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Chromatic Edge Strength of Some Multigraphs
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Abstract

The edge strength s′(G) of a multigraph G is the minimum number of colors in a
minimum sum edge coloring of G. We give closed formulas for the edge strength of
bipartite multigraphs and