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Abstract

In 1977, Wegner conjectured that the chromatic number of the square of every planar

graph with maximum degree ∆ ≥ 8 is at most
⌊
3

2
∆
⌋
+ 1. We show that it is at most

3

2
∆(1 + o(1)) (where the o(1) is as ∆ → +∞), and indeed that this is true for the list

chromatic number and for more general classes of graphs.

1 Introduction

Most of the terminology and notation we use in this paper is standard and can be found in any

text book on graph theory (such as [6] or [9]). All our graphs and multigraphs will be finite. A

multigraph can have multiple edges; a graph is supposed to be simple. We will not allow loops.

The degree of a vertex is the number of edges incident with that vertex. We require all

colourings, whether we are discussing vertex, edge or list colouring, to be proper : neighbouring

objects must receive different colours. We also always assume that colours are integers, which

allows us to talk about the “distance” |γ1 − γ2| between two colours γ1, γ2.
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Given a graph G, the chromatic number of G, denoted χ(G), is the minimum number of

colours required so that we can properly colour its vertices using those colours. If we colour the

edges of G, we get the chromatic index, denoted χ′(G).

Given a list L(v) of colours for each vertex v of G, we say a colouring is acceptable (with

respect to the lists) if it is proper and every vertex gets assigned a colour from its own private

list. The list chromatic number or choice number ch(G) is the minimum value k such that, if we

give each vertex of G a list of size k, then there is an acceptable colouring. The list chromatic

index is defined analogously for edges. See [46] for a survey of research on list colouring of

graphs. Note that the list L(v) is really just a set, but as is standard we refer to it as a list.

1.1 Colouring the Square of a Graph

Given a graph G, the square of G, denoted G2, is the graph with the same vertex set as G and

with an edge between each pair of distinct vertices that have distance at most two in G. If G has

maximum degree ∆, then a vertex colouring of its square will need at least ∆ + 1 colours; the

greedy algorithm shows it is always possible with ∆2+1 colours. Diameter two cages such as the

5-cycle, the Petersen graph and the Hoffman-Singleton graph (see [6, page 84]) show that there

exist graphs that in fact require ∆2 + 1 colours, for ∆ = 2, 3, 7, and possibly one for ∆ = 57.

We are particularly interested in planar graphs. The celebrated Four Colour Theorem by

Appel and Haken [3, 4, 5] states that χ(G) ≤ 4 for planar graphs G. Regarding the chromatic

number of the square of a planar graph, Wegner [44] posed the following conjecture (see also

the book of Jensen and Toft [17, Section 2.18]), suggesting that for planar graphs far less than

∆2 + 1 colours suffice.

Conjecture 1.1 (Wegner [44])

For a planar graph G with maximum degree ∆,

χ(G2) ≤





7, if ∆ = 3,

∆+ 5, if 4 ≤ ∆ ≤ 7,⌊
3
2∆

⌋
+ 1, if ∆ ≥ 8.

Wegner also gave examples showing that these bounds would be tight. For even ∆ ≥ 8, these

examples are sketched in Figure 1. The graph Gk consists of three vertices x, y and z together

with 3k − 1 additional vertices with degree two, such that z has k common neighbours with x

and k common neighbours with y, and x and y are adjacent and have k−1 common neighbours.

This graph has maximum degree 2k and yet all the vertices except z are adjacent in its square.

Hence to colour these 3k + 1 vertices, we need at least 3k + 1 = 3
2∆+ 1 colours.

Kostochka and Woodall [28] conjectured that for every square of a graph the list chromatic

number equals the chromatic number. This conjecture was first disproved by Kim and Park [23].

Since then more counterexamples have been found [22, 24, 26]. All these counterexamples are

not planar, which gives us hope that Kostochka and Woodall’s original conjecture is true for

planar graphs.
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Figure 1: The planar graph Gk.

Conjecture 1.2

For a planar graph G with maximum degree ∆,

ch(G2) ≤





7, if ∆ = 3,

∆+ 5, if 4 ≤ ∆ ≤ 7,⌊
3
2∆

⌋
+ 1, if ∆ ≥ 8.

Wegner also showed that if G is a planar graph with ∆ = 3, then G2 can be 8-coloured.

Thomassen [43] established Wegner’s conjecture for ∆ = 3 using an involved structural result

on subcubic (i.e. with ∆ ≤ 3) graphs; while Hartke et al. [13] proved the same using the

discharging method and a serious amount of computer time. Cranston and Kim [8] showed that

the square of every connected graph (not necessarily planar) which is subcubic is 8-choosable,

except for the Petersen graph. However, the 7-choosability of the squares of subcubic planar

graphs is still open.

The first upper bound on χ(G2) for planar graphs that is linear in ∆, namely χ(G2) ≤

8∆− 22, was implicit in the work of Jonas [18]. (The results in [18] deal with L(2, 1)-labellings,

see below, but the proofs are easily seen to be applicable to colouring the square of a graph as

well.) This bound was later improved by Wong [45] to χ(G2) ≤ 3∆ + 5, and then by Van den

Heuvel and McGuinness [15] to χ(G2) ≤ 2∆ + 25. Better bounds were then obtained for large

values of ∆. It was shown that χ(G2) ≤
⌈
9
5∆

⌉
+1 for ∆ ≥ 750 by Agnarsson and Halldórsson [1],

and the same bound for ∆ ≥ 47 by Borodin et al. [7]. Finally, the asymptotically best known

upper bound so far has been obtained by Molloy and Salavatipour [38] as a special case of

Theorem 1.6 below.

Theorem 1.3 (Molloy and Salavatipour [38])

For a planar graph G with maximum degree ∆,

χ(G2) ≤ 5
3∆+ 78.
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As mentioned in [38], the constant 78 can be reduced for sufficiently large ∆; the paper improves

it to 24 when ∆ ≥ 241.

In this paper we prove the following theorem.

Theorem 1.4

The square of every planar graph G with maximum degree ∆ has list chromatic number at most

(1 + o(1))32∆. Moreover, given lists of this size, there is an acceptable colouring in which the

colours on every pair of adjacent vertices of G differ by at least ∆1/4.

A more precise statement is as follows. For each ǫ > 0, there is a ∆ǫ such that for every ∆ ≥ ∆ǫ

we have: for every planar graph G with maximum degree at most ∆, and for all vertex lists

each of size at least
(
3
2 + ǫ

)
∆, there is an acceptable colouring of G, with the further property

that the colours on every pair of adjacent vertices of G differ by at least ∆1/4.

The o(1) term in the theorem is as ∆ −→ +∞. The first order term 3
2∆ in Theorem 1.5 is

best possible, as the examples in Figure 1 show. On the other hand, the term ∆1/4 is probably

far from best possible; it was chosen to keep the proof simple. The main point, to our minds, is

that this parameter tends to infinity as ∆ −→ +∞.

In [2], the first part of Theorem 1.4 is extended to graphsG embeddable in any fixed surface1.

That paper also considers the more general framework of Σ-colourings, where for each vertex v

a subset Σ(v) ⊆ NG(v) of the neighbourhood of v is given, and two vertices u,w only need to

receive a different colour if uw ∈ E(G) or u,w ∈ Σ(v) for some v. This concept unifies ordinary

colourings (taking Σ(v) = ∅ for all v) and colourings of the square G2 (taking Σ(v) = NG(v)

for all v). It also includes so-called cyclic colourings of graphs that are embedded in a surface,

where vertices that share a face must be coloured differently.

Here we extend Theorem 1.4 to every nice family of graphs, which are those minor-closed

families of graphs such that there is some k for which the complete bipartite graph K3,k is not

in the family.

Theorem 1.5

Let F be a nice family of graphs. The square of every graph G in F with maximum degree ∆ has

list chromatic number at most
(
3
2 + o(1)

)
∆. Moreover, given lists of this size, there is a proper

colouring in which the colours on every pair of adjacent vertices of G differ by at least ∆1/4.

Kuratowski’s theorem tells us that planar graphs form a nice family. So do graphs which are

embeddable in a fixed surface. For, by Euler’s formula, if a bipartite graph with n vertices and e

edges embeds in a surface Σ of Euler genus g, then e ≤ 2(n+g−2); and so K3,k does not embed

in Σ if k > 2g + 2.

Note that K3,3 has K4 as a minor, and so K4-minor-free graphs (that is, series-parallel

graphs) form a nice class. Lih, Wang and Zhu [33] showed that the square of a K4-minor-free

1We note that [2] was written after the results in this paper were obtained, due to the lengthy amount of

time this paper has spent in the revision process (which is the fault of the authors), and combines the techniques

developed in this paper with other arguments
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graph with maximum degree ∆ has chromatic number at most
⌊
3
2∆

⌋
+ 1 if ∆ ≥ 4 and ∆ + 3

if ∆ = 2, 3. The same bounds, but then for the list chromatic number of the square of a

K4-minor-free graph, were proved by Hetherington and Woodall [16].

1.2 L(p, q)-Labellings of Graphs

Vertex colourings of squares of graphs can be considered a special case of a more general concept:

L(p, q)-labellings of graphs. This topic takes some of its inspiration from so-called channel

assignment problems in radio or cellular phone networks, see for example [32]. The basic channel

assignment problem is the following: we need to assign radio frequency channels to transmitters

(each gets one channel which corresponds to an integer). In order to avoid interference, if two

transmitters are very close, then the separation of the channels assigned to them has to be large

enough. Moreover, if two transmitters are close but not very close, then they must also receive

channels that are sufficiently far apart.

An idealised version of such a problem may be modelled by L(p, q)-labellings of a graph G,

where p and q are non-negative integers. The vertices of this graph correspond to the transmitters

and two vertices are linked by an edge if they are very close. Two vertices are then considered

close if they are at distance two in the graph. Let dist(u, v) denote the distance between the

two vertices u and v. An L(p, q)-labelling of G is an integer assignment f to the vertex set V (G)

such that:

• |f(u)− f(v)| ≥ p if dist(u, v) = 1, and

• |f(u)− f(v)| ≥ q if dist(u, v) = 2.

It is natural to assume that p ≥ q, and we do so throughout.

The span of f is the difference between the largest and the smallest labels of f plus one.

The λp,q-number of G, denoted by λp,q(G), is the minimum span over all L(p, q)-labellings of G.

The problem of determining λp,q(G) has been studied for some specific classes of graphs (see

the survey of Yeh [47]). Generalisations of L(p, q)-labellings have also been studied in which a

minimum gap of pi is required for channels assigned to vertices at distance i, for several values

i = 1, 2, . . . (see for example [29] or [34]).

Moreover, very often, because of technical reasons or dynamicity, the set of channels available

varies from transmitter to transmitter. Therefore one has to consider the list version of L(p, q)-

labellings. A k-list assignment L of a graph is a function which assigns to each vertex v of

the graph a list L(v) of k prescribed integers. Given a graph G, the list λp,q-number, denoted

λl
p,q(G), is the smallest integer k such that, for every k-list assignment L of G, there exists an

L(p, q)-labelling f such that f(v) ∈ L(v) for every vertex v. Surprisingly, list L(p, q)-labellings

have received very little attention and appear only quite recently in the literature [25]. However,

some of the proofs for L(p, q)-labellings also work for list L(p, q)-labellings.

