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An approximate version

of the Loebl-Komlós-Sós conjecture

Diana Piguet∗ and Maya Jakobine Stein†

Abstract

Loebl, Komlós, and Sós conjectured that if at least half of the vertices
of a graph G have degree at least some k ∈ N, then every tree with at
most k edges is a subgraph of G. Our main result is an approximate
version of this conjecture for large enough n = |V (G)|, assumed that
n = O(k).

Our result implies an asymptotic bound for the Ramsey number of
trees. We prove that r(Tk, Tm) ≤ k +m+ o(k +m), as k +m → ∞.

1 Introduction

We explore how certain global assumptions on a graph G ensure the existence of
specific subgraphs. More precisely, we are interested in finding trees as (not nec-
essarily induced) subgraphs. The main conjecture in our investigations makes,
to this end, assumptions on the median degree of G.

Conjecture 1 (Loebl, Komlós, Sós [6]). Let k > 0. Then every graph on n ∈ N

vertices of which at least n/2 have degree at least k, contains as subgraphs all
trees with at most k edges.

The original version for k = n/2 was formulated by Loebl, the generalisation
to arbitrary k is due to Komlós and Sós (see [6]). The n = O(k) case of
Conjecture 1 is often referred to as the dense case (otherwise the sparse case).
Our main result is an approximate version of Conjecture 1 for the dense case.

Theorem 2. For every η, q > 0 there is an n0 ∈ N such that for every graph G
on n ≥ n0 vertices and every k ≥ qn the following is true.
If at least n/2 vertices of G have degree at least (1 + η)k, then G contains all
trees with at most k edges.

For arbitrary k, this has been conjectured by Ajtai, Komlós and Szemerédi in [1].
They gave a proof for the special case k = n/2.

The exact version, Conjecture 1, is trivial for stars, and for trees that consist
of two stars with adjacent centres. Bazgan, Li, and Woźniak [2] have proved
the conjecture for paths. The authors of the present paper proved in [10] the
Loebl–Komlós–Sós conjecture for trees of diameter at most 5.
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In Loebl’s version with k = n/2, the conjecture has recently been proved by
Zhao [14] for large enough graphs. Extending the methods of Zhao, and of
the present paper, the full Loebl–Komlós–Sós conjecture has been proved very
recently for the dense case by Hladký together with the first author [8], and
independently, by Cooley [4].
A generalisation of an example due to Zhao [14] shows that the bound for the
number of vertices of high degree in Conjecture 1 is asymptotically best possible.
It cannot be replaced by n/2− n/(k + 1), whenever k + 1 is even and divides n
(for bounds in other cases, see [10]).
To see this, construct a graph G on n vertices as follows. Divide V (G) into
2n/(k + 1) sets Ai, Bi, so that |Ai| = (k − 1)/2, and |Bi| = (k + 3)/2, for
i = 1, . . . , n/(k+1). Insert all edges inside each Ai, and insert all edges between
each pair Ai, Bi. Now, consider the tree T we obtain from a star with (k+ 1)/2
edges by subdividing each edge but one. Clearly, T is not a subgraph of G.
An interesting folklore observation is the following. Assume that there is a
counterexample to Conjecture 1 for the dense case that does not contain some
tree of order k + 1. By taking many copies of G, we could then construct a
counterexample to Conjecture 1 for the sparse case.

The Ramsey number r(H,H ′) of two graphs, H and H ′, is defined as the mini-
mum integer n such for every graph G of order at least n either H is a subgraph
of G, or H ′ is a subgraph of the complement Ḡ of G. Extending this definition,
we denote by r(H,H′) the Ramsey number of two classes of graphs, H and H′,
that is, r(H,H′) is the minimum integer n such for every graph G of order at
least n either each graph H ∈ H is a subgraph of G, or each graph H ′ ∈ H′ is a
subgraph of the complement Ḡ of G. We write r(H) as shorthand for r(H,H).
For i ∈ N, let Ti denote the class of all trees of order i. Zhao’s result implies that
the Ramsey number r(Tk+1) ≤ 2k, for large k. Bounds for Ramsey numbers of
trees have been studied for instance in [7]).
In the same way as the bound on r(Tk+1) follows from the Loebl conjecture,
one can deduce from Conjecture 1, if true, a bound on r(Tk+1, Tm+1). Namely,
for any colouring of the edges of the complete graph Km+k with two colours,
either half of the vertices have degree k in the subgraph induced by the first
colour, or half of the vertices have degree m in the subgraph induced by the
second colour. So the Loebl–Komlós–Sós conjecture would then imply that
r(Tk+1, Tm+1) ≤ k + m. This upper bound has been conjectured in [6], and it
is not difficult to see that the bound is best possible.
Using Theorem 2, we prove this to be asymptotically true.

Corollary 3. r(Tk+1, Tm+1) ≤ k + m + o(k + m), as k + m → ∞.

It is not difficult to see that the exact bound of r(Tk+1, Tm+1) ≤ k + m also
follows from a positive answer to the Erdős–Sós conjecture. This well-known
conjecture states that each graph with average degree greater than k−1 contains
all trees with at most k edges as subgraphs. For partial results on the Erdős–
Sós conjecture, see e.g. [3, 11, 13]. Ajtai, Komlós, Simonovits and Szemerédi
proved the Erdős–Sós conjecture for large n. (Unfortunately, a manuscript is
not available yet.)

Our proof of Theorem 2 is inspired by the proof of the approximate version of
the Loebl conjecture by Ajtai, Komlós and Szemerédi [1]. Here also, we use the
regularity lemma followed by a Gallai-Edmonds decomposition of the reduced
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cluster graph. This enables us to find a certain substructure in the cluster
graph, which contains a large matching, and captures the degree condition on G.
The tree is then embedded mainly into the regular pairs corresponding to the
matching edges.
We shall see that in the case that k ≥ n/2, it is not difficult to obtain the same
structure as in [1]. Our proof then follows [1], providing all details.
In the case that k < n/2, however, the situation is more complex. We will have
to content ourselves with a less favourable structure in the cluster graph, which
complicates the embedding of the tree. For a brief outline of the crucial ideas
we then employ, see Section 3.1. The full proof is given in the remainder of
Section 3.

Using similar ideas of proof, we extend Theorem 2 in a different direction. We
pursue the question which other subgraphs are contained in our graph G from
Theorem 2.
Our third result asserts that we can replace the trees with bipartite graphs that
may have a few more edges than trees.

Theorem 4. For every η, q > 0 and for every c ∈ N there is an n0 ∈ N so that
for each graph G on n ≥ n0 vertices and each k ≥ qn the following is true.
If at least n/2 vertices of G have degree at least (1 + η)k, then each connected
bipartite graph Q on k + 1 vertices with at most k + c edges is a subgraph of G.

In particular, the condition of Theorem 2 allows for embedding even cycles in G:

Corollary 5. For every η, q > 0 there is an n0 ∈ N so that for all graphs G on
n ≥ n0 vertices and each k ≥ qn the following is true.
If at least n/2 vertices of G have degree at least (1 + η)k, then G contains all
even cycles of length at most k + 1.

Theorem 4 does not hold for η = 0, as is witnessed by the following example.
Take the complete graph on k vertices and the empty graph on k vertices.
Connect these two graphs with a matching of order k. The graph we obtain
satisfies the condition of the sharp version of Theorem 4, but does not contains
the cycle of length k + 1.
Also, the condition that Q is bipartite is necessary. This can be seen by consid-
ering copies of the complete bipartite graph K(1+η)k,(1+η)k. This graph satisfies
the condition of Theorem 4, but all its subgraphs are bipartite.

Our paper is organised as follows. In Section 2.1, we introduce the regularity
lemma and discuss some basic properties of regularity. Our tool for finding the
desired structure of the cluster graph, Lemma 8, will be proved in Section 2.2.
All of Section 3 is dedicated to the proof of our main result, Theorem 2.
In Section 4, we explore applications and generalisations of Theorem 2. Our
asymptotic bound for Ramsey numbers of trees (Proposition 3) will be derived
in Section 4.1. In Section 4.2, we prove Theorem 4.

2 Preliminaries

The purpose of this section is to introduce the two main tools used in the proofs
of Theorem 2 and Theorem 4. The first of these tools is the well-known regularity
lemma. The second is Lemma 8, which will give structural information on our

3



graph G from Theorem 2 (and Theorem 4). We derive it from the Gallai-
Edmonds matching theorem.

2.1 Regularity

In this subsection, we introduce the notion of regularity, state Szemerédi’s reg-
ularity lemma, and review a few useful properties of regularity. All of this
is well-known, so the advanced reader is invited to skip this section. For an
instructive survey on the regularity lemma and its applications, consult [9].

