed,ax’,bx”, cy”,dy’. We delete the edges
zx',zx”,yy’, yy”. We define a very similar graph G”, the only change being
that we do not add edges cy”, dy’ but edges cy’, dy” instead. See Figure
Now in G’ (and similarly G”) every vertex has degree at most 3, except
for a,b,c,d,e. We claim that G contains a hole going through = and y if and
only if at least one of G’,G” contains an induced subdivision of K5. Indeed,
if G contains a hole passing through z,z’,y’,y,y”,2” in that order then G’
obviously contains an induced subdivision of K3, and if the hole passes in order
through z,2’,y",y,y’, 2" then G” contains such a subgraph. Conversely, if G’
(or symmetrically G”) contains an induced subdivision of K5 then a,b,c,d,e
must be the vertices of the underlying K5, because they are the only vertices
with degree at least 4. Hence there is a path from 2’ to ¢’ in G\ {z,y} and a
path from 2" to y” in G\ {z,y}, and consequently a hole going through z,y in
G. a

3.3 1l for small B’s

Here, we survey the complexity IIp when B has at most four vertices. By the
remarks in the introduction, if [V| < 3 then Iy p p) is polynomial. Up to
symmetries, we are left with twelve s-graphs on four vertices as shown below.

For the following two s-graphs, there is a polynomial algorithm using three-
in-a-tree. The two algorithms are essentially similar to those for thetas and
pyramids (see Figure 2)). See [4] for details.

a--
N
I

N
S

Q--
|
| N
N

The next two s-graphs yield an NP-complete problem:

(by T'yeuy) ;‘>_<I (by T'ixy)

For the next seven graphs on four vertices, we could not get an answer:

-- -- - - -- --0 a---0
N AN N I i 7 i ’ [N
N | N2 | ! N | s poNs !

N N 7N I N AL N
N N 3 N | , N |7 |7 N
--- -- o-- o--

For the last graph represented below, it was proved recently by Trotignon and
Vuskovié [11] that the problem can be solved in time O(nm), using a method

based on decompositions.
N
|

In conclusion we would like to point out that, except for the problem solved
in [11], every detection problem associated with an s-graph for which a polyno-
mial time algorithm is known can be solved either by using three-in-a-tree or
by some easy brute-force enumeration.
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