Note that L(1, 0)-labellings of G correspond to ordinary vertex colourings of G and L(1, 1)-

labellings of G to vertex colourings of the square of G: thus λ1,0(G) = χ(G), λl
1,0(G) = ch(G),

λ1,1(G) = χ(G2), and λl
1,1(G) = ch(G2).
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It is well known that for a graph G with clique number ω (the size of a maximum clique

in G) and maximum degree ∆ we have ω ≤ χ(G) ≤ ch(G) ≤ ∆ + 1. Similar easy inequalities

may be obtained for L(p, q)-labellings:

q ω(G2)− q + 1 ≤ λp,q(G) ≤ dλl
p,q(G) ≤ p∆(G2) + 1.

(Recall that we assume throughout that p ≥ q.) As ω(G2) ≥ ∆(G) + 1, the previous inequality

gives λp,q(G) ≥ q∆+ 1. However, a straightforward argument shows that in fact we must have

λp,q(G) ≥ q∆+ p− q + 1. In the same way, ∆(G2) ≤ (∆(G))2 so λl
p,q(G) ≤ p(∆(G))2 + 1. The

“many-passes” greedy algorithm (see [36]) gives the alternative bound

λl
p,q(G) ≤ q∆(G)(∆(G) − 1) + p∆(G) + 1 = q(∆(G))2 + (p− q)∆(G) + 1.

Because for many large-scale networks the transmitters are laid out on the surface of the

earth, L(p, q)-labellings of planar graphs are of particular interest. There are planar graphs for

which λp,q ≥ 3
2q∆ + c(p, q), where c(p, q) is a constant depending on p and q. We already saw

some of those examples in Figure 1. The graph Gk has maximum degree 2k and yet its square

contains a clique with 3k + 1 vertices (all the vertices except z). Labelling the vertices in the

clique already requires a span of at least q · 3k + 1 = 3
2q∆+ 1.

A first upper bound on λp,q(G), for planar graphs G and positive integers p ≥ q was proved

by Van den Heuvel and McGuinness [15]: λp,q(G) ≤ 2(2q − 1)∆ + 10p + 38q − 24. Molloy and

Salavatipour [38] improved this bound by showing the following.

Theorem 1.6 (Molloy and Salavatipour [38])

For positive integers p ≥ q, and a planar graph G with maximum degree ∆,

λp,q(G) ≤ q
⌈
5
3∆

⌉
+ 18p + 77q − 18.

Moreover, they described an O(n2) time algorithm for finding an L(p, q)-labelling with span at

most the bound in their theorem.

As a corollary to our main result Theorem 1.5 we get that, for any fixed p and every nice

family F of graphs, we have λl
p,1(G) ≤ (1 + o(1))32∆(G) for G ∈ F . Taking an L(⌈p/k⌉, ⌈q/k⌉)-

labelling and multiplying each label by k, for some positive integer k, we obtain an L(p, q)-

labelling. This gives the following corollary.

Corollary 1.7

Let F be a nice family of graphs and let p ≥ q be positive integers. Then for graphs G in F we

have λp,q(G) ≤ (1 + o(1))32q∆(G).

Note that the examples discussed earlier show that for each positive integer q the factor 3
2q is

optimal.
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2 Nice Families of Graphs

Recall that we call a family F of graphs nice if (a) it is closed under taking minors and (b) there is

some k for which K3,k is not in the family. In this section we prove a number of properties of nice

families, eventually showing that we obtain an equivalent definition if we replace condition (b)

by the following condition:

(c) there is a constant βF such that for any graph G ∈ F and any vertex set B ⊆ V (G), if

we let A be the set of vertices in V (G)\B which have at least three neighbours in B, then the

number of edges between A and B is at most βF |B|.

To prove this equivalence, we need the following result.

Theorem 2.1 (Mader [35])

For any graph H, there is a constant CH such that every H-minor free graph has average degree

at most CH .

In the proof of Theorem 2.1, Mader showed that CH ≤ c|V (H)| log |V (H)|, for some constant c.

This upper bound was later lowered independently by Kostochka [27] and Thomason [42] to

CH ≤ c′|V (H)|
√

log |V (H)|, for some constant c′.

Corollary 2.2

Any H-minor-free graph with n vertices has at most

(
⌊CH⌋

2

)
· n triangles.

Proof We prove the result by induction on n, the result holding trivially if n ≤ 2. Let G

be an H-minor-free graph with n vertices. By Theorem 2.1, its average degree is at most CH .

So G has a vertex v with degree at most ⌊CH⌋. The vertex v is in at most
(
⌊CH⌋

2

)
triangles. By

induction, G− v has at most
(
⌊CH⌋

2

)
· (n− 1) triangles. Hence G has at most

(
⌊CH⌋

2

)
·n triangles.

�

For an extension of this result see Lemma 2.1 of Norine et al. [39].

Theorem 2.3

A class F of graphs is nice if and only if it is minor-closed and satisfies condition (c).

Proof First suppose that (c) holds for F . By taking B the set of three vertices in K3,k from

one part of the bipartition, and A the remaining k vertices, we see that K3,k cannot be in F for

k > βF . It follows that every graph in F is K3,k-minor-free if k > βF .

Next suppose that F is a minor-closed family not containing K3,k for some k. We want to

prove that (c) holds for F . Note that by Theorem 2.1, the average degree of a K3,k-minor-free

graph is bounded by some constant Ck.

Let G ∈ F , let B be a set of vertices of G, and let A be the set of vertices in V \B having at

least three neighbours in B. Construct a graph H with vertex set B as follows: For each vertex

7



of A, one after another, if two of its neighbours in B are not yet adjacent in H, choose a pair of

those non-adjacent neighbours and add an edge between them.

Let A′ ⊆ A be the set of vertices for which an edge has been added to H, and set A′′ = A\A′.

Then H is K3,k-minor-free because G was, and hence |A′| = |E(H)| ≤ 1
2Ck|B|. Now for every

vertex a ∈ A′′, the neighbours of a in B form a clique in H (otherwise we would have used a

to link two of its neighbours in B). Moreover, k vertices of A′′ may not be complete to (that

is, adjacent to each vertex of) the same triangle of H, since otherwise G would contain a K3,k-

minor. Hence |A′′| is at most k − 1 times the number of triangles in H, which is at most(⌊CH⌋
2

)
|B| by Corollary 2.2. We find that |A′′| ≤ (k− 1)

(⌊CH⌋
2

)
|B|, and hence |A| = |A′|+ |A′′| ≤(

1
2Ck + (k − 1)

(⌊CH⌋
2

))
|B|.

Since the subgraph of G induced on A∪B isK3,k-minor-free, there are at most 1
2Ck(|A|+|B|)

edges between A and B; that is, at most 1
2Ck

(
1
2Ck +(k− 1)

(⌊CH⌋
2

)
+1

)
|B|. So we are done with

βF = 1
2Ck

(
1
2Ck + (k − 1)

(⌊CH⌋
2

)
+ 1

)
. �

3 Overview of the proof of Theorem 1.5

To prove Theorem 1.5, for a fixed nice family F , we need to show that for every ǫ > 0 there

is a ∆ǫ such that for every ∆ ≥ ∆ǫ we have: for every graph G ∈ F with maximum degree at

most ∆, given lists of size

ℓ∗ = ℓ∗(∆, ǫ) =
⌊(

3
2 + ǫ

)
∆
⌋

for each vertex v of G, we can find the desired colouring.

Given a graph G with vertex set V , and R ⊆ V , we write G−R for the graph obtained

from G by deleting the vertices in R (and any incident edges), and write G−v for G−{v}.

Similarly, we may write V \v for V \{v}.

We proceed by induction on the number of vertices of G. Our proof is a recursive algorithm.

In each iteration, we split off a set R of vertices of the graph which are easy to handle, recursively

colour G2−R (which we can do by the induction hypothesis), and then extend this colouring to

the vertices of R. In extending the colouring, we must ensure that no vertex v in R receives a

colour which is either used on a vertex in V \R which is adjacent to v in G2 or is too close to a

colour on a vertex in V \R which is adjacent to v in G. Thus, we modify the list L(v) of colours

available for v by deleting those which are forbidden because of such neighbours.

We note that (G−R)2 need not be equal to G2−R, as there may be non-adjacent vertices of

G−R with a common neighbour in R but no common neighbour in G−R. When choosing R, we

need to ensure that we can construct a graph G1 in F on V \R such that G2−R is a subgraph

of G2
1. We also need to ensure that the connections between R and V \R are limited, so that the

modified lists used when list colouring the induced subgraph G2[R] are still reasonably large.

Finally, we will want G2[R] to have a simple structure so that we can prove that we can list

colour it as desired.

We begin with a simple example of such a set R. We say a vertex v of G is removable if

it has at most ∆1/4 neighbours in G and at most two neighbours in G which have degree at

8



least ∆1/4. We note that if v is a (removable) vertex with at most one neighbour, then (G−v)2

is G2[V \v], while if v has exactly two neighbours x and y, then forming G1 from G−v by adding

an edge between x and y if they are not already adjacent, we have that G1 is in F and G2−v is

a subgraph of G2
1. On the other hand, if v is a removable vertex with at least three neighbours,

then it must have a neighbour w with degree at most ∆1/4. In this case, the graph G2 obtained

from G−v by adding an edge from w to every other neighbour of v in G is a graph with maximum

degree at most ∆ such that G2−v is a subgraph of G2
2. Furthermore, G2 ∈ F as it is obtained

from G by contracting the edge wv.

Thus, for any removable vertex v, we can recursively list colour G2−v using our algorithm.

If, in addition, v has at most ℓ∗−1−2∆1/2 neighbours in G2, then there will be a colour in L(v)

which appears on no vertex adjacent to v in G2 and is not within ∆1/4 of any colour assigned

to a neighbour of v in G. To complete the colouring we give v any such colour.

The above remarks show that no minimal counterexample to our theorem can contain a

removable vertex of low degree in G2. We are about to describe another, more complicated,

reduction we will use. It relies on the following easy result.

Lemma 3.1

If R is a set of removable vertices of G, then there is a graph G1 ∈ F with vertex set V \R and

maximum degree at most ∆ such that G2−R is a subgraph of G2
1.

Proof For each v ∈ R with at least three neighbours in V \R, choose one of these neighbours

with degree less than ∆1/4 onto which we will contract v. Add an edge between the two

neighbours of any vertex in R with exactly two neighbours in V \R (if they are not already

adjacent). The degree of a vertex x in the resultant graph G1 is at most max{∆1/2, dG(x)}.