Let us first go through some necessary notation. For a graph G = (V,E), with
W ⊆ E and S ⊆ V , we will write G−W for the subgraph (V,E \W ) of G, and
G− S the subgraph of G which is obtained by deleting all vertices of S and all
edges incident with vertices of S. For subsets X and Y of the vertex set V (G),
define NY (X) as the set of all neighbours of X in Y \X . If Y = V (G), then
we omit the index Y and write N(X). A vertex x ∈ V (G) is adjacent to the
set Y if xy ∈ E(G) for some y ∈ Y . If X and Y are disjoint, then let e(X,Y )
denote the number of edges between X and Y . The density of the pair (X,Y )

is d(X,Y ) := e(X,Y )
|X||Y | .

A bipartite graph G with partition classes C1 and C2 is called ε-regular if for
all subsets C′

1 ⊆ C1, C′
2 ⊆ C2 with |C′

1| ≥ ε|C1| and |C′
2| ≥ ε|C2|, it is true that

|d(C1, C2) − d(C′
1, C

′
2)| < ε.

A partition C0 ∪ C1 ∪ · · · ∪ CN of V (G) is called (ε,N)-regular, if

• |C0| ≤ εn and |Ci| = |Cj | for i, j ∈ {1, . . . , N},

• all but at most εN2 pairs (Ci, Cj) with i 6= j are ε-regular.

We are now ready to state Szemerédi’s regularity lemma.

Theorem 6 (Regularity lemma, Szemerédi [12]). For every ε > 0 and m0 ∈ N,
there exist M0, N0 ∈ N so that every graph G of order n ≥ N0 admits an (ε,N)-
regular partition of its vertex set V (G) with m0 ≤ N ≤ M0.

Call the partition classes Ci of G clusters. Now, for each graph G, for each
(ε,N)-regular partition of V (G), and for any density p define the cluster graph
(sometimes called reduced graph) in the following standard way.
First, we construct an auxiliary graph Gp obtained from G by deleting all edges
inside the clusters Ci, all edges that are incident with C0, all edges between irreg-
ular pairs, and all edges between regular pairs (Ci, Cj) of density d(Ci, Cj) < p.
Set s := |Ci|, and observe that

|E(G−Gp)| ≤ N
s2

2
+ εn2 + εN2s2 +

N2

2
ps2 ≤ (

1

2m0
+ 2ε +

p

2
)n2. (1)

Now, the cluster graph H = Hp on the vertex set {Ci}1≤i≤N has an edge CiCj

for each pair (Ci, Cj) of clusters that has positive density in Gp. We shall prefer
to work with the weighted cluster graph H̄ = H̄p which we obtain from H by
assigning weights

w(CiCj) := d(Ci, Cj)s

to the edges CiCj ∈ E(H).
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In the setting of weighted graphs, the (weighted) degree of a vertex v is defined
as

dēg(v) :=
∑

u∈N(v)

w(vu),

and the degree into a subset U ⊆ V (H̄), where we only count the weights of
edges in {v} × U , is denoted by dēgU (v). We shall adopt this notation for our
weighted cluster graph H̄. For a subset X ⊆ Cj , we write

dēgX(Ci) :=
e(X,Ci)

s
= d(X,C)|X |.

For a set Y of subsets of distinct clusters from Gp−Ci, we shall write dēgY(Ci)
for

∑

Y ∈Y dēgY (Ci).

We shall often use edges of H̄ to represent the respective subgraph of Gp, or
sometimes its vertex set. For example, an edge e = CD ∈ E(H̄), might refer
to the subgraph of Gp induced by C ∪ D, or to C ∪ D itself. And for a set
U ⊆ C ∪D, we sometimes use the shorthand e ∩ U for (C ∪D) ∩ U .

Let us review some basic properties of Gp and H̄ . Let C,D ∈ V (H̄): We call
a set D′ ⊆ D significant, if |D′| ≥ εs. A vertex v ∈ C is called typical to a
significant set D′ if degD′(v) ≥ (d(C,D) − ε)|D′|. Observe that

at most εs vertices of C are not typical to a given significant set D′. (2)

Similarly, we have that

all but at most εs vertices v of C have degree degGp
(v) ≤ dēg(C) + εn. (3)

For proofs of (2) and (3), we refer the reader to [1].
Also, almost all vertices of any cluster C ∈ V (H̄) are typical to almost all
significant sets, in the following sense.
If Y is a set of significant subsets of clusters in V (H̄), then

|{Y ∈ Y : v is typical to Y }| ≥ (1 −√
ε)|Y|, (4)

for all but at most
√
εs vertices v ∈ C.

To see this, assume that the set C′ ⊆ C of vertices not satisfying (4) is larger
than

√
εs. Then

∑

Y ∈Y

|{v ∈ C : v is not typical to Y }| ≥
∑

v∈C′

|{Y ∈ Y : v is not typical to Y }|

≥ |C′|√ε|Y|
> εs|Y|.

Thus there is a Y ∈ Y such that more than εs vertices in C are not typical to Y ,
a contradiction to (2).

2.2 The matching

The main interest in this subsection is Lemma 8, which will give us important
structural information on the cluster graph H that corresponds to the graph G
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from Theorem 2 (or later Theorem 4). Lemma 8 appeared in [1] but only a
weaker variant was proved.

For the proof of Lemma 8, we need a simplified version of the Gallai-Edmonds
matching theorem, a proof of which can be found for example in [5, p. 41].
A 1-factor, or perfect matching, of a graph G is a 1-regular spanning subgraph
of G. We call G factor-critical, if for each v ∈ V (G), there exists a perfect
matching of G− v.

Theorem 7 (Gallai, Edmonds). Every graph G contains a set S ⊆ V (G) so
that each component of G− S is factor-critical, and so that there is a matching
in G that matches the vertices of S to vertices of different components of G−S.

We are now ready for one of the key tools in the proof of Theorem 2. Recall
that we often conveniently use M to represent V (M).

Lemma 8. Let H̄ be a weighted graph on N vertices, and let K ∈ R. Let L be
the set of those vertices v ∈ V (H̄) with dēg(v) ≥ K. If |L| > N/2, then there
are two adjacent vertices vA, vB ∈ L, and a matching M in H̄ such that one of
the following holds.

(a) M covers N({vA, vB}),

(b) M covers N(vA), and dēgM∪L(vB) ≥ K/2. Moreover, each edge in M has
at most one endvertex in N(vA).

Proof. Observe that we may assume that Y := V (H̄) \ L is independent. (In
fact, otherwise we simply delete the edges in E(Y ), which will not affect the
degree of the vertices in L.) Now, Theorem 7 applied to the unweighted version
of H̄ yields a set S ⊆ V (H̄). Among all matchings M ′ satisfying the conclusion
of Theorem 7 with S, choose M ′ so that it contains a maximal number of vertices
of Y .
Set L′ := L \ S. We shall show that either (a) holds or L′ is independent.
Suppose there is an edge uv with endvertices u, v ∈ L′. Then uv lies in some
component C of H̄−S. If V (C)∩V (M ′) = ∅, let M ′′ be a 1-factor of C−u, and
if V (C) ∩ V (M ′) = {x}, then let M ′′ be a 1-factor of C − x. In either case (a)
holds for vAvB = uv with M := M ′ ∪M ′′. So, from now on, we assume that L′

is independent.
Then, each edge of H̄ that is not incident with S has one endvertex in L′, and
one in Y . Consider any component C of H̄ − S. Since C is factor-critical, we
have that |(C − u)∩ Y | = |(C − u)∩L′|, for every u ∈ V (C). Hence, C consists
of only one vertex, and so must every component of H̄ − S.
Denote by X the subset of Y that is not covered by M ′. Set L̃ := N(L′)∩L ⊆ S
(see Figure 1). Now, if there is a vertex vB ∈ L̃ whose weighted degree into H̄−X
is at least K/2, then vB, together with any of its neighbours vA in L′, satisfies (b)
with M = M ′. So, we may assume that for each u ∈ L̃,

dēgH̄−X(u) < K/2, (5)

and hence dēgX(u) ≥ K/2.
On the other hand, dēgL̃(w) < K for each w ∈ X . Thus, by double (weighted)
edge-counting, it follows that

|X | ≥ |L̃|
2
. (6)
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L
′
= L \ S

M
′

L̃

S
′

S

X

Y \ S

Figure 1: The graph H̄ with the matching M ′, and sets L, S and Y .

Set S′ := S ∩ Y . By (5), the total weight of the edges in E(L̃ ∪ S′, L′) is less
than |L̃|K/2 + |S′|K, while each vertex of L′ has weighted degree at least K
into L̃ ∪ S′. Thus, again by double edge-counting, and by (6),

|X | + |S′| ≥ |L̃|
2

+ |S′| > |L′|. (7)

Furthermore, since Y is independent, M ′ matches S′ ⊆ Y to L′. Thus |L′| ≥
|S′| + |L \M ′|, and so, by (7),

|X | > |L \M ′|.

Since |L| > N
2 , this implies that M ′ contains an edge uv with both u, v ∈ L.

We may assume that v ∈ L′ and u ∈ L̃. By (5), u has a neighbour w in X .
Hence, the matching M ′ ∪{uw} \ {uv} covers more vertices of Y than M ′ does,
a contradiction to the choice of M ′.

Note that in the case K ≥ N/2 the situation in Lemma 8 is less complicated.
In that case, observe that clearly |S| ≤ |V (H̄ −S)|. So, either |S| = |V (H̄ −S)|
(in which case conclusion (a) of Lemma 8 holds), or there is a component C
of H̄ − S that has more than one vertex. Thus, as C is factor-critical, there
exists an edge in C ∩ (L′ × L′), and (a) holds again. In the case k ≥ n/2, this
observation simplifies our proof of Theorem 2 considerably, as then only the
simplest case needs to be treated.

3 Proof of Theorem 2

The organisation of this section is as follows. The first subsection is devoted
to an outline of our proof, highlighting the main ideas, leaving out all details.
In Subsection 3.2, assuming that we are given a host graph G and a tree T ∗

as in Theorem 2, we shall first apply the regularity lemma to G. We then
use Lemma 8 to find a suitable matching of the corresponding weighted cluster
graph H̄ , which will facilitate the embedding of T ∗.
We shall prepare T ∗ for this by cutting it into small pieces in Subsections 3.3
and 3.4. Then, in Subsection 3.5, we partition the matching given by Lemma 8,
according to the decomposition of the tree T ∗. In Subsection 3.6, we expose
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tools that we need for our embedding. What remains is the actual embedding
procedure, which we divide into the two cases given by Lemma 8, and treat
separately in Subsections 3.7 and 3.8.

3.1 Overview

In this subsection, we shall give an outline of our proof of Theorem 2. So,
assume that we are given η > 0 and q > 0. The regularity lemma applied to
parameters depending on η and q yields an n0 ∈ N. Now, let n ≥ n0, let k ≥ qn,
let G be a graph of order n that satisfies the condition of Theorem 2, and let T ∗

be a tree with k edges. We wish to find a subgraph of G that is isomorphic
to T ∗, i.e. we would like to embed T ∗ in G.
In order to do so, consider the weighted cluster graph H̄ corresponding to G
that is given by the regularity lemma. Denote by L ⊆ V (H̄) the set of those
clusters that have degree at least (1 + π′)k in H̄ , where π′ = π′(η, q) > 0. The
weighted cluster graph H̄ inherits properties from G resulting in the fact that
|L| > |V (H̄)|/2. Apply Lemma 8 to H̄ and K := (1 +π′)k which yields vertices
A,B ∈ V (H̄) and a matching M . The rest of our proof will be divided into two
cases, corresponding to the two possible conclusions (a) and (b) of Lemma 8.

If the output of Lemma 8 is Case (a), then we shall decompose T ∗ into small
subtrees (of order much below ηk) and a small set SD of vertices (of constant
order in n), so that between any two of our subtrees lies a vertex from SD (the
name SD stands for ‘seeds’). In fact, SD is the disjoint union of two sets SDA

and SDB, and each tree T of T ∗−SD is adjacent to only one of these two sets,
that is, either N(SDA) ∩ V (T ) = ∅ or N(SDB) ∩ V (T ) = ∅. Denote the set of
trees adjacent to SDA by TA, and the set of trees adjacent to SDB by TB. The
formal definition of SD, TA and TB can be found in Section 3.3.
Next, in Section 3.5, we partition the matching M from Lemma 8 into MA

and MB. This is done in a way so that dēgMA
(A) is large enough so that

FA :=
⋃ TA fits into MA, and dēgMB

(B) is large enough so that FB :=
⋃ TB

fits into MB.
Finally, in Section 3.7, we embed SDA in A and SDB in B and use the regularity
of the edges in H̄ to embed the small trees of TA ∪ TB, one after the other,
levelwise, into MA ∪MB. The order of this embedding procedure will be such
that the already embedded part of T ∗ is always connected.
Moreover, the structure of our decomposition of T ∗, and the fact that we embed
the trees from TA ∪ TB in the matching edges, ensures that the predecessor of
any vertex r ∈ SDA ∪ SDB is embedded in a cluster that is adjacent to A,
respectively to B (in which we wish to embed r). This enables us to embed all
of SD in A ∪B, as planned.
An important detail of our embedding technique is that we shall always try to
balance the embedding in the matching edges, in the sense that the used part
of either endcluster should have about the same size. We only allow for an
unbalanced embedding if the degree of A resp. B into one of the endclusters of
the concerned edge is already ‘exhausted’ (cf. Property (⋄) in Section 3.6). In
practice, this means that whenever we have the choice into which endcluster of
an edge e ∈ M we embed the root of some tree of TA ∪ TB , we shall choose the
side carefully.
In this manner, we can ensure that all of T ∗ will fit into M (or more precisely
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into the corresponding subgraph of G). This finishes the embedding of T ∗ in
Case (a) of Lemma 8.

In Case (b) of Lemma 8, it is not possible to partition the matching M into MA

and MB so that FA fits into MA and FB fits into MB, as in Case (a). More
precisely, for any partition of M into MA and MB, if dēgMA

(A) allows for the
embedding of a forest of order t, say, in MA, then dēgMB∪L(B) only guarantees
for the embedding of a forest of order at most (k − t)/2 in the subgraph of Gp

induced by MB and the edges incident with L′, where L′ := L \M . For more
details on this, see Lemma 9.
We use a combination of two strategies to overcome this problem. Firstly, we
shall embed T ∗ in two phases, leaving for the second phase some subtrees that
are (each) adjacent to only one vertex from SD. Secondly, we shall embed some
of the trees from TB in part of the matching reserved for FA. This means that
we ‘switch’ some of our trees to TA.

Let us explain the two strategies in more detail. We modify our sets TA, TB, in
the following way. Denote by T̄A the set of those trees from TA that are adjacent
to only one vertex from SDA, and similarly define T̄B. (Observe that T ∗ remains
connected after deleting any tree in T̄A ∪ T̄B.)
We may assume that

|V (
⋃

T̄A)| ≥ |V (
⋃

T̄B)|.

Finally, set T ′ := (TA ∪ TB) \ (T̄A ∪ T̄B). Our plan now is to first embed the
trees from T ′ ∪ T̄B together with the vertices from SD and to postpone the
embedding of F̄A :=

⋃ T̄A to a later stage. As the part of the tree embedded in
the first phase is connected, we avoid the difficulty of having to connect already
embedded parts of T ∗ in the second phase.
Now, we shall partition M into Mf and M̄B so that dēgMf

(A) allows for the

embedding of
⋃ T ′, and dēgM̄B∪L(B) allows for the embedding of F̄B :=

⋃ T̄B.
This actually means that the place we reserved for the embedding of FB − F̄B

lies in Mf . Therefore, we shall ‘switch’ this forest to TA (which is the second of
our strategies).
Let us explain what we mean by switching. For each tree T ∈ TB \ T̄B, delete
all vertices from T that are adjacent to SDB in T ∗ and add them to SDA. Put
the components of what remains of T into TA. Denote the thus enlarged SDA

by SDA and set SD := SDA ∪ SDB.
After switching all trees T ∈ TB \ T̄B, denote by Tf the (enlarged) set TA \ T̄A.
That is, Tf consists of all trees from the original TA \ T̄A, together with all trees
we generated by switching. It will be easy to verify that the switching procedure
does not increase too much the number of seeds.
Also, each tree from Tf and T̄A is adjacent only to the enlarged SDA, and
each tree from T̄B is still adjacent only to SDB. For details on the switching
procedure, consult Section 3.4.
It remains to embed T ∗ in G, which is done in Section 3.8. We first embed the
vertices from SDA ∪ SDB in A∪B, embed Ff :=

⋃ Tf in Mf , and embed part
of T̄B in M̄B, in the same way as in Case (a). In a second phase, we embed
the remaining trees from T̄B into edges of H that are incident with L′. For
each tree, we are able to find a free space in a suitable edge because of the high
degree of the clusters from L′.
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In the remaining third phase we wish to embed F̄A. We shall now use all of M ,
forgetting about the partition into Mf and M̄B. The neighbours of the trees
from T̄A in SDA have already been embedded in the first phase. Having chosen
their images carefully then, ensures that now they have still large enough degree
into what is not yet used of M . Hence, there is enough place for F̄A in M .
Also, it is essential here that each edge of M meets N(A) in at most one cluster.
The reason is that parts of these clusters might have been used in the first and
second phases of the embedding. So, some of the edges involved might be
unbalanced, in the sense above, because e. g. the degree of B was such that we
were not able to choose the endcluster in which we embedded the roots of the
trees from T̄B. However, as each edge of M has at most one endcluster in N(A),
it is irrelevant whether the embedding is balanced or not in these edges.
The embedding itself of F̄A is done as before. This finishes the sketch of our
proof in Case (b).

3.2 Preparations

We shall now prove Theorem 2. First of all, we fix a few constants depending
on η and q. Set

π := min{η, q}, ε :=
π7q

25 · 107
and m0 :=

500

qπ3
.

The regularity lemma (Theorem 6) applied to ε, and m0 yields natural num-
bers M0 and N0. Fix

β :=
ε

M0
, p :=

π3q

250
and n0 := max

{

N0,
64M0

βp

}

.