�

For any multigraph H, we let H∗ be the graph obtained from H by subdividing each edge

exactly once. For each edge e of H, we let e∗ be the vertex of H∗ which we placed in the middle

of e and we let E∗ be the set of all such vertices. We call this set of vertices corresponding to

the edges of H the core of H∗.

A removable copy of H∗ is a subgraph of G isomorphic to H∗ such that the vertices of G

corresponding to the vertices of the core of H∗ are removable, and each vertex of H∗ corre-

sponding to a vertex of H (i.e. not in the core) has degree at least ∆1/4 (in G). It follows that

if v∗, w∗, e∗ are vertices of G corresponding to the vertices v,w and edge e = vw of H, then e∗

and all its neighbours other than v∗ and w∗ have degree at most ∆1/4.

Note that the subgraph J of G2 induced by the core of some copy of H∗ in G contains a

subgraph isomorphic to L(H), the line graph of H. So the list chromatic number of J is at

least the list chromatic number of L(H). If the copy of H∗ is removable, then removing the

edges of this copy of L(H) from J yields a graph J ′ which has as vertex set the core of H∗, and

has maximum degree at most ∆1/2. (To see this, note that if v∗, w∗, e∗ are as above, and we

denote by Ñ(e∗) the set of neighbours in G of e∗ other than v∗ and w∗, then |Ñ(e∗)| ≤ ∆1/4,

9



each vertex in Ñ(e∗) has degree at most ∆1/4 in G, and each neighbour in J ′ of e∗ is in Ñ(e∗)

or is a neighbour in G of a vertex in Ñ(e∗).) Thus, the key to list colouring J will be to list

colour L(H). Fortunately, list colouring line graphs is much easier than list colouring arbitrary

graphs (see e.g. [19, 21, 37]). In particular, using a sophisticated argument due to Kahn [19], we

can prove the following lemma which specifies certain sets of removable vertices which we can

use to perform reductions.

Given a multigraph H and sets U and W of vertices in H, we let eH(U,W ) denote the

number of edges between U and W , with any edge between two vertices in U ∩ W counting

twice. If the graph H is clear from the context, we may write just e(U,W ).

Lemma 3.2

For any ǫ > 0, there exists ∆ǫ such that the following holds for every graph G with ∆ = ∆(G) ≥

∆ǫ. Suppose R is the core of a removable copy of H∗ in G, for some multigraph H, such that

for any set X of vertices of H and corresponding set X∗ of vertices of the copy of H∗,

∑

x∈X∗

dG−R(x) ≤ eH(X,V (H)\X) + 1
30ǫ|X|∆.

Then, given lists of size ℓ∗ for every vertex, any acceptable colouring on G2−R can be extended

to an acceptable colouring of G2.

The following lemma shows that we will indeed be able to find a removable set of vertices which

we can use to perform a reduction.

Lemma 3.3

For any ǫ > 0, there exists ∆ǫ such that every graph G ∈ F with maximum degree at most

∆ ≥ ∆ǫ contains at least one of the following:

(a) a removable vertex v which has degree less than 3
2∆+∆1/2 in G2, or

(b) a removable copy of H∗ with core R, for some multigraph H which contains an edge and

is such that for any set X of vertices of H and corresponding set X∗ of vertices of H,

∑

x∈X∗

dG−R(x) ≤ eH(X,V (H)\X) + |X|∆9/10.

Combining Lemmas 3.1, 3.2, and 3.3 and our observations on removing a removable vertex,

yields Theorem 1.5 (with o(1) replaced by ǫ), provided that we choose ∆ large enough so that

3∆1/2 + 2 ≤ ǫ∆ (since then 3
2∆+∆1/2 < ℓ∗ − 1− 2∆1/2) and ∆9/10 ≤ 1

30ǫ∆.

Thus, we need only prove the last two of these lemmas. The proof of Lemma 3.3 is given

in the next section. The proof of Lemma 3.2 is much more complicated and forms the bulk of

the paper. We follow the approach developed by Kahn [19] for his proof that the list chromatic

index of a multigraph is asymptotically equal to its fractional chromatic number. We need to

modify the proof so it can handle our situation in which we have a graph which is slightly more

than a line graph and in which we have lists with fewer colours than Kahn permitted. We defer

any further discussion to Section 5.
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4 Proof of Lemma 3.3: Finding a Reduction

In this section we prove Lemma 3.3. Throughout the section we assume that F is a nice family

of graphs. Since there is a k such that no graph in F contains K3,k as a minor, Theorem 2.1

implies every graph in F has average degree at most CF for some constant CF .

Let G be a graph in F with vertex set V and maximum degree at most ∆, and let n = |V |.

We let B be the set of vertices of degree exceeding ∆1/4. Since the average degree of G is at

most CF , we have |B| <
CF n

∆1/4
. Hence, another application of Theorem 2.3 implies that G

contains a set R0 of at least n−O
( n

∆1/4

)
removable vertices. We note that if a vertex in R0 is

adjacent to a vertex in B with degree less than 1
2∆, or is adjacent to at most one vertex in B,

then its total degree in the square G2 is less than 3
2∆+∆1/2 and conclusion (a) of Lemma 3.3

holds. So, we can assume this is not the case.

We let V0 be the set of vertices of G which have degree at least 1
2∆. Note that V0 ⊆ B ⊆

V \R0. Since every vertex in R0 has exactly two neighbours in V0, the sum of the degrees of the

vertices in V0 is at least 2|R0|. This gives |V0| ≥
2|R0|

∆
≥

2n

∆
−O

( n

∆5/4

)
.

We let S0 be the set of vertices in V0 which are adjacent to more than ∆7/8 vertices of V \R0.

Since every subgraph of G has average degree at most CF , the total number of edges within

V \R0 is O
( n

∆1/4

)
. This implies that |S0| = O

( n

∆9/8

)
. We set V1 = V0 \S0 and note that

|V1| ≥
2n

∆
−O

( n

∆9/8

)
. We can conclude that

|V1| ≥
n

∆
for large enough ∆. (1)

We let R1 be the set of vertices in R0 adjacent to (exactly) two vertices in V1. So every

vertex in R0\R1 has one or two neighbours in S0. By our bound on the size of S0, this means

|R0\R1| ≤ |S0|∆ = O
( n

∆1/8

)
and hence |R1| = n−O

( n

∆1/8

)
. By our choice of S0 we have that

e(V1, V \R0) ≤ ∆7/8|V1|. (Throughout this proof, e(U,W ) means eG(U,W ).) Since every vertex

in R0\R1 has at most one neighbour in V1, we have e(V1, R0\R1) ≤ |R0\R1| = O
( n

∆1/8

)
≤

O(∆7/8)|V1|, where the final inequality uses (1). We obtain

e(V1, V \R1) = e(V1, V \R0) + e(V1, R0\R1) ≤ O(∆7/8)|V1|. (2)

We let F1 be the bipartite graph formed by the edges between the vertices of R1 and the vertices

of V1. We remind the reader that each vertex of R1 has degree two in this graph. We let H1 be

the multigraph with vertex set V1 from which F1 is obtained by subdividing each edge exactly

once (so F1 is a copy of H∗
1 ).

We check if F1 is a removable copy of H∗
1 as in (b). The only reason that it might not be is

that there is some subset Z1 ⊆ V1 of vertices of H1 such that:

e(Z1, V \R1) =
∑

v∈Z1

dG−R1(v) > eH1(Z1, V1\Z1) + |Z1|∆
9/10.
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In this case, we set V2 = V1\Z1, let R2 be the set of vertices in R1 with no neighbours in Z1,

let F2 be the bipartite subgraph of G formed by the edges between the vertices of R2 and the

vertices of V2, and let H2 be the multigraph on V2 from which F2 is obtained by subdividing

each edge exactly once.

Now we check if F2 is empty or a removable copy of H∗
2 as in (b). If not, we can proceed in

the same fashion, deleting a set Z2 of vertices from V2 and a set of vertices from R2, to obtain

V3, R3 and a new bipartite graph F3 with parts V3 and R3 and corresponding multigraph H3. We

continue this process until it stops. We have constructed new sets V1, R1, V2, R2, . . . , . . . Vi, Ri

such that letting Zj = Rj −Rj+1 for j = 1, . . . , i− 1 we have:

e(Zj , V \Rj) =
∑

v∈Zj

dG−Rj
(v) > eHj

(Zj , Vj\Zj) + |Zj |∆
9/10. (3)

We must show that Ri 6= ∅, since then the corresponding multigraph Hi has at least one

edge and we are done. To this end, we note that for each j = 1, . . . , i− 1

e(Vj+1, V \Rj+1) = e(Vj\Zj , V \Rj+1) = e(Vj , V \Rj)− e(Zj , V \Rj) + e(Vj+1, Rj\Rj+1). (4)

Furthermore, for every vertex in Rj \Rj+1 adjacent to a vertex in Vj+1, there also is a vertex

in Zj it is adjacent to. Hence e(Vj+1, Rj \Rj+1) is precisely the number of edges of Hj with

exactly one endpoint in Zj: e(Vj+1, Rj\Rj+1) = eHj
(Zj , Vj\Zj). Now (3) and (4) give:

e(Vj , V \Rj) > e(Vj+1, V \Rj+1) + |Zj |∆
9/10.

Let Z ′ =
⋃i−1

j=1Zj = V1 \Vi. Summing the inequality above over j = 1, . . . , i − 1 yields:

e(V1, V \R1) ≥ e(Vi, V \Ri) + |Z ′|∆9/10. Using (2), this implies

|Z ′| ≤
e(V1, V \R1)− e(Vi, V \Ri)

∆9/10
≤

O(∆7/8) |V1|

∆9/10
= |V1|O(∆−1/40).

Hence |Vi| ≥ |V1|(1−O(∆−1/40)), which also gives

|V1| ≤ (1 +O(∆−1/40))|Vi|. (5)

Since Vi ⊆ V1, it follows from (2) and (5) that:

e(Vi, V \R0) ≤ e(V1, V \R1) ≤ O(∆7/8)|V1| ≤ O(∆7/8)|Vi|.

Finally, for each edge between Vi and R1\Ri, we have an edge between R1\Ri and Z ′ as well.

We find

e(Vi, R1\Ri) ≤ |Z ′|∆ ≤ |V1|O(∆39/40) ≤ O(∆39/40)|Vi|.

Combining these estimates we obtain

e(Vi, V \Ri) = e(Vi, V \R0) + e(Vi, R0\R1) + e(Vi, R1\Ri) ≤ O(∆39/40)|Vi|.

But Vi 6= ∅, and each vertex in Vi has degree at least 1
2∆. This means that e(Vi, Ri) > 0 for

large enough ∆. In particular, it follows that Ri is non-empty. Thus, Hi contains an edge. We

have shown that (b) holds.