Thus our constants satisfy the following relations

1

n0
≪ β ≪ ε ≪ 1

m0
< p ≪ π ≤ q,

where a ≪ b stands for the fact that a < π
100b.

In particular, p satisfies

4ε +
1

m0
< p. (8)

Let n ≥ n0, let k ≥ qn, and let G be a graph of order n which has at least n
2

vertices of degree at least (1 + η)k. Suppose T ∗ is a tree of order k + 1. Our
aim is to find an embedding ϕ : V (T ∗) → V (G) that preserves adjacency.
Now, by Theorem 6 there exists an (ε,N)-regular partition of V (G), with m0 ≤
N ≤ M0. As in Section 2.1, let Gp be the subgraph of G that preserves exactly
the edges between regular pairs of density at least p.
By (1) and by (8),

|E(G−Gp)| < pn2 ≤ π3

250
kn.

Thus, for all but at most π2

50n vertices v, we have that degGp
(v) ≥ degG(v)− π

5k.
Hence,

Gp has at least

(

1 − π2

25

)

n

2
vertices of degree at least

(

1 +
4π

5

)

k.

10



Let H̄ = H̄p be the weighted cluster graph corresponding to Gp. Denote by L
the set of those clusters in V (H̄) that contain more than εs vertices of degree

at least (1 + 4π
5 )k in Gp. A simple calculation shows that |L| > (1 − π2

5 )N2 .
Now, delete min{π2N/5, |V (H̄) \L|} clusters in V (H̄) \L to obtain a subgraph
of the cluster graph H̄. As this subgraph is very similar (or identical) to H̄ , in
the rest of the text we shall denote it as well by H̄ . So from now on, by H̄ , we
shall always refer to this subgraph. Each vertex in

⋃

L drops its degree by at

most π2

5 Ns ≤ πk
5 . Thus, by (3), each X ∈ L has degree

dēgH̄(X) ≥ (1 +
3π

5
)k − εn > (1 +

π

5
)k. (9)

Then Lemma 8 applied to H̄ and K := (1 + π
5 )k yields an edge AB ∈ E(H̄)

with A,B ∈ L, together with a matching M ′ of H̄ , which satisfy (a) or (b) of
Lemma 8. Obtain M from M ′ by deleting all edges from M ′ that are incident
with A or with B. If AA′, BB′ ∈ M ′, then M misses A, A′, B, and B′, thus at
most three clusters from N(A), resp. from N(B). In Case (a) of Lemma 8, we
calculate that

min{dēgM (A), dēgM (B)} ≥ (1 +
π

5
)k − 3n

N

≥ (1 +
π

5
− 3

qm0
)k

≥ (1 +
π

10
)k. (10)

Similarly, in Case (b) it follows that

dēgM (A) ≥ (1 +
π

10
)k and dēgM∪L(B) ≥ (1 +

π

10
)
k

2
. (11)

Thus, for the remainder of our proof of Theorem 2 we shall work with the
assumption that there is a matching M of H̄ and vertices A,B /∈ V (M) so that

1. dēgM (A), dēgM (B) ≥ (1 + π
10 )k, or

2. dēgM (A) ≥ (1 + π
10 )k, dēgM∪L(B) ≥ (1 + π

10 )k2 , and each cluster in N(A)
meets a different edge of M .

We shall refer to these two cases as ‘Case 1’ and ‘Case 2’, respectively. We
will embed the tree T ∗ in the subgraph of Gp corresponding to H̄, using two
different strategies in Case 1 and in Case 2.

3.3 Partitioning the tree

In this section, we shall cut our tree into small pieces. More precisely, we shall
define a set SD ⊆ V (T ∗), and sets TA and TB of disjoint small subtrees of T ∗

which are connected through the vertices from SD. Moreover, SD together
with the union of all trees from TA ∪ TB will span T ∗.

Fix a vertex R of T ∗ as the root and regard T ∗ as a poset having R as the
minimal element. For a vertex x of a subtree T ⊆ T ∗, denote by T (x) the
subtree of T induced by x and all vertices y greater than x in the tree-order

11



of T ∗. (That is, T (x) contains all vertices y such that the path between the
root R and y contains the vertex x.) If R /∈ V (T ), then define the seed sd(T )
of T as the maximal vertex of T ∗ which is smaller than every vertex of T .
Our sets SD = SDA ∪ SDB, TA and TB will satisfy:

(I) SDA ∩ SDB = ∅,

(II) R ∈ SDA, and r ∈ SD lies at even distance to R if and only if r ∈ SDA,

(III) TA ∪ TB consists of the components of T ∗ − SD,

(IV) |V (T )| ≤ βk, and sd(T ) ∈ SD, for each T ∈ TA ∪ TB,

(V) max{|SDA|, |SDB|} ≤ 2
β

, and

(VI) eT∗(V (FA), SDB) = 0, and eT∗(V (FB), SDA) = 0,

where FA :=
⋃

T∈TA
T and FB :=

⋃

T∈TB
T are the forests spanned by TA

and TB .
Let us first define SD. To this end, we shall inductively find vertices xi, and
define auxiliary trees T i ⊆ T ∗. Set T 0 := T ∗.
In step i ≥ 1, let xi ∈ V (T ∗) be a maximal vertex in the tree-order of V (T i−1)
with

|V (T i−1(xi))| > βk, (12)

as illustrated in Figure 2(a), and define

T i := T i−1 − (T i−1(xi) − xi).

Hence,
|V (T i−1)| − |V (T i)| > (βk − 1). (13)

If there is no vertex satisfying (12), then set xi := R, and stop the definition
process. Say our process stops in some step j. Let A′ be the set of all xi, i ≤ j,
with even distance to the root R, and let B′ be the set of all other xi.
Then, by (13) and by the definition of n0,

j − 1 ≤ |V (T ∗)|
βk − 1

=
k + 1

βk − 1
≤ 3

2β
.

Hence,

|A′ ∪B′| ≤ 2

β
. (14)

For the sake of condition (VI), we shall now add a few more vertices to our
sets A′ and B′, which will result in the desired SD.
Let C be the set of the components of T ∗ − (A′ ∪ B′). For each T ∈ C with
sd(T ) ∈ A′, denote by A(T ) the set of vertices of T that are adjacent to B′.
Similarly, if sd(T ) ∈ B′, then denote by B(T ) the set of vertices of T that are
adjacent to A′ (cf. Figure 2(b)). Set

SDA := A′ ∪
⋃

T∈C

A(T ), and SDB := B′ ∪
⋃

T∈C

B(T )

and set SD := SDA ∪ SDB.

12



xi

T
i−1(xi)

x1

x5

x9

x7

x4

(a) Suppose that x1, x4, x5, x7, x9 are in
T i−1(xi).

T i−1(xi)
xi ∈ A′

x5

x9

x1 ∈ B′

x7 ∈ B′

x4 ∈ B′

(b) Say xi ∈ A′. Then x5, x9 ∈ A′ and
x1, x4, x7 ∈ B′, which we mark by circles
and squares respectively.

T i−1(xi)
xi ∈ SDA

x5

x9z

y

x1 ∈ B′

x7 ∈ B′

x4 ∈ B′

(c) We add y and z to A(T ). Then
T i−1(xi)− SD ⊆ TA.

Figure 2: Phases of the partition of T ∗.
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Since each vertex in B′ has at most one neighbour in the union of the A(T ), it
follows that

|SDA \A′| ≤ |B′|,
and analogously,

|SDB \B′| ≤ |A′|.
Thus,

max{|SDA|, |SDB|} ≤ |A′ ∪B′|. (15)

Finally, we shall define TA and TB . Let C′ be the set of the components of
T ∗ − SD. Set

TA := {T ∈ C′ : sd(T ) ∈ SDA} and TB := {T ∈ C′ : sd(T ) ∈ SDB},

as shown in Figure 2(c), and define the forests

FA :=
⋃

T∈TA

T and FB :=
⋃

T∈TA

T.

Observe that Conditions (I)–(IV) and (VI) are clearly met and that (V) holds
because of (14) and (15).
This finishes our manipulation of the tree T ∗ in Case 1.

3.4 The switching

In Case 2 from Section 3.2, we shall not only cut our tree to small pieces (cf.
Section 3.3), but also switch some of our small subtrees from one of the two sets
TA, TB to the other. We achieve this by adding some more vertices to SD, thus
naturally refining our partition of T ∗.

Set

T̄A :={T ∈ TA : e(V (T ), SD − sd(T )) = 0}, and

T̄B :={T ∈ TB : e(V (T ), SD − sd(T )) = 0}.

We may assume that

|
⋃

T∈T̄A

V (T ) | ≥ |
⋃

T∈T̄B

V (T ) |. (16)

Now, consider a tree T ∈ TB \ T̄B as in Figure 3(a). By (VI), no vertex in V (T )
is adjacent to any vertex in SDA in T ∗. Denote by S(T ) the set of all vertices
in V (T ) that in T ∗ are adjacent to some vertex of SDB. For illustration see
Figure 3(b). Set

SDA := SDA ∪
⋃

T∈TB\T̄B

S(T ) and SD := SDA ∪ SDB.