This completes the proof of Lemma 3.3. �
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5 Proof of Lemma 3.2: Reducing using Line Graphs

It remains to prove Lemma 3.2, which we do in this section. A removable core satisfying

the hypotheses of that lemma corresponds to the edge set of a multigraph H with maximum

degree ∆, with each vertex of the core corresponding to a distinct edge. Having coloured G2−R

for such a removable core R, colouring the induced subgraph G2[R] translates to finding a list

colouring of the line graph of H (where an edge inherits the list assigned to the corresponding

vertex of H) so that certain side conditions are satisfied. Firstly, a vertex of R corresponding

to an edge e = vw of G may not use (a) a colour assigned to one of its neighbours in the square

of G lying in V − R, (b) a colour within ∆1/4 of the colours assigned to its neighbours in G

lying in V \R. Secondly, two vertices of R cannot (c) use the same colour if they have a common

neighbour in G which does not correspond to a vertex of H, or (d) use colours within ∆1/4 if

they are adjacent in G.

To handle side constraints (a) and (b) we simply delete the forbidden colours from the list

for e. Now, because the vertex corresponding to e is removable, it has at most ∆1/4 neighbours

which are not v or w, and each such neighbour has degree at most ∆1/4. So even after these

deletions, the list for e will have at least ℓ∗e elements, where

ℓ∗e =
⌈(

3
2 + ǫ

)
∆− (∆ − dH(v)) − (∆− dH(w)) − 3∆1/2

⌉
. (6)

To handle side constraints (c) and (d) we use two auxiliary graphs J1 and J2. The remov-

ability of the vertices of R ensures that these graphs have bounded degree (in terms of ∆). Thus,

as we show later, if G is ∆-regular then Lemma 3.2 follows directly from the following result.

Lemma 5.1

For every 0 < ǫ < 1
4 there is a ∆ǫ such that the following holds for all ∆ ≥ ∆ǫ. Let H be a

multigraph with vertex set V and maximum degree at most ∆. For every edge e, let L(e) be a

list of colours. Let J1 be a graph with vertex set E(H) and maximum degree at most ∆1/2, and

let J2 be a graph with vertex set E(H) and maximum degree at most ∆1/4. Suppose that the

following two conditions are satisfied.

(1) For every edge e: |L(e)| = ℓ∗e.

(2) For every set X of an odd number of vertices of H:

∑

v∈X

(∆− d(v)) − e(X,V \X) ≤ 1
30ǫ|X|∆.

Then we can find an acceptable edge-colouring of H such that any pair of edges of H joined by

an edge of J1 receive different colours, and any pair of edges of H joined by an edge of J2 receive

colours that differ by at least ∆1/4.

Remark 5.2 Condition (2) of Lemma 5.1 applied to the set X = {v} implies that for each

vertex v, d(v) ≥
(
1
2 − 1

60ǫ
)
∆. Hence, for each edge e we have ℓ∗e ≥ 1

2∆ + 29
30ǫ∆ − 3∆1/2 > 1

2∆

if ∆ is sufficiently large.
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As we show at the end of this section, a relatively simple trick allows us to reduce to the case

when G is regular. So the bulk of the work in the section is in proving Lemma 5.1: we complete

this task at the end of Subsection 5.4.

The way we prove Lemma 5.1 is by exploiting some beautiful work of Kahn, developed to

show that, letting χ′
f (H) be the fractional chromatic index of H, we have that the list chromatic

index of H is (1 + o(1))χ′
f (H). We will do two things: (i) explain why Lemma 5.1 follows from

Kahn’s proof in the special case when J1 and J2 are empty (that is, J1 and J2 have no edges,

and so are irrelevant), and (ii) discuss the modifications needed to Kahn’s proof to deal with J1
and J2.

Kahn’s proof analyses an iterative procedure which in each iteration, for each colour γ,

randomly extends a matching in the spanning subgraph Hγ of H whose edges are those on

which γ is available, to progressively colour more and more of the edges of H. The first step

of his proof is to show that if each list has at least (1 + o(1))χ′
f (H) elements, then there is

a probability distribution on these matchings which ensures that: (a) for every edge e and

colour γ in L(e), the probability that e is in the matching of colour γ is |L(e)|−1, and (b) other

desirable properties hold. The second step is to show that for any family of lists for which there

are probability distributions satisfying (a) and (b), this iterative procedure yields a colouring

of E(H) where each edge gets a colour from its own list.

It is natural to state Kahn’s result precisely, before discussing our modification of it. Having

done so, before delving into the details of Kahn’s proof, we will show that for lists satisfying

the conditions of Lemma 5.1 there are probability distributions on the matchings satisfying (a)

and (b) above. We can then apply Kahn’s work, as a black box, to prove Lemma 5.1 in the

special case when J1 and J2 are empty.

We then turn to strengthening the result so that it can deal with J1 and J2. This has

two parts. First we perform some straightforward preprocessing which allows us to reserve some

colours which can be used to recolour vertices involved in conflicts caused by J1 and J2. Then we

impose additional constraints which provide, for each iteration, an upper bound on the number

of edges incident to each vertex which are involved in such conflicts because of a colour they are

assigned in that iteration. Here we must get into the guts of Kahn’s proof sufficiently, so as to

be able to explain the (relatively straightforward) additions to it which allow us to do so. Then

in a postprocessing phase, we recolour to eliminate such conflicts using the colours we reserved

in the first phase.

We will actually discuss this preprocessing and postprocessing first. We do this in part

because all of the rest of the discussion involves Kahn’s proof, while the pre/postprocessing

does not, so it is natural to hive it off; and in part because our discussion of the preprocessing

introduces the Lovász Local Lemma, an important tool in Kahn’s proof, in a simple setting.

5.1 Before and After

Our preprocessing consists of applying the following lemma (which we prove in this subsection).
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Lemma 5.3

Suppose we are given a multigraph H with maximum degree ∆ sufficiently large, satisfying the

conditions of Lemma 5.1. Then we can find, for every list L(e), two disjoint sublists L′(e)

and R(e) such that:

(a) no colour in R(e) appears in L′(f) for any edge f incident to e in H;

(b) |L′(e)| ≥ |L(e)| − 2
3ǫ∆; and

(c) |R(e)| ≥ ∆9/10.

We then apply the following variant (to be proved later) of Lemma 5.1 to the family L′(e) of

lists, using 1
2ǫ in place of ǫ. In this variant, condition (2) is weakened by replacing 30 by 10, and

the conclusions are weakened by allowing some of the graph to remain uncoloured. We can apply

this amended lemma because of our bound on |L(e) − L′(e)| and the fact that conditions (1)

and (2) of Lemma 5.1 hold before the preprocessing.

Lemma 5.4

For every 0 < ǫ < 1
4 there is a ∆ǫ such that the following holds for all ∆ ≥ ∆ǫ. Let H be a

multigraph with vertex set V and maximum degree at most ∆. For every edge e we are given a

list L(e) of acceptable colours. Additionally, J1 is a graph with vertex set E(H) and maximum

degree at most ∆1/2 and J2 is a graph with vertex set E(H) and maximum degree at most ∆1/4.

Suppose that the following two conditions are satisfied.

(1) For every edge e: |L(e)| = ℓ∗e.

(2) For every set X of an odd number of vertices of H:

∑

v∈X

(∆− d(v)) − e(X,V \X) ≤ 1
10ǫ|X|∆.

Then we can find an acceptable edge-colouring of H such that by uncolouring a set of edges of H,

including at most 1
3∆

9/10 edges incident to any vertex v of H, we obtain a partial colouring such

that any two coloured edges joined by an edge of J1 receive different colours, and any two coloured

edges joined by an edge of J2 receive colours that differ by at least ∆1/4.

Remark 5.5 Much as in Remark 5.2, condition (2) in Lemma 5.4 gives d(v) ≥
(
1
2 − 1

20ǫ
)
∆,

and so ℓ∗e >
1
2∆ for each edge e, for sufficiently large ∆.

To complete the proof of Lemma 5.1 (assuming Lemmas 5.3 and 5.4), we uncolour edges as

specified in Lemma 5.4, and then recolour each such edge e using a colour from its reserve

list R(e). By conclusion (a) of Lemma 5.3, this colour cannot conflict with the colour of any

edge incident to e which was not uncoloured. So, in colouring e we must avoid any colour

from R(e) assigned to an edge incident to it which we have uncoloured (and re-coloured), avoid

any colour assigned to a neighbour in J1, and avoid any colour within ∆1/4 of neighbours in J2.

But in total there are at most 3∆1/2 + 2
3∆

9/10 colours to avoid, so if ∆ is large enough we can

carry out the recolouring greedily.
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So, to prove Lemma 5.1 it is enough to prove Lemmas 5.3 and 5.4. In the remainder of

this section we prove Lemma 5.3; the proof of Lemma 5.4 will not be complete until the end of

Section 5.4.

The key to the proof Lemma 5.3 is the following general lemma.

Lemma 5.6 (Erdős and Lovász [11]) (Local Lemma)

Suppose that B is a set of (bad) events in a probability space Ω. Suppose further that there are p

and d such that:

(1) for every event B in B, there is a subset SB of B of size at most d, such that the conditional

probability of B, given any conjunction of occurrences or non-occurrences of events in

B\SB, is at most p, and

(2) epd < 1.

Then with positive probability, none of the events in B occur.

In our preprocessing step, we apply the Local Lemma to the (product) probability space obtained

by, for each colour c and vertex v, independently assigning c to a list R(v) with probability 1
6ǫ.

For an edge e with endpoints u and v, we set R(e) = L(e) ∩ R(u) ∩ R(v) and L′(e) =

L(e) − (R(u) ∪ R(v)). Note that the sublists R(e) and L′(e) defined in this way must satisfy

condition (a) of Lemma 5.3. We shall now prove that, with positive probability, conditions (b)

and (c) are also satisfied for all edges e. Let Be be the event that condition (b) is not satisfied

for the edge e, i.e. |L(e)\L′(e)| = |L(e) ∩ (R(u) ∪ R(v))| > 2
3ǫ∆. Let Ce be the event that

|R(e)| < 1
100ǫ

2∆ for the edge e. For sufficiently large ∆, 1
100ǫ

2∆ ≥ ∆9/10, so if Ce does not hold

then condition (c) is satisfied for edge e.

To conclude the proof of Lemma 5.3, we apply the Local Lemma to show that with positive

probability none of the bad events Be, Ce occurs. Now Be and Ce are determined completely

by the random assignments made at the endpoints of e, so letting SBe = SCe = {Bf , Cf |

f = e or f is incident to e}, we see that condition (1) of the Local Lemma holds with d = 4∆−2

and p the maximum of the unconditional probability of Be and the unconditional probability

of Ce.

Now, for any edge e with endpoints u and v, the number of colours in R(e) = L(e)∩R(u)∩

R(v) is the sum of |L(e)| independent 0-1 variables, each of which is 1 with probability 1
36ǫ

2.

So, the expected value of this random variable is 1
36ǫ

2ℓ∗e; and by Remark 5.5, for large ∆, this is

at least 1
72ǫ

2∆. Standard concentration inequalities (e.g. the Chernoff bounds) tell us that the

probability that this variable differs from its expected value by some t > 0 which is less than its

expected value is 2−Ω(t2/∆). So, the probability of Ce is 2−Ω(∆).