Finally, define

T ′
A :=

⋃

T∈TB\T̄B

{C : C is a component of T − S(T )}

14



T

sd(T )

x1 x2 x3

x4

(a) A tree T ∈ TB \ T̄B, with
sd(T ), x1, x2, x3, x4 ∈ SDB.

T

sd(T )

x1 x2 x3

x4

y2
y3

y4

y1

(b) The set S(T ) = {y1, . . . , y4}, and
the subtrees of T generated by the
switching.

Figure 3: The switching procedure.

and
Tf := (TA \ T̄A) ∪ T ′

A.

(The f in Tf stands for ‘first’, as this part of the tree is to be embedded first.)
Finally, set

Ff :=
⋃

T∈Tf

T,

F̄A :=
⋃

T∈T̄A

T and F̄B :=
⋃

T∈T̄B

T.

Observe that our sets SD = SDA∪SDB, Tf ∪T̄A, and T̄B still satisfy conditions
(I)-(IV) and (VI) from Section 3.3 (with SD, SDA, TA, TB, FA, and FB replaced
by SD, SDA, Tf ∪ T̄A, T̄B , F̄A, and F̄B , respectively). Instead of (V), we now
have the similar

(V)’ |SD| ≤ 8
β

,

since by the definition of SDA we know that for each vertex x of SDB, we have
created at most 2 vertices of SDA \ SDA (between x and the next vertex of
SDB in direction of the root R). Thus,

|SDA| ≤ |SDA| + 2|SDB| ≤ 6

β
,

as needed for (V)’.

3.5 Partitioning the matching

In this subsection, we shall divide the matching M into two parts, into which
we will later embed the two forests FA, FB , respectively Ff and F̄B , of T ∗ that
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we defined in Subsection 3.3, resp. in Subsection 3.4. (The forest F̄A will be
embedded later).

For this, we will need the following number-theoretic lemma, which appeared
also in [1]. We give a short proof.

Lemma 9. Let I be a finite set, and let a, b,∆ > 0. For i ∈ I, let ai, bi ∈ (0,∆].
Suppose that

a
∑

i∈I ai
+

b
∑

i∈I bi
≤ 1. (17)

Then there is a partition of I into Ia and Ib such that
∑

i∈Ia
ai > a − ∆ and

∑

i∈Ib
bi ≥ b.

Proof. Define a total order � on I in a way that i � j implies ai

bi
≤ aj

bj
for all

i, j ∈ I. Let ℓ ∈ I be minimal in this order with a ≥ ∑

i≻ℓ ai.
Set Ia := {i ∈ I : i ≻ ℓ} and set Ib := I\Ia. It is clear that

∑

i∈Ia
ai > a−∆, by

the definition of ℓ and as aℓ ≤ ∆. So, all we have to show is that
∑

i∈Ib
bi ≥ b.

Indeed, suppose otherwise. Then by (17), and by the definition of ℓ, we have
that

∑

i∈Ib
bi

∑

i∈I bi
<

b
∑

i∈I bi

≤
a−∑

i∈Ia
ai

∑

i∈I ai
+

b
∑

i∈I bi

≤ 1 −
∑

i∈Ia
ai

∑

i∈I ai

=

∑

i∈Ib
ai

∑

i∈I ai
.

Multiply the two sides of this inequality with
∑

i∈I ai ·
∑

i∈I bi, subtract the
term

∑

i∈Ib
ai ·

∑

i∈Ib
bi, and divide by

∑

i∈Ia
bi
∑

i∈Ib
bi to obtain

aℓ
bℓ

≤
∑

i∈Ia
ai

∑

i∈Ia
bi

<

∑

i∈Ib
ai

∑

i∈Ib
bi

≤ aℓ
bℓ
,

(where the first and last inequality follow from the definition of �). This yields
the desired contradiction.

We shall now apply Lemma 9 to partition our matching M = {ei}i≤|M|. We do
this separately for the two cases from Section 3.2.
In Case 1, we set

a := |V (FA)| +
πk

20
, b := |V (FB)| +

πk

20
, and ∆ := 2s.

For i ≤ |M |, set ai := dēgei(A) ≤ ∆, and bi := dēgei
(B) ≤ ∆. Now, (10)

implies that

a
∑|M|

i=1 ai
+

b
∑|M|

i=1 bi
≤ |V (FA)| + |V (FB)| + πk

10

(1 + π
10 )k

≤ 1.
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Hence, Lemma 9 yields a partition of M into MA and MB such that

dēgMA
(A) > |V (FA)| +

πk

40
and dēgMB

(B) > |V (FB)| +
πk

40
. (18)

In Case 2, set

a := |V (Ff )| +
πk

20
, b := |V (F̄B)| +

πk

40
, and ∆ := 2s.

For i = 1, . . . , |M |, again set ai := dēgei
(A), and bi := dēgei(B). Set L′ := L\M .

For i = |M |+ 1, . . . , |M |+ |L′|, set ai := 0, and set bi := dēgCi
(B), where Ci is

the ith cluster in L′.
Observe that by (16),

|V (F̄B)| ≤ k − |V (Ff )|
2

. (19)

Now, let us check that the conditions of Lemma 9 hold. Clearly, ai, bi ≤ ∆ for
all i ≤ |M | + |L′|.
Moreover, Condition (17) holds since (11) and (19) imply that

a
∑|M|+|L′|

i=1 ai
+

b
∑|M|+|L′|

i=1 bi
≤ |V (Ff )| + πk

20

(1 + π
10 )k

+
|V (F̄B)| + πk

40

(1 + π
10 )k2

=
|V (Ff )| + 2|V (F̄B)| + πk

10

(1 + π
10 )k

≤ 1.

We thus obtain a partition of M into Mf and M̄B such that

dēgMf
(A) > |V (Ff )| +

πk

40
and dēgM̄B∪L′(B) ≥ |V (F̄B)| +

πk

40
. (20)

We partition T̄B into T M
B ∪T L

B such that T M
B will be embedded using the edges

of M̄B and T L
B will be embedded using the clusters in L′. This partition is

necessary: we have to embed as much of T̄B as possible in the edges of M̄B,
before we start using the high average degree of clusters in L′, as the latter may
alter the possibility of using edges from M̄B.
Let T M

B ⊆ T̄B be maximal with

dēgM̄B
(B) ≥ |

⋃

T∈T M
B

V (T )| +
πk

40N
|M̄B|. (21)

Set T L
B := T̄B \ T M

B . Let FM
B :=

⋃

T∈T M
B

T and let FL
B := F̄B − V (FM

B ).

Observe that if T M
B 6= T̄B, then the maximality of T M

B ensures that

dēgM̄B
(B) < |V (FM

B )| +
πk

40N
|M̄B| + βk.

Hence, by (20), either T L
B = ∅, or

dēgL′(B) ≥ |V (FL
B )| +

πk

80N
|L′|. (22)
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3.6 Embedding lemmas for trees

In this section, we shall prove some preparatory lemmas on embedding trees
in regular pairs of H̄ . As mentioned in the overview, it is important to keep
the edges of the matching in H̄ balanced as long as the edge is not saturated,
i. e., as long as we did not embed in the regular pair the expected number of
vertices of the tree. This is captured below by property (⋆), where U stands
for vertices already used in previous steps of the embedding process, and N
stands for the neighbourhood of the image of the corresponding seed mapped
in cluster A or B. So property (⋆) can be read as If the edge is not balanced,
then it is saturated.
Let C,D ∈ V (H̄), and let U,N ⊆ C ∪ D. We say that U has property (⋆) in
CD for N if it satisfies the following.

(⋆) If ||C ∩ U | − |D ∩ U || > βk + εs, then
min{|N ∩ C|, |N ∩D|} ≤ min{|C ∩ U |, |D ∩ U |} + 2εs + βk.

Now our first embedding lemma states that property (⋆) can be kept throughout
the embedding process.

Lemma 10. Let T be a tree with root r and of order at most βk. Let CD ∈
E(H̄). Suppose that U,N ⊆ C ∪D are such that

min{|N ∩ C \ U |, |D \ U |} >
2

p
(εs + βk). (23)

Then there is an embedding ϕ of T in (C ∪D) \ U such that ϕ(r) ∈ N \ U and
such that the following holds.

(⋆⋆) If U has property (⋆) in CD for N ,
then also Uϕ := U ∪ ϕ(V (T )) has property (⋆) in CD for N .

Proof. Write V (T ) = r ∪ L1 ∪ L2 ∪ . . ., where Lℓ is the ℓth level of T (i. e. the
set of vertices at distance ℓ to r).
First, suppose that |N ∩ D \ U | ≤ εs. In this case, choose ϕ(r) ∈ N ∩ C \ U
typical to D\U . This is possible because by (23), |N ∩C \U | > 2

p
(εs+βk) > εs

and by (2), at most εs vertices of C are not typical to the significant subset
D \ U of D.
Embed the rest of V (T ) levelwise. For ϕ(Lℓ), the image of the ℓth level Lℓ, we
choose unused vertices of D \U that are typical to C \U if ℓ is odd, and unused
vertices of C \U that are typical to D \U if ℓ is even. Because C \U and D \U
are significant sets, any vertex that is typical to C \U , or to D \U , has at least
(p− ε)|C \ U | ≥ εs + βk, resp. (p − ε)|D \ U | ≥ εs + βk, neighbours in C \ U ,
resp. in D \ U (here we used (23)). Among these neighbours there are then at
least βk ≥ V (T ) vertices that are typical.
Now, suppose that |N ∩D \U | > εs. In this case, we may alternatively wish to
embed r in N ∩D. We do so in either of the following cases

1. |⋃ℓ∈N
L2ℓ−1| > |⋃ℓ∈N

L2ℓ| and |C \ U | ≥ |D \ U |, or

2. |⋃ℓ∈N
L2ℓ−1| < |⋃ℓ∈N

L2ℓ| and |C \ U | ≤ |D \ U |,
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and otherwise embed r in N ∩ C, as before. The purpose of embedding r in D
and not in C is to keep the pair (C,D) balanced, i. e., our choice of r ensures
that (if |N ∩D \ U | > εs)

||C ∩ Uϕ| − |D ∩ Uϕ|| ≤ max{||C ∩ U | − |D ∩ U ||, βk} (24)

Then, the rest of T is embedded analogously as above (possibly swapping the
roles of C and D). This completes the embedding of T .

It remains to prove (⋆⋆). So assume that U has property (⋆) for N in CD.
Furthermore, assume that

||C ∩ Uϕ| − |D ∩ Uϕ|| > βk + εs. (25)

Now, if ||C ∩ U | − |D ∩ U || > βk + εs, then property (⋆) for Uϕ follows from
property (⋆) for U . Suppose otherwise, that is

||C ∩ U | − |D ∩ U || ≤ βk + εs. (26)

By (24), inequality (25) only holds if we could not choose where to embed the
root of T , in N ∩ C or in N ∩D. Hence,

|N ∩D \ U | ≤ εs.

Using (26), this gives

min{|N ∩ C|, |N ∩D|} ≤ max{|C ∩ U |, |D ∩ U |} + min
Y =C,D

{|N ∩ Y \ U |}

≤ max{|C ∩ U |, |D ∩ U |} + εs

≤ min{|C ∩ U |, |D ∩ U |} + 2εs + βk

≤ min{|C ∩ Uϕ|, |D ∩ Uϕ|} + 2εs + βk,

as desired.

We need some definitions. Let C,D,X ∈ V (H̄), We say that U ⊆ V (G) has
property (⋄) in (C,D) with respect to X if it satisfies the following.

(⋄) If ||C ∩ U | − |D ∩ U || > βk + εs, then
min{dēgC(X), dēgD(X)} ≤ min{|C ∩ U |, |D ∩ U |} + 4εs + βk.

Let X ′ ⊆ X , let v ∈ X , let Z ⊆ V (H̄). An embedding ϕ of a rooted tree (T, r)
is a (v,X ′, U)-embedding in Z, if ϕ(V (T ) \ {r}) ⊆ ⋃Z \ U , if ϕ(r) = v, and if
each vertex at odd distance to the root r is mapped to a vertex that is typical
to X ′. A vertex is Z-typical, if it is typical to each cluster from Z. For each
cluster C 6= X , let CX′ be the set of all vertices of C that are not typical to X ′,
and let SX′ :=

⋃

C∈V (H̄),C 6=X CX′ . Note that CX′ = ∅ if d(C,X) = 0.

Finally, for m ∈ N, the set Z is said to be (m,U)-large for X , if

dēgZ(X) > m + |U ∩
⋃

Z| +
πk

100N
|Z|.

Lemma 11. Let T, r,X ′, X, v and U be as above with |X ′| ≥ |X |/2.
A) Suppose MX is a matching in H̄ − X so that V (MX) is (|V (T )|, U)-large
for X, so that v is V (MX)-typical, and so that U ∪ SX′ has property (⋄) in
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(C,D) with respect to X, for each CD ∈ MX .
Then, there is a (v,X ′, U)-embedding ϕ of T in V (MX) such that U∪ϕ(V (T ))∪
SX′ has property (⋄) with respect to X for every CD ∈ MX.
B) Let LX ,WX ⊆ V (H̄) be such that LX is (|V (T )|, U)-large for X, and WX is
(|V (T )|, U)-large for each Y ∈ LX . If v is LX-typical, then there is a (v,X ′, U)-
embedding ϕ of T in LX ∪WX .

Proof. We map r to v and embed the trees from the forest F := T − {r}
inductively. In each step j ≥ 1, we embed a tree T j of the forest F . Denote by
V j the set

⋃

i≤j V (T i) of vertices we have embedded just after step j and set

V 0 = ∅. Set U j := U ∪SX′ ∪ϕ(V j) for any j ≥ 0. In particular, U0 = U ∪SX′ .
For Part A), we shall ensure the following two properties of U during our em-
bedding. Firstly, if CD ∈ MX satisfies ||C ∩U0| − |D∩U0|| ≤ βk + εs, then we
require that for every j ≥ 1

(I) U j−1 has property ( ⋆ ) for N(v).

This property holds for j = 1, as the condition of property (⋆) is void, and we
shall check it for each later step.
Secondly, for those edges with ||C ∩ U0| − |D ∩ U0|| > βk + εs, observe that as
the sets U j are growing, property (⋄) ensures that for all j ≥ 1

(II) minY ∈{C,D}{dēgY (X)} ≤ minY ∈{C,D}{|Y ∩ U j−1|} + 4εs + βk.

So, assume now that we are in step j ≥ 1, that is, ϕ(x) has been defined for all
x ∈ V j−1, and we are about to embed T j.

Claim 12. There is an edge CD, with CD ∈ MX for Part A) and with C ∈ LX ,
and D ∈ WX for Part B), such that

min{|(N(v) ∩C) \ U j−1|, |D \ U j−1|} ≥ 2

p
(εs + βk).

Before proving Claim 12, we shall show how we complete our embedding of T j

under the assumption that the claim holds for some edge e := CD.
Set N := N(v)∩e and let rj := N(r)∩V (T j) be the root of T j. Use Lemma 10
to embed T j in e \U j−1, mapping rj to N \U j−1. Lemma 10 together with (I)
for j ensures (I) for j + 1. As our embedding avoids SX′ , all vertices in ϕ(T j)
are typical to X ′. This terminates step j.
Say we terminate the embedding procedure after step ℓ (that is, ℓ is the number
of components of F ). Then ϕ is a (v,X ′, U)-embedding. So, for Part B), we are
done. For Part A), however, we still have to prove that U ∪ ϕ(V (T )) ∪ SX′ has
property (⋄) in (C,D) with respect to X , for each CD ∈ MX .
To this end, assume that

||C ∩ U ℓ| − |D ∩ U ℓ|| > βk + εs . (27)

If ||C ∩U0|− |D∩U0|| ≤ βk+ εs, then (I) holds by induction for ℓ+ 1 and thus
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U ℓ has property (⋆) in CD for N(v). Hence, because v is typical to C and D,

min
Y =C,D

{dēgY (X)} ≤ min
Y =C,D

{degY (v)} + εs

(27),(⋆)

≤ min
Y =C,D

{|Y ∩ U ℓ|} + 3εs + βk

≤ min
Y =C,D

{|Y ∩ (U ℓ \ S)|} + 4εs + βk

= min
Y =C,D

{|Y ∩ (U ∪ V (T ))|} + 4εs + βk.

On the other hand, if ||C ∩ U0| − |D ∩ U0|| > βk + εs, then (II) ensures that
U ℓ| = U ∪ ϕ(V (T )) ∪ SX′ has property (⋄) in each CD ∈ MX for Part A). It
only remains to prove Claim 12.