In the same vein, for any edge e with endpoints u and v, the number of colours in L(e) ∩

(R(u)∪R(v)) is the sum of |L(e)| independent 0-1 variables, each of which is 1 with probability

at most 2
6ǫ. We obtain that the expected value of this random variable is at most 1

3ǫℓ
∗
e, which

is at most 1
3ǫ
(
3
2 + ǫ

)
∆ < 7

12ǫ∆. Again applying standard concentration inequalities, we see that

the probability of Be is 2−Ω(∆).
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Thus for large ∆ the hypotheses of the Local Lemma hold with p = 1
/
3d, and we have

completed the proof of Lemma 5.3. �

5.2 Kahn’s Result as a Black Box

Kahn presents an algorithm in [19] which shows that the list chromatic index of a multigraph

exceeds its fractional chromatic index by o(∆). Actually, the algorithm implicitly contains a

subroutine which does more than this, providing a proof (which we shall describe later, see

Subsection 5.3.2) of the following result.

Theorem 5.7 (Kahn [19])

For every δ with 0 < δ < 1 and every C > 0, there exists a ∆δ,C such that the following holds

for all ∆ ≥ ∆δ,C . Let H be a multigraph with maximum degree at most ∆, and with a list L(e)

of acceptable colours for every edge e. Suppose that the following conditions are satisfied:

(1) For every vertex v and edge e incident to v, |L(e)| ≥ d(v)(1 + δ).

(2) For every odd set X of vertices of H, the sum of ze =
1 + δ

|L(e)|
over the edges joining vertices

of X is at most 1
2 (|X| − 1).

(3) For every edge e: |L(e)| ≥ ∆
/
C.

Then we can find an acceptable edge-colouring of H.

This theorem is not explicitly stated in Kahn’s paper, although it follows in just a few pages

from the proof of [19, Lemma 3.1], which forms the bulk of his paper. We pull the result out of

his discussion, after showing that Theorem 5.7 implies the special case of Lemma 5.4 when J1
and J2 are empty (and we have just the simple conclusion “Then we can find an acceptable

edge-colouring of H.”).

To prove this implication, we need only show that for 0 < ǫ < 1
4 and sufficiently large ∆,

any family of lists satisfying conditions (1) and (2) of Lemma 5.4 must satisfy conditions (1)

and (2) of Theorem 5.7 for δ = 1
2ǫ, since we noted in Remark 5.5 that, for sufficiently large ∆,

ℓ∗e >
1
2∆ for each edge e, so condition (3) holds with C = 2. This is the content of the following

lemma.

Lemma 5.8

Let 0 < ǫ < 1
4 . Then there is a ∆ǫ such that for every ∆ ≥ ∆ǫ the following holds. Let H be a

multigraph with vertex set V and maximum degree at most ∆, and for every edge e let L(e) be

a list of acceptable colours. Suppose the following conditions are satisfied:

(1) For every edge e: |L(e)| ≥ ℓ∗e.

(2) For every set X of an odd number of vertices of H:

∑

v∈X

(∆− d(v)) − e(X,V \X) ≤ 1
10ǫ|X|∆.
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Then, the following properties hold:

(a) For every vertex v and edge e incident to v: |L(e)| ≥
(
1 + 1

2ǫ
)
d(v).

(b) For every odd set X of vertices of H: the sum of ze =
1 + 1

2ǫ

|L(e)|
over the edges joining

vertices of X is at most 1
2(|X| − 1).

Proof Whenever an inequality requires ∆ to be large enough, we use “≥∗”.

To begin, we note that condition (2) of the lemma implies that every vertex w of H has

degree at least
(
1
2 −

1
20ǫ

)
∆. Hence, for any edge e = vw of H, condition (1) of the lemma implies

that |L(e)| ≥ d(v) + 19
20ǫ∆− 3∆1/2 ≥∗ d(v) +

3
4ǫ∆ ≥

(
1 + 3

4ǫ
)
d(v). Thus property (a) holds.

Now we check property (b) for the case |X| = 3. Consider a subgraph F of H with vertex

set X consisting of three distinct vertices x, y, z, and with α∆ > 0 edges. Note that α ≤ 3
2 ,

since 2|E(F )| ≤ d(x)+d(y)+d(z) ≤ 3∆ (where d( · ) refers to the degree in the whole graph H).

Applying the second condition gives

3∆− d(x)− d(y)− d(z) ≤ e(X,V \X) + 3
10ǫ∆.

Since we also have 3∆ − d(x) − d(y)− d(z) = 3∆− 2α∆ − e(X,V \X), we obtain

3∆− d(x)− d(y)− d(z) ≤
(
1
2

(
3 + 3

10ǫ
)
− α

)
∆,

which we can rewrite as

3
2∆ ≥ 3∆ − d(x)− d(y)− d(z)− 3

20ǫ∆+ α∆.

Substituting this into the first condition of the lemma yields that for any edge e = uv in F :

|L(e)| ≥ ∆+ (d(u) + d(v) − d(x)− d(y)− d(z)) +
(
α+ 17

20ǫ
)
∆− 3∆1/2.

Since ∆− d(w) is non-negative for any w in X, and {u, v} ⊂ {x, y, z}, this yields

|L(e)| ≥
(
α+ 17

20ǫ
)
∆− 3∆1/2 ≥∗

(
α+ 3

4ǫ
)
∆.

Since α ≤ 3
2 , this gives that for any edge e in F , ze ≤

1 + 1
2ǫ(

α+ 3
4ǫ
)
∆

≤
1

α∆
.

We can conclude that
∑

e∈E(F ) ze ≤ (α∆) ·
1

α∆
= 1. This shows that property (b) holds for

all sets X of three vertices.

Given a multigraph G and a vertex v, we write EG,v, or simply Ev, for the set of edges

incident to v. Next consider any subgraph F of H with vertex set X, where |X| ≥ 5 is odd.

Throughout the rest of the proof, for each vertex v of F we write Ev for EF,v. We partition the

vertices of F into a set B of vertices with degree at least 3
4∆ and a set S of vertices with degree

less than 3
4∆ (where degrees are in H).

Case 1: There is a vertex in B with degree at most 7
8∆, or a vertex in S with degree at most 5

8∆.
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For any edge e = vw with w ∈ B, applying the first condition of the lemma, we obtain

|L(e)| ≥ d(v) + 1
4∆+ ǫ∆− 3∆1/2 ≥∗

(
1 + 1

2ǫ
)
5
4d(v). Thus, ze ≤

4

5d(v)
. Since (a) holds, we have

that ze ≤ 1
/
d(v) for all edges e incident to v, and hence for each vertex v ∈ B:

∑

e∈Ev

ze ≤
4

5d(v)
|Ev |+

1

5d(v)
e({v}, S);

while for each vertex v in S:

∑

e∈Ev

ze ≤
1

d(v)
|Ev | −

1

5d(v)
e({v}, B).

We estimate, using that the vertices in S have smaller degree than the vertices in B,

2
∑

e∈E(F )

ze =
∑

v∈X

∑

e∈Ev

ze

≤
∑

v∈B

4

5d(v)
|Ev|+

∑

v∈S

1

d(v)
|Ev|+

∑

e∈E(F )
e=vw, v∈B, w∈S

( 1

5d(v)
−

1

5d(w)

)

≤
∑

v∈B

4

5d(v)
|Ev|+

∑

v∈S

1

d(v)
|Ev|

≤ 4
5 |B|+ |S| − 4

5e(X,V \X)
1

∆
.

Also, applying the second condition of the lemma and the assumption for this Case 1, we see

that

e(X,V \X) ≥ 1
4∆|S|+ 1

8∆− 1
10ǫ|X|∆.

Combining the two estimates, we obtain

2
∑

e∈E(F )

ze ≤ 4
5 |B|+ 4

5 |S| −
1
10 + 2

25ǫ|X| = |X|
(
4
5 + 2

25ǫ
)
− 1

10 .

Since ǫ ≤ 1
4 and |X| ≥ 5, this yields that 2

∑
e∈E(F )

ze ≤ |X| − 9
50 |X| − 1

10 ≤ |X| − 1, as required

for property (b).

Case 2: Every vertex in B has degree at least 7
8∆ and every vertex in S has degree at least 5

8∆.

Applying the first condition of the lemma as in Case 1, we see that for an edge e with

endvertices v and w, we have |L(e)| ≥ d(v)+ 1
8∆+ ǫ∆− 3∆1/2 ≥∗

(
1+ 1

2ǫ
)
· 98d(v), and if v ∈ B,

then we get |L(e)| ≥ d(v) + 3
8∆+ ǫ∆− 3∆1/2 ≥∗

(
1+ 1

2ǫ
)
· 118 d(v). So, for each vertex v ∈ B we

have ∑

e∈Ev

ze ≤
8

11d(v)
|Ev |+

16

99d(v)
e({v}, S);
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while for each vertex v in S we can write
∑

e∈Ev

ze ≤
8

9d(v)
|Ev | −

16

99d(v)
e({v}, B).

Following the same method as in Case 1, this leads to

2
∑

e∈E(F )

ze =
∑

v∈X

∑

e∈Ev

ze ≤
∑

v∈B

8

11d(v)
|Ev|+

∑

v∈S

8

9d(v)
|Ev|

≤ 8
11 |B|+ 8

9 |S| −
8
11e(X,V \X)

1

∆
.

Also, applying the second condition of the lemma, we see that

e(X,V \X) ≥ 1
4∆|S| − 1

10ǫ|X|∆.

Since 8
9 − 2

11 < 8
11 , we obtain

2
∑

e∈E(F )

ze ≤ |X|
(

8
11 + 8

110ǫ
)
.

Since ǫ < 1 and |X| ≥ 5, this yields that 2
∑

e∈E(F )

ze ≤
4
5 |X| ≤ |X| − 1, as required. �

5.3 Opening the Lid

In this section, we discuss how Theorem 5.7 is implicitly proved in Kahn’s paper. First however,

we need to introduce the special type of probability distributions he considers.

5.3.1 Hard-core Probability Distributions on Matchings

For a probability distribution p, defined on the matchings of a multigraph H, we let xp(e) be

the probability that e is in a matching chosen according to p. We call the value of xp(e) the

marginal of p at e. The vector xp = (xp(e)) indexed by the edges e is called the marginal of p.

We are actually interested in using special types of probability distributions on the matchings

of H. A probability distribution p on the matchings of H is hard-core if it is obtained by

associating a non-negative real λp(e) to each edge e of H so that the probability that we pick a

matching M is proportional to
∏

e∈M λp(e). I.e. setting λp(M) =
∏

e∈M λp(e) and letting M(H)

be the set of matchings of H, we have

p(M) =
λp(M)∑

N∈M(H)

λp(N)
.

We call the values λp(e) the activities of p.