Proof of Claim 12: First, suppose we are in Case A). Let us start by showing
that there is an edge e = CD ∈ MX which satisfies

dēge(X) − |e ∩ U j−1| ≥ 8

p
(εs + βk) + 2εs. (28)

Indeed, suppose there is no such edge. Then, as V (MX) is (|V (T )|, U)-large, we
have that

8

p
(εs + βk)|MX | >

∑

e∈MX

(dēge(X) − |e ∩ U j−1| − 2εs)

= dēgMX
(X) − |U ∩

⋃

MX | − |U j−1 \ U | − 2εs|MX |

≥ dēgMX
(X) − |U ∩

⋃

MX | − |V (T )| − |SX′ ∩MX | − 2εs|MX |

≥ πk

100N
|V (MX)| − 2εs|MX |

>
πk

100N
|MX |,

which, as βk ≤ ε
M0

n ≤ εs, implies that 16ε/p > πq/100, a contradiction.
So, assume now that we have chosen an edge e for which (28) holds. Clearly,
we can write e = CD such that

4

p
(εs + βk)

(28)

≤ dēgC(X) − εs− |C ∩ U j−1| (29)

≤ |N(v) ∩ C \ U j−1|. (30)

We claim that

|D \ U j−1| ≥ 2

p
(2εs + βk), (31)

which together with (30) implies Claim 12 for Case A). Indeed, suppose for
contradiction (31) does not hold. Then (29) implies that

|C ∩ U j−1| ≤ s− 4

p
(εs + βk) − εs

= |D ∩ U j−1| + |D \ U j−1| − 2

p
(2εs + βk) − 2

p
βk − εs

< |D ∩ U j−1| − 2

p
βk − εs. (32)
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We claim that

min{dēgC(X), dēgD(X)} ≤ |C ∩ U j−1| + 4εs + βk. (33)

Indeed, if ||C ∩ U0| − |D ∩ U0|| ≤ βk + εs, then by (I), U j−1 has property (⋆)
for N(v) ∩ (C ∪D). As (32) implies that ||C ∩ U j−1| − |D ∩ U j−1| > βk + εs,
we obtain that

min{dēgC(X), dēgD(X)} ≤ min{|N(v) ∩ C|, |N(v) ∩D|} + εs

(⋆)

≤ min{|C ∩ U j−1|, |D ∩ U j−1|} + 3εs + βk,

implying (33). On the other hand, if ||C ∩U0| − |D ∩U0|| > βk + εs, then (33)
follows directly from (II).
Thus, by (28),

8

p
(εs + βk) + 2εs ≤ dēge(X) − |C ∩ U j−1| − |D ∩ U j−1|

(33)

≤ dēge(X) − min
Y ∈{C,D}

{dēgY (X)} + 4εs + βk − |D ∩ U j−1|

≤ s + 4εs + βk − |D ∩ U j−1|
< |D \ U j−1| + 4εs + βk.

So, |D \ U j−1| > ( 8
p
− 2)(εs + βk), a contradiction to our assumption that (31)

does not hold. This proves (31).

Now, assume that we are in Case B). First we show that if some Z ⊆ V (H̄) is
(|V (T )|, U)-large for some Y ∈ V (H̄), then there is a Z ∈ Z such that

dēgZ(Y ) − |Z ∩ U j−1| ≥ 2

p
(εs + βk) + εs,

which implies that Z ∈ N(Y ).
Indeed, otherwise, by the definition of (V (T ), U)-large and using the fact that
|V (T )| + |U ∩⋃Z| ≥ |U j−1 ∩⋃Z| − εs|Z|, we have that

2

p
(εs + βk)|Z| >

∑

Z∈Z

(dēgZ(Y ) − |Z ∩ U j−1| − εs)

= dēgZ(Y ) − |U j−1 ∩
⋃

Z| − εs|Z|

> (
πk

100N
− 2εs)|Z|

≥ πk

200N
|Z|,

a contradiction.
Applying this assertion with Z = LX and Y = X , we obtain C ∈ LX such that

|N(v) ∩ C \ U j−1| ≥ dēgC(X) − |C ∩ U j−1| − εs ≥ 2

p
(εs + βk).

Applying the assertion again with Z = WX and Y = C, we obtain D ∈ WX ∩
N(C) such that

|D \ U j−1| ≥ dēgD(C) − |D ∩ U j−1| ≥ 2

p
(εs + βk),
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as desired for Claim 12.

3.7 The embedding in Case 1

In this subsection, we shall complete the proof of Theorem 2 under the assump-
tion that Case 1 of Section 3.2 holds. So, we assume that there are an edge
AB ∈ E(H̄) and a matching M = MA ∪MB in H̄ − {A,B} as in Section 3.5.
These, together with the sets SD = SDA ∪ SDB, FA and FB from Section 3.3,
satisfy (18).

Our embedding ϕ will be defined in |SD| steps. In each step i ≥ 1, we choose
a suitable vertex ri ∈ SD and embed it together with all trees from

Ti := {T ∈ TA ∪ TB : sd(T ) = ri}.

Set V0 := ∅ and for i ≥ 1, let

Vi := Vi−1 ∪ {ri} ∪
⋃

T∈Ti

V (T ).

We start with the root r1 := R of T ∗, and in each step i > 1, we shall choose a
vertex ri ∈ SD \ Vi−1 that is adjacent to Vi−1. The seed ri will be embedded
in a vertex vi ∈ A ∪ B, while Ti will be mapped to edges from M (or more
precisely, to the corresponding subgraph of Gp). Set U0 := ∅, and once ϕ is
defined on Vi, set Ui := ϕ(Vi).
For each i ≥ 0, the following conditions will hold.

(i) |(A ∪B) ∩ Ui| ≤ i,

(ii) if x ∈ Vi ∩ N(SDA), resp. x ∈ Vi ∩ N(SDB), then ϕ(x) has at least p
4s

neighbours in A, resp. in B,

(iii) for CD ∈ MA, the set Ui ∪ SA has property (⋄) in CD with respect to A.

(iv) for CD ∈ MB, the set Ui ∪ SB has property (⋄) in CD with respect to B.

Observe that properties (i)–(iv) trivially hold for i = 0.

So, suppose now that we are in some step i ≥ 1 of our embedding process.
Choose ri ∈ SD as detailed above. Let us assume that ri ∈ SDA, the case
when ri ∈ SDB is analogous.
We embed ri in a vertex vi = ϕ(ri) ∈ A that is typical to B and typical to all
but at most 2

√
ε|MA| clusters of MA. Properties (i) and (ii) for i − 1 ensure

that if x is the predecessor of ri in T ∗, then ϕ(x) has at least ps
4 − i neighbours

in A \ Ui−1. By (2) and (4), at most 2
√
εs of these vertices do not have the

required properties. Hence, there are at least (p4−2
√
ε)s−i ≥ 1 suitable vertices

we may choose vi from.
Let M i

A ⊆ MA be a maximal submatching such that vi is typical to each of the
end-clusters of each edge of M i

A, i. e., vi is V (M i
A)-typical. Then by (4) and (18)
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we obtain

dēgMi
A

(A) ≥ dēgMA
(A) − 4

√
ε|MA|s

> |V (FA)| +
πk

40
− 4

√
εNs

> |V (FA)| +
πk

80

> |
⋃

T∈Ti

V (T )| + |Ui−1 ∩
⋃

C∈V (MA)

C| +
πk

80N
|V (M i

A)|. (34)

Let T be the tree induced by ri and the trees from Ti, and let r := ri be the root
of T . Each component of T − r has order at most βk. Inequality (34) implies
that V (M i

A) is (|V (T )|, Ui−1)-large for A. Observe that Ui−1 ∪SA has property
(⋄) in (C,D) with respect to A for each CD ∈ M i

A by (iii).
Now we use Lemma 11 Part A) with T and setting MX := M i

A, U := Ui−1,
v := vi, and X = X ′ = A. This provides with a (vi, A, Ui−1)-embedding of T
in V (M i

A). Thus every vertex of T − r at odd distance from r is mapped to a
vertex that is typical to A, i. e., that has at least (p − ε)|A| ≥ p

4s neighbours
in A. By (II) and (VI) of Section 3.3 this implies that (ii) holds for all vertices
in V (T − r) ∩N(SD). For r property (ii) is satisfied as vi is typical to B and
thus has at least (p − ε)|B| ≥ p

4s neighbours in B. It is easy to see that (i)
holds for i, as it holds for i− 1, and by our choice of ϕ(Vi \Vi−1). Property (iv)
trivially holds as no vertices were mapped to MB. Lemma 11 Part A) ensures
property (⋄) for all edges CD ∈ M i

A. Because we did not embed anything in
the edges of MA \M i

A, (iii) for i− 1 implies (iii) for i, for all CD ∈ MA.
This completes the embedding of the tree T ∗ in Gp ⊆ G in Case 1.

3.8 The embedding in Case 2

We shall now complete the proof of Theorem 2 under the assumption that Case 2
of Section 3.2 holds. That is, there are an edge AB ∈ E(H̄) and a matching
M = Mf ∪ M̄B in H̄ − {A,B} together with sets SD = SDA ∪ SDB, Ff ,
F̄A, FM

B and FL
B from Sections 3.3 and 3.4 satisfying (20), (21) and (22) from

Section 3.5.

Our embedding will be defined in three phases. In the first phase, we shall
embed all vertices from SD in A∪B, embed Ff in edges of Mf , and embed FM

B

in edges of M̄B. In the second phase, we shall embed FL
B in edges incident with

L′ ∩N(B), and in the third phase, we shall embed F̄A in the remaining space
inside edges from M .
Denote by A′ the set of vertices in A that are typical to all but at most 2

√
ε|M |

clusters of V (M), and denote by B′ the set of vertices in B that are typical to
all but at most

√
ε|L′| clusters of L′.

The first phase is done analogously as in Case 1, while considering A′ and B′

instead of A and B. In each step, Lemma 11 Part A) is used in the following
setting.
The tree T is the tree induced by ri and the trees from

Ti := {T ∈ Tf ∪ T M
B : sd(T ) = ri}.