We want to characterise for which families of lists, a multigraph H with maximum degree

at most ∆ has a hard-core probability distribution p on its matchings such that we have (i)

xp(e) = |L(e)|−1 for each edge e, and (ii) for some K > 0, λp(e) ≤ K
/
∆ for each edge e.
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Finding an arbitrary probability distribution on the matchings of H with marginals x is

equivalent to expressing x as a convex combination of incidence vectors of matchings of H. So,

we can use a seminal result due to Edmonds [10] to understand for which x this is possible.

The matching polytope MP(H) is the set of non-negative vectors x indexed by the edges

of H which are convex combinations of incidence vectors of matchings.

Theorem 5.9 (Edmonds [10]) (Characterisation of the Matching Polytope)

For a multigraph H, a non-negative vector x = (xe : e ∈ E(H)) is in MP(H) if and only if

(1) for every vertex v of H:
∑

e∈Ev

xe ≤ 1, and

(2) for every set X of vertices of H with |X| ≥ 3 and odd:
∑

e∈E(X)

xe ≤
1
2 (|X| − 1).

Remark 5.10 It is easy to see that conditions (1) and (2) are necessary as they are satisfied

by all the incidence vectors of matchings and hence by all their convex combinations. It is the

fact that they are sufficient which makes the theorem so valuable.

It turns out that we can choose a hard-core distribution with marginals x provided all of the

above inequalities are strict.

Lemma 5.11 (Lee [31]; Rabinovitch, Sinclair and Widgerson [40])

For a multigraph H, there is a hard-core distribution with marginals a given non-negative vector

x = (xe : e ∈ E(H)) if and only if

(a) for every vertex v of H:
∑

e∈Ev

xe < 1, and

(b) for every set X of vertices of H with |X| ≥ 3 and odd:
∑

e∈E(X)

xe <
1
2 (|X| − 1).

In order to ensure that the λp are bounded, it turns out that we just have to bound our distance

from the boundary of the Matching Polytope.

Lemma 5.12 (Kahn and Kayll [20])

For all δ with 0 < δ < 1, there is a β such that, for every multigraph H, if p is a hard-core

distribution whose marginals are in (1− δ)MP(H), then

(a) for every edge e of H: λp(e) < βxp(e), and

(b) for every vertex v of H:
∑

e∈Ev

λp(e) < β.

The material presented in this subsection is discussed in fuller detail in [37, Chapter 22].
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5.3.2 The Proof of Theorem 5.7

As we are about to show, we can prove Theorem 5.7 by combining the results of the last section

with the following result, which is also implicit in [19], but much easier to pull out of it. Recall

that for a multigraph H with a list L(e) of acceptable colours for every edge e, for each colour γ,

we let Hγ be the spanning subgraph of H with edges those e such that γ ∈ L(e).

Theorem 5.13 (Kahn [19])

For every δ with 0 < δ < 1 and every K > 0, there exists a ∆δ,K such that the following holds

for all ∆ ≥ ∆δ,K. Let H be a multigraph with maximum degree at most ∆, and with a list L(e)

of acceptable colours for every edge e.

Suppose that for every colour γ there exists a hard-core distribution pγ on the matchings

of Hγ, with corresponding marginal xpγ on the edges, satisfying the following conditions:

(1) For every edge e:
∑

γ∈L(e)

xpγ(e) = 1.

(2) For every edge e and colour γ: λpγ (e) ≤ K
/
∆.

Then we can find an acceptable edge-colouring of H.

Proof of Theorem 5.7, assuming Theorem 5.13 Consider a multigraph H and family of

lists satisfying the conditions of Theorem 5.7. For each colour γ consider the vector xpγ indexed

by the edges of Hγ , where x
pγ
e = |L(e)|−1. Then condition (1) of Theorem 5.13 holds. Condi-

tions (1) and (2) of Theorem 5.7, combined with Edmonds’s characterisation of the matching

polytope, tell us that xpγ is in (1 − δ)MP(Hγ). Now let β be as in Lemma 5.12. Then there

is a hard-core distribution on Hγ with marginals xpγ such that, for every edge e and colour γ,

we have λpγ(e) ≤ βxpγ (e). Thus, setting K = βC, by condition (3) of Theorem 5.7, for every

edge e and colour γ, we have λpγ(e) ≤ K
/
∆. Hence condition (2) of Theorem 5.13 holds, and

we can apply that result to complete the proof. �

The proof of Kahn’s main theorem, [19, Theorem 1.1], demonstrates that we can obtain an ac-

ceptable edge-colouring for a given family of lists on the edges of a multigraph H with maximum

degree at most ∆, by first showing that there are hard-core distributions with marginals |L(e)|−1

in each Hγ which satisfy the hypotheses of [19, Lemma 3.1] (this is done in the second paragraph

of [19, page 127]), and then iteratively applying this lemma to reach a situation where we can

finish off greedily.

To prove Theorem 5.13 following exactly the same scheme, we need simply ensure that hard-

core distributions satisfying the hypotheses of [19, Lemma 3.1] with marginals |L(e)|−1 at e exist

for our family of lists. But the hypotheses of [19, Lemma 3.1] are precisely that conditions (1)

and (2) of Theorem 5.13 hold, and thus we have established Theorem 5.13.

5.4 Modifying Kahn’s Result

In this section, we will modify Kahn’s result so that by taking J1 and J2 into account it proves

Lemma 5.4. In order to do so, we consider the modification of Theorem 5.13, obtained by:
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(i) Adding at the end of the first paragraph of that theorem:

“Suppose furthermore that J1 is a graph with vertex set E(H) and maximum degree at

most ∆1/2, J2 is a graph with vertex set E(H) and maximum degree at most ∆1/4, and

every list L(e) has at most 2∆ elements.”

(ii) And adding at the end of the last sentence of the theorem:

“so that we can uncolour a set of edges of H containing at most 1
3∆

9/10 edges incident

to any vertex v of H, to obtain a partial edge-colouring of H such that any two coloured

edges joined by an edge of J1 receive different colours, and such that any two coloured

edges joined by an edge of J2 receive colours that differ by at least ∆1/4.”

We call this strengthening Our Theorem. We first show that it implies (the full version of)

Lemma 5.4 and then discuss its proof.

We set δ = 1
2ǫ, let β be the corresponding value from Lemma 5.12, and define ∆ǫ to be ∆δ,2β

(as in Our Theorem). We set x
pγ
e = |L(e)|−1 for each colour γ and edge e in Hγ , and x

pγ
e = 0

if e is not in Hγ . Thus, for each edge e we have that
∑

γ x
pγ
e = 1. Applying Lemma 5.8 together

with Theorem 5.9, we see that each of the edge-vectors xpγ is in (1 − δ)MP(H) and hence in

(1− δ)MP(Hγ). Now Lemmas 5.11 and 5.12 show that there are hard-core distributions on Hγ

with marginals xpγ such that, for every edge e and colour γ, we have λpγ (e) ≤ βx
pγ
e . Since, as

we saw in Remark 5.5, for every edge e we have |L(e)| ≥ 1
2∆ (for ∆ sufficiently large), setting

K = 2β, for every edge e and colour γ, we have λpγ (e) ≤ K
/
∆. Hence, conditions (1) and (2)

of Our Theorem hold, and applying that result proves Lemma 5.4.

The key to Kahn’s proof of Theorem 5.13 above is the following lemma, [19, Lemma 3.1].

Lemma 5.14 (Kahn [19])

For every K, δ > 0, there exist ξ = ξδ,K with 0 < ξ ≤ δ and ∆δ,K such that the following holds

for all ∆ ≥ ∆δ,K. Let H be a multigraph with maximum degree at most ∆, and with a list L(e)

of acceptable colours for every edge e. Define the graphs Hγ as before.

Suppose that for every colour γ we are given a hard-core distribution pγ on the matchings

of Hγ with activities λpγ = λγ and marginals xpγ = xγ , satisfying:

(1) for every edge e:
∑

γ∈L(e)

xγ(e) > e−ξ, and

(2) for every colour γ and edge e: λγ(e) ≤ K
/
∆.

Then there are matchings Mγ in Hγ for every colour γ, such that the following holds. If we set

H ′ = H−
⋃

γ∗ Mγ∗ and H ′
γ = Hγ−V (Mγ)−

⋃
γ∗ Mγ∗, we form a list L′(e) for every edge e in H ′

by removing no longer allowed colours from L(e), and we let x′γ be the marginals corresponding

to the activities λγ on H ′
γ, then we have:

(a) for every edge e of H ′:
∑

γ∈L′(e)

x′γ(e) > e−δ, and

(b) the maximum degree of H ′ is at most 1+δ
1+ξ e

−1∆.

Here is a sketch of how we may use Lemma 5.14 to prove Theorem 5.13, following Kahn. First

fix a suitable number s of iterations, where we take s = ⌈log(8K)⌉. Let δs = 1, and define
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δs−1 ≥ · · · ≥ δ1 > 0 by setting δi−1 = ξδi,K . Also, let δ0 = 0 and ∆∗ = ∆δ1,K . We start with a

multigraph H with ∆ ≥ es∆∗, and with lists of acceptable colours and distributions satisfying

the hypotheses in Theorem 5.13. For i = 0, 1, . . . , s let ∆i = (1 + δi)e
−i∆ (so ∆0 = ∆ and each

∆i ≥ ∆∗). Set H0 = H, and H0
γ = Hγ for all γ. Once we have obtained H i−1 and H i−1

γ , in

iteration i we do the following.

I. Choose matchings M i
γ in H i−1

γ (for each colour γ) according to the lemma, with δ as δi−1

and ∆ as ∆i−1.

II. For each edge e in some matching M i
γ , chose γ independently and uniformly at random

from those γ for which e ∈ M i
γ , and assign colour γ to e.

III. Form H i by removing from H i−1 all edges that were assigned a colour in step II. For each

colour γ, form H i
γ by removing from H i−1

γ all edges that were assigned some colour in

step II, and all vertices that are incident to any edge that was assigned colour γ in step II.

The key point is that the lemma ensures that if its hypotheses hold for H i−1 with δ as δi−1

and ∆ as ∆i−1, then they hold for H i with δ as δi and ∆ as ∆i. So we can indeed follow Kahn

and iteratively apply the lemma in this way for s iterations, and colour all but an uncoloured

subgraph with maximum degree at most ∆s = 2e−s∆, which is at most ∆
/
4K by our choice

of s.

On the other hand, in the last iteration we still have that for every edge e, the sum of the

marginals at e is near 1. Furthermore, we are using the same activities, so by condition (2)

of the theorem, for each γ we have λγ(e) ≤ K
/
∆. But since the distributions are hard-core,

xpγ(e) ≤ λγ(e). (To see this, observe that

xpγ(e) =
∑

M : e∈M

p(M) = λγ(e)
∑

M : e∈M

p(M \{e}) ≤ λγ(e),

where the sums are over matchingsM inHγ containing e.) Taken together this implies that |L(e)|

is near ∆
/
K and exceeds ∆

/
2K. Hence, we can finish off the colouring greedily.

This proof is given in [19, Section 3], and is fairly easy to extract from what is actually

written there.

We shall modify this proof to obtain a proof of Our Theorem as follows. To deal with the

conflicts caused by J1 and J2, we choose to uncolour the conflicting edge which was coloured

last, uncolouring both edges if they were coloured in the same iteration. We need to ensure that

the number of edges of H incident to any given vertex of H which need to be recoloured due to

these conflicts is less than 1
3∆

9/10.

To this end, we shall modify the statement of Lemma 5.14, but first we introduce some

notation. In each iteration, for each edge e of H, we let F (e) be the set of colours forbidden

on e, either because they were assigned to a neighbour in J1 in a previous iteration, or because

they are too close to a colour assigned to a neighbour in J2 in a previous iteration. For each

vertex v of H, we let Xv be the number of edges e of H which are assigned a colour γ in this

iteration such that: γ ∈ F (e), or γ is assigned in this iteration to a neighbour of e in J1, or γ is

within ∆1/4 of a colour assigned in this iteration to a neighbour of e in J2. For technical reasons,

24



we count in Xv conflicts involving all colours assigned to edges in this iteration, not just the

colours we finally choose to colour them.

We will use the variant of Lemma 5.14 in which we add:

(i) At the end of its first paragraph:

“Let ∆̃ = 8K∆. Suppose further that we have a list F (e) of at most 3∆̃1/2 colours for

every edge e, and graphs J1 and J2 on E(H), where J1 has degree at most ∆̃1/2 and J2
has degree at most ∆̃1/4, and that every L(e) has at most 2∆̃ = 16K∆ elements.”

(ii) At the very end an extra new conclusion:

“ (c) for every vertex v, Xv ≤ ∆4/5.”

We call this variant Our Lemma. Since in proving Our Theorem we need only apply it when

the maximum degree bound for Hi is between ∆ and ∆
/
8K, we see that we will always have

the desired upper bound on the sizes of the lists, by applying the upper bound in Our Theorem.

Also, since we carry out a constant number of iterations, Our Lemma tells us we need to uncolour

only O(∆4/5) edges of H which are incident with a specific vertex of H. So, provided ∆ is large

enough we can use Our Lemma to obtain Our Theorem, just as Kahn used Lemma 5.14 to prove

his main theorem.

5.4.1 Proving Our Lemma

It remains to describe how to modify the proof of Lemma 5.14 to obtain a proof of Our Lemma.

Kahn proves Lemma 5.14 by applying the Local Lemma to an independent family of random

matchings obtained by, for each γ, independently choosing a random matching Mγ according to

the hard-core distribution pγ . By doing so, he shows that he can avoid a set of bad events.

The bad events which he avoids by applying the Local Lemma are defined in the middle of

[19, page 136]. There are two kinds: an event Tv such that its non-occurrence guarantees the

degree of a vertex v drops sufficiently, and an event Te such that its non-occurrence ensures that

the marginals at an edge e of the hard-core distribution for the next iteration sum to a number

close to 1.

Kahn defines a distance t > 1 which is a function of δ and K (and independent of ∆), and

shows that the probability that a bad event occurs, given all the edges of every matching Mγ

which are at distance at least t in H from the vertex or edge indexing the event, is at most p,

for some p which is ∆−ω(1).

He can then apply the Local Lemma, where the set STz (z a vertex or an edge) is the set of

events indexed by an edge or vertex within distance 2t of z (this is done on [19, pages 136–137]).

The key point is that this set has size at most d = 2(∆ + 1)∆2t, so we have epd = o(1).

(A few remarks: Kahn uses D where we use ∆, and ∆1 +∆2 where we use t. The result we

have just stated is [19, Lemma 6.3]; the ω(1) here is with respect to ∆.)

To modify this proof to obtain Our Lemma, we introduce for each vertex v of H, a new bad

event T ′
v that Xv exceeds ∆4/5. In each iteration, along with insisting that all the Te and Tv

fail, we also insist that all the T ′
v fail. In doing so we use the following claim. For each vertex v
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of H, let E+(v) denote the set of edges of H consisting of the edges e incident to v together

with the edges adjacent in J1 or J2 to edges e incident to v.

Claim 5.15

Let v ∈ V (H). For every colour γ, let Lγ be a given matching in Hγ, and suppose that the

event A that Mγ \E
+(v) = Lγ for each γ satisfies P(A) > 0. Then P(T ′

v | A) is ∆−ω(1).

Given the claim, to prove our variant of the lemma, we can use the Local Lemma, just as Kahn

did. However, we have to use a slightly different dependency graph because the event T ′
v depends

on the neighbours of v in J1 and J2. Given an event U of the form Tx or T ′
x indexed by a vertex

or edge x, we let the set SU consist of all the events indexed by some y at distance at most 4t

from x in the graph H+ formed by the union of H∗, J1 and J2 (where we identify edges of H

and the vertices of H∗ to which they correspond). Note that this graph has maximum degree

at most 2∆.

Just as with the other events, we have a ∆−ω(1) bound on the probability that any event T ′
v

holds, given the choice of all the matching edges at a suitable distance from v in H+ (by applying

our claim to all the choices of Lγ which extend this choice). Also, we need not worry further

about the events Tv and Te. We can therefore apply the Local Lemma iteratively as in the last

section to prove Our Lemma.

Proof of Claim 5.15 To prove the claim we first bound the conditional expected value of Xv.

We consider each edge e incident to v separately. We show that the conditional probability

that e is in a conflict is O(∆−1/2). Summing up over all edges e incident to v yields that the

expected value of Xv is O(∆1/2). We prove this bound for the conflicts involving edges coloured

in a previous iteration and edges coloured in this iteration separately.

To begin we consider the colours in F (e). We actually show that for any edge e, the condi-

tional probability that e is assigned a colour from F (e), given, for each colour γ, a matching Nγ

not containing e such that Mγ is either Nγ or Nγ + e, is O(∆−1/2). (We use Nγ + e to denote

Nγ ∪ {e}.) Summing up over all the choices for the Nγ which extend the Lγ , then yields the

desired result. If Nγ contains an edge incident to e, then Nγ + e is not a matching, so Mγ = Nγ .

Otherwise, by the definition of a hard-core distribution:

P(e ∈ Mγ | Mγ ∈ {Nγ , Nγ + e}) =
λγ(e)

1 + λγ(e)
≤ λγ(e) ≤

K

∆
.

The conditional probability we want to bound is the sum over all colours γ in F (e) of the

conditional probability that e is coloured γ. For each of these colours, the conditional probability

that a conflict actually occurs is at most the conditional probability that e is in Mγ . Since this

is O(∆−1), and |F (e)| ≤ 3∆̃1/2, the desired bound follows.

We next consider conflicts due to both e and a neighbour f in J1 ∪ J2 being assigned the

same colour in this iteration. It is enough to show that the conditional probability that e is

assigned the same colour as any such uncoloured neighbour f is O(∆−1). We actually show

that for any such edge f , the conditional probability that e is assigned the same colour as f ,
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given, for each colour γ, a matching Nγ not containing e or f such that Mγ is in the set

N+
γ = {Nγ , Nγ + e,Nγ + f,Nγ + e+ f}, is O(∆−1). Summing up over all the choices for the Nγ

which extend the Lγ , then yields the desired result. We obtain our bound on the probability

that e and f are both assigned the same colour by summing the probability they both get a

specific colour γ over all the at most 2∆̃ colours in L(e). For each such colour, as in the previous

paragraph, we obtain that

P({e, f} ⊆ Mγ | Mγ ∈ N+
γ ) ≤ λγ(e)λγ(f) ≤

(K
∆

)2
.

Summing over our choices for γ yields the desired result.

If f is adjacent to e in J2, then having picked a colour γ in L(e) we have at most 2∆̃1/4

choices for a colour γ′ 6= γ on f that causes a conflict. Proceeding as above with respect to γ′ as

well as γ, we can show that the conditional probability that e is coloured γ is at most K
/
∆, and

the conditional probability that f is coloured γ′, given that e is coloured γ, is at mostK
/
∆. Thus

the conditional probability that e is coloured γ and f is coloured γ′ is at most
(
K
/
∆
)2
. Summing

over the at most 2∆̃ choices for γ, the corresponding choices for γ′, and the at most ∆̃1/4 choices

for f , we obtain the desired result.

We next bound the probability that Xv exceeds ∆4/5, by showing that it is concentrated.

We note that if we change the choice of one Mγ , leaving all the other random matchings un-

changed, then the only new J1 or J2 conflicts counted by Xv involve edges coloured with a colour

within ∆̃1/4 of γ. There are at most 2∆̃1/4 + 1 such edges incident to v. Thus, such a change

can change Xv by at most 2∆̃1/4 + 1. Furthermore, each conflict involves at most two of the

matchings (only one if it also involves a previously coloured vertex). So, to certify that there

were at least x conflicts involving edges incident to v in an iteration we need only produce at

most 2x matchings involved in these conflicts. It follows by a result of Talagrand [41] (see also

[37, Chapter 10]) that the probability that Xv exceeds its median M by more than t is at most

exp
(
−Ω

t2

∆1/2M

)
.

Since the median of Xv is at most twice its expectation, setting t = 1
2∆

4/5 yields the desired

result.

This completes the proof of the claim, and hence of Our Lemma. �

Now that Our Lemma has been proved, we can deduce Our Theorem, Lemma 5.4 and Lemma 5.1.

All that remains is to prove Lemma 3.2, which we will do now.

5.5 The Final Stage: Deriving Lemma 3.2

With Lemma 5.1 in hand, it is an easy matter to prove Lemma 3.2. In doing so we consider

the natural bijection between the core R of H∗ and E(H), referring to these objects using

whichever terminology is convenient. (We sometimes use both names for the same object in the
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same sentence.) Similarly, we use the same letter to denote a vertex of H and the corresponding

vertex of G.

Before we really start, we make one observation concerning degrees. For a vertex v in H,

the condition in Lemma 3.2, taking X = {v}, gives dG−R(v)− dH(v) ≤ 1
30ǫ∆. Since dG−R(v) =

dG(v) − dH(v), this means that dH(v) ≥ 1
2dG(v)−

1
60ǫ∆, and hence

dG(v) − dH(v) ≤ 1
2dG(v) +

1
60ǫ∆ ≤

(
1
2 + 1

60ǫ
)
∆.

This bound will guarantee that all the lists of colours we will consider below are not empty.

Starting with J1 and J2 empty, for every two vertices x, y from R, if x and y are adjacent

in G, we add the edge xy to J2, and if x and y are adjacent in G2, but do not correspond to

incident edges in H, then we add the edge xy to J1. Since vertices in R have degree at most ∆1/4

in G, we get the required bounds on the degree for vertices in J1 and J2 in Lemma 5.1.