Its root is r := ri. We set either (X ′, X) = (A′, A) or (X ′, X) = (B′, B), and
let v = ϕ(ri). The matching MX is a maximal submatching either of Mf or of
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M̄B, so that ϕ(ri) is V (MX)-typical. Finally, the set U is the set of the vertices
used before step i.

For the second phase, assume that V (FL
B ) 6= ∅ (otherwise we shall skip the

second phase). We define the second phase of our embedding process in |SDB|
steps.
In each step i ≥ 1, we embed the trees T i := {T ∈ T L

B : sd(T ) = ri} in edges
incident with L′. (Recall that L′ = L \M .) Suppose that we are at step i of
this procedure, i. e. that we have already embedded the trees from T 1, . . . , T i−1.
Denote by Ui−1 the set of vertices used so far for the embedding. Let L′

i be the
set of those clusters of L′ to which ϕ(ri) is typical. As ϕ(ri) ∈ B′, (4) and (22)
imply that

dēgL′

i
(B) ≥ |

⋃

T∈T i

V (T )| + |Ui−1 ∩ L′
i| +

πk

100N
|L′

i|.

Furthermore, by (9), for all Y ∈ L′
i we have that

dēg(Y ) ≥ |
⋃

T∈T i

V (T )| + |Ui−1| +
πk

100
.

Use Lemma 11 Part B) to embed Ti, letting the tree be the tree induced by ri
and the trees from T i, its root be ri, and setting X := B, X ′ := B′, v := ϕ(ri),
LX := L′

i, WX := N(L′
i), and U := Ui−1.

The third phase of our embedding process takes place in |SDA| steps, where in
each step i ≥ 1, we embed the trees from T i := {T ∈ T̄A : sd(T ) = ri}. Suppose
that we are at step i of this procedure, i. e. that we have already embedded the
trees from T 1, . . . , T i−1. Denote by Ūi−1 the set of vertices used so far for the
embedding. Let Mi be the maximal submatching of M such that ϕ(ri) is typical
to all cluster of V (Mi). As ϕ(ri) ∈ A′, we have by (4) and (10) that

dēgMi
(A) ≥ |V (

⋃

T i)| + |Ūi| +
πk

100
.

Observe that, as each edge CD ∈ M meets N(A) in at most one end-cluster,
the set Ui trivially has property (⋄) in CD with respect to A. We use Lemma 11
Part A) to embed Ti, letting T be the tree induced by r := ri together with
the trees from T i, and setting X := A, X ′ := A′, v := ϕ(ri), MX := Mi, and
U := Ūi−1.
This terminated our embedding of T ∗, and thus the proof of Theorem 2.

4 Extensions and applications

In this last section, we explore applications and generalisations of Theorem 2.
In Section 4.1 we show how our theorem implies an asymptotic upper bound
on the Ramsey number of trees. We extend Theorem 2 so that it allows for
embedding subgraphs other than trees in Section 4.2.
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4.1 A bound on the Ramsey number of trees

Recall that r(H,H′) denotes the Ramsey number for the classes H and H′ of
graphs, and that Tℓ denotes the class of trees of order ℓ.
Based on ideas from [6] and using Theorem 2, we prove Proposition 3, which
stated that r(Tk+1, Tm+1) ≤ k + m + o(k + m). The sharp bound k + m has
been conjectured in [6].

Proof of Proposition 3. Given 0 < ε < 1/4, we apply Theorem 2 to η = q = ε/4
to obtain an n0 ∈ N. Now, let n ≥ n0, and let G be a graph on n′ = (1+2ε)n+1
vertices. Let k and m be such that k + m = n.
Clearly, either at least half of the vertices of G have degree at least k+ εn, or in
the complement Ḡ of G, at least half of the vertices have degree at least m+εn.
First, suppose that the former of these assertions is true. Then it is easy to
calculate that

k + εn ≥ (1 + η)(k + qn′).

Thus, we may apply Theorem 2, which yields that each tree in Tk+qn′+1 is a
subgraph of G. Hence, also each tree in Tk+1 is a subgraph of G.
Now, assume that the second assertion from above holds.We have thus shown
that for every ε > 0 there is an n0 so that for all k,m with k+m ≥ n0, we have
that r(Tk+1, Tm+1) ≤ (1 + 2ε)(k + m) + 1. This proves Proposition 3.

4.2 Graphs with few cycles

The question we pursue in this subsection is whether the condition of Theorem 2
allows for embedding other graphs on k + 1 vertices, apart from trees. For
instance, may we add an edge to our tree T ∗ and still embed it in G? In
Theorem 4 we show that we may indeed add constantly many edges, as long as
our graph stays bipartite.
Observe that the argument for the bound on Ramsey number from Subsec-
tion 4.1 would apply here as well. We thus get an upper bound of k+m+o(k+m)
for the Ramsey numbers of graphs Qk, Qm as in Theorem 4, although the sharp
bound does not hold (cf. the example given in the introduction).
Our proof of Theorem 4 follows closely the lines of the proof of Theorem 2.
We embed a spanning tree T ∗ of Q, and choosing ϕ carefully, we ensure the
adjacencies for the edges from E(Q) \ E(T ∗).

Proof of Theorem 4. Set π := min{η, q} and set

ε′ :=
εc+1

(c + 3)2
, and m0 :=

500

π2q
,

where ε is the constant from the proof of Theorem 2. As in the proof of Theo-
rem 2, the regularity lemma applied to ε′, and m0, yields natural numbers N0

and M ′
0. Set M0 := max{M ′

0, c}, define β and p accordingly, and set

n0 := max

{

N0,
9M0

β

(

8

p

)c+1
}

.

Now, let G be a graph on n ≥ n0 vertices which satisfies the condition of
Theorem 4, let k ≥ qn, and let Q be a connected bipartite graph of order k + 1
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with at most k + c edges, with a spanning tree T ∗. Fix a root R in T ∗. Denote
by Q′ the subgraph of Q induced by the edges in E(Q) \ E(T ∗) and let P be
the set of predecessors of V (Q′) in the tree order of T ∗.
We decompose T ∗ as in Section 3.3, with the difference that we now add the
vertices from V (Q′) ∪ P to the sets A′ and B′ (from the definition of SD),
depending on the parity of their distance in T ∗ to R. In this way, and since Q is
bipartite, we obtain, after the switching, two independent sets SDA and SDB

so that

|SDA| + |SDB| ≤ 8

β
+ 8c <

9

β
,

which is constant in n.
The definition of our the embedding ϕ is similar as in the proof of Theorem 2,
except for some extra precautions we take for vertices from V (Q′)∪P . At step i,
for each vertex r ∈ SDA, define

N i
r :=

j
⋂

ℓ=1

N(ϕ(xℓ)) ∩A,

where x1, . . . xj are the already embedded neighbours of r in SDB. If none of
the neighbours of r in SDA has been embedded before step i, then set N i

r := A.
Analogously define N i

r for r ∈ SDB.
In each step i of our embedding process, we shall ensure the following.

If r ∈ V (Q′) is not yet embedded, then |N i
r| ≥

(p

4

)j

s, (35)

where j = j(r, i) is the number of neighbours of r in SDA resp. SDB that have
already been embedded before step i.
Observe that in step i = 0, either N0

r = A or N0
r = B, and therefore (35) is

satisfied.
Suppose that at step i ≥ 1 of our embedding process we are about to embed a
vertex r = ri ∈ V (Q′) ∪ P . Assume that r ∈ SDA (the case when r ∈ SDB

is analogous). Denote by x1, . . . , xℓ the neighbours of r in V (Q′) that have not
been embedded yet.
Now, embed r in a vertex v from N i−1

r that satisfies the three following condi-
tions of typicality:

• v is typical to all but at most 2
√
ε|M | clusters of V (M), resp. all but at

most
√
ε|L′| clusters of L′,

• v is typical to all but at most 2
√
ε|M ′| clusters of the matching M ′, where

M ′ stands either for MA, MB, Mf , or M̄B, depending on the case, and

• v is typical to each N i−1
xj

, for 1 ≤ j ≤ ℓ.

This is possible, since our embedding scheme and the condition on the number
of edges of Q ensure that r has at most c + 1 neighbours in Q that are already
embedded. Thus, by (35) for i−1 and for r, by (2) and (4), and by choice of n0,
there are at least

(

(p

4

)c+1

− (c + 1)ε′ − 2
√
ε′
)

s− |SD| + 1 ≥ 1

2

(p

4

)c+1

s− 9

β
+ 1 ≥ 1
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unused typical vertices we can choose ϕ(r) from.
Finally, observe that since we chose ϕ(r) typical to each N i−1

xj
, we have ensured

property (35) for i and for every r′ ∈ V (Q′) that is not yet embedded. This
completes the proof of Theorem 4.
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[1] M. Ajtai, J. Komlós and E. Szemerédi, On a conjecture of Loebl, In Proc.
of the 7th International Conference on Graph Theory, Combinatorics, and
Algorithms, pages 1135-1146, Wiley, New York, 1995.
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