Now first suppose that every vertex v in H has degree ∆ in G. Recall the definition of ℓ∗e
in equation (6). For an edge e = vw in H, set L′(e) to be a subset of ℓ∗e colours in L(e) which

appear on no vertex of V \R which is a neighbour of e∗ in G2 and are not within ∆1/4 of any

colour appearing on a neighbour of e∗ in G. This is possible because e∗ is adjacent in G2 to at

most (∆ − dH(v)) + (∆ − dH(w)) neighbours of v∗ and w∗ in V − R, and at most ∆1/2 other

vertices of V − R (since the vertex e∗ in G is removable, hence has at most ∆1/4 neighbours

other than v∗ and w∗, and all these vertices have degree at most ∆1/4). Finally, condition (2)

in Lemma 5.1 holds because of the corresponding condition for all sets X in the statement of

Lemma 3.2. So applying Lemma 5.1, we are done in this case.

In general this approach does not work because for a vertex v of H with degree less than ∆,

we do not have that ∆ − dH(v) is equal to the number of edges from v to V − R, so our two

conditions are not quite equivalent. In order to fix this, we use a simple trick. Form Ĝ by taking

two disjoint copies G(1) and G(2) of G, with corresponding copies H(i), R(i), J
(i)
1 , J

(i)
2 , i = 1, 2,

and copy the lists of colours on the vertices of G to the two copies of these vertices. For each

vertex v of H, we add ∆− dG(v) subdivided edges between its two copies v(1) and v(2). Give an

arbitrary list of
⌈(

3
2 + ǫ

)
∆
⌉
colours to the vertices at the middle of these new subdivided edges.

Let Ĥ be the multigraph formed by the union of H(1) and H(2) together with multiple

edges corresponding to the new subdivided edges between copies of vertices of H. Similarly,

take R̂ the union of R(1), R(2) and all vertices in the middle of the new subdivided edges, and

set Ĵi = J
(1)
i ∪ J

(2)
i for i = 1, 2. Note that the degrees in Ĵ1 and Ĵ2 haven’t changed, so we can

still use them in Lemma 5.1.

Recall that for i ∈ {1, 2} and all v ∈ H(i), we have ∆ − d
Ĥ
(v) = dG(v) − dH(i)(v). Now

we choose lists of colours on the edges of Ĥ. Each new edge v(1)v(2) gets an arbitrary list of⌈(
3
2 + ǫ

)
∆− (∆− dĤ(v

(1)))− (∆− dĤ(v(2)))− 3∆1/2
⌉
=

⌈(
3
2 + ǫ

)
∆− 2(dG(v)− dH(v))− 3∆1/2

⌉

colours from the
⌈(

3
2 + ǫ

)
∆
⌉
colours we gave on the vertex in the middle of it. On the two copies

of an edge e = vw of H we take the same list of
⌈(

3
2 + ǫ

)
∆− (∆−d

Ĥ
(v))− (∆−d

Ĥ
(w))−3∆1/2

⌉

colours. Since this is equal to
⌈(

3
2 + ǫ

)
∆− (dG(v)− dH(v))− (dG(w)− dH(w))− 3∆1/2

⌉
, we can

still choose this list to be disjoint from the colours used on the neighbours of this edge in G2−R.
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We note that if we can find a proper colouring of L(Ĥ) using the chosen lists which avoids

conflicts, then we get two (possibly identical) extensions of our colouring of G2 −R to G2. We

apply Lemma 5.1 to prove that we can indeed find such an acceptable colouring. To do so, we

only need to show that for every odd set X of vertices of Ĥ, we have
∑

v∈X

(∆ − dĤ(v)) − e(X,V (Ĥ)\X) ≤ 1
30ǫ|X|∆.

In fact, we will do this for all subsets X of V (Ĥ). We set X(i) = X ∩ V (H(i)), i = 1, 2. We

immediately get that e(X,V (Ĥ)\X) ≥ e(X(1), V (H(1))\X(1)) + e(X(2), V (H(2))\X(2)) (since

on the right hand right we are ignoring the edges between the two copies of H). Recall that

∆− d
Ĥ
(v) = dG−H(v) for a vertex v in Ĥ. Using the condition in Lemma 3.2 for the two copies

of H, this gives
∑

v∈X

(∆− dĤ(v))− e(X,V (Ĥ)\X)

≤
∑

v∈X(1)

dG−H(v) +
∑

v∈X(2)

dG−H(v)

− e(X(1), V (H(1))\X(1))− e(X(2), V (H(2))\X(2))

≤ 1
30ǫ|X

(1)|∆+ 1
30ǫ|X

(2)|∆ = 1
30ǫ|X|∆,

and we are done. �

6 Conclusions and Discussion

In this paper, we showed that the chromatic number χ(G2) of the square of a graph G from a

fixed nice family is at most
(
3
2 + o(1)

)
∆(G). But many questions remain.

One can prove a bound of constant times the maximum degree for the chromatic number of

the square of a graph from a minor-closed family. Krumke et al. [30] showed that if a graph G

is q-degenerate (there exists an ordering v1, v2, . . . , vn of the vertices such that every vi has at

most q neighbours in {v1, . . . , vi−1}), then its square is ((2q − 1)∆(G))-degenerate — the same

ordering does the job. But for every minor-closed family F , there is a constant CF such that

every graph in F is CF -degenerate (see Theorem 2.1 and the first paragraph of Section 4).

Hence G2 is ((2CF − 1)∆(G))-degenerate for every G ∈ F and so its list chromatic number is

at most (2CF − 1)∆(G) + 1.

But it is unlikely that this is the best possible bound.

Question 6.1

For a given minor-closed family F graphs (not the set of all graphs), what is the smallest con-

stant DF so that χ(G2) ≤ (DF + o(1))∆(G) for all G ∈ F?

The following examples show that for F the class of K4,4-minor-free graphs we must have DF ≥

2. Let V1, . . . , V4 be four disjoint sets of m vertices, and let X = {x12, x13, x14, x23, x24, x34} be
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a further six vertices. Let Gm be the graph with vertex set X ∪V1 ∪ · · · ∪V4, and edges between

any xij and all vertices in Vi ∪ Vj , 1 ≤ i < j ≤ 4. It is easy to check that Gm is K4,4-minor-free.

For m ≥ 2 we have ∆(Gm) = dGm(xij) = 2m. Moreover, all vertices in V1∪ · · · ∪V4 are adjacent

in G2
m, and hence χ(G2

m) ≥ 4m = 2∆(Gm). (Of course, Gm has K3,m as a minor, so we do not

have a contradiction to Theorem 1.5.)

It is easy to generalise these examples to show that for F the class of Kk,k-minor-free graphs,

k ≥ 3, we must have DF ≥ 1
2k.

But even for nice classes of graphs, many open problems remain. Our proof of the upper

bound on the (list) chromatic number does not provide an efficient algorithm. So, for a nice

family F , it would be interesting to find an efficient algorithm to find a colouring of the square

of a graph G ∈ F with at most
(
3
2 + o(1)

)
∆(G) colours.

Moreover, our result suggests that Wegner’s Conjecture(see Conjectures 1.1 and 1.2) should

be generalised to nice families of graphs and to list colouring.

Conjecture 6.2

Let F be a nice family of graphs. Then for any graph G ∈ F with ∆(G) sufficiently large,

χ(G2) ≤ ch(G2) ≤
⌊
3
2∆(G)

⌋
+ 1

The results of Lih, Wang and Zhu [33] and Hetherington and Woodall [16] show that the con-

jecture is true when F is the family of K4-minor-free graphs.

As ω(G2) ≤ χ(G2), our result implies ω(G2) ≤
(
3
2 + o(1)

)
∆(G) for G in a nice family. But

does there exist a simple proof showing this inequality?

Hell and Seyffart [14] proved that for ∆ ≥ 8, a planar graph with maximum degree ∆

and diameter two has at most
⌊
3
2∆

⌋
+ 1 vertices. Using their proof techniques it is not so

hard to show that, for sufficiently large ∆, a planar graph G with maximum degree ∆ satisfies

ω(G2) ≤
⌊
3
2∆

⌋
+1. (In fact, with some effort we expect this bound can be proved for all ∆ ≥ 8.)

Note that this last inequality is tight as shown by the examples of Figure 1.

Corollary 1.7 in [2] says that, for each fixed surface S, there is a constant cS such that

ω(G2) ≤ 3
2∆(G) + cS for each graph G embeddable in S. More generally, can we prove that,

for each nice family F , there is a constant cF such that ω(G2) ≤ 3
2∆(G) + cF for each graph G

in F? Can we take cF = 1 for sufficiently large ∆ (depending on F)?

A major part of the proof of our result is a reduction to list edge-colouring of line graphs.

For edge-colourings, Kahn [19] proved that asymptotically the list chromatic number equals the

fractional chromatic number. This may suggest that the same could be true for squares of planar

graphs, or more generally for squares of graphs of a nice family.

Problem 6.3

Given a nice family F of graphs, is it true that ch(G2) = (1 + o(1))χf (G
2) for G ∈ F?

As already mentioned in the introduction, we believe that for every square of a planar graph

the list chromatic number equals the chromatic number.
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Conjecture 6.4

If G is a planar graph, then ch(G2) = χ(G2).

Since there are graphs G for which ch(G2) > χ(G2), a natural problem is to determine the best

possible upper bound on ch(G2) in terms of χ(G2) for general graphs. Since ∆(G)+1 ≤ χ(G2) ≤

ch(G2) ≤ ∆(G)2+1, we trivially have ch(G2) ≤ (χ(G2))2. However, this trivial quadratic upper

bound is certainly not best possible. Kosar et al. [26] posed the following question.

Problem 6.5 (Kosar, Petrickova, Reiniger, and Yeager [26])

Is there a function f(k) = o(k2) such that for every graph G, ch(G2) ≤ f(χ(G2))?

They also formulated the following more specific question.

Problem 6.6 (Kosar, Petrickova, Reiniger, and Yeager [26])

Does there exist a constant C such that every graph G satisfies ch(G2) ≤ C · χ(G2) log(χ(G2))?

If the answer to Problem 6.6 is “yes”, then the upper bound will be tight, up to the value of

the constant C, as Kosar et al. [26] constructed an infinite family of graphs G with unbounded

χ(G2) such that ch(G2) ≥ C ′ · χ(G2) log(χ(G2)) for some constant C ′.

Finally, our proof uses Kahn’s proof of his theorem that the list chromatic index ch′(G) of

a graph G is (1+ o(1))χ′
f (G), and that theorem of course implies that ch′(G) = (1+ o(1))χ′(G).

This is an asymptotic version of the celebrated List Colouring Conjecture.

Conjecture 6.7 (List Colouring Conjecture)

For every graph G, ch′(G) = χ′(G).

A more general conjecture was made by Gravier and Maffray[12], who conjectured that for

every claw-free graph, the list chromatic number equals the chromatic number. It is possible

that advances on the List Colouring Conjecture might be helpful towards Wegner’s Conjecture.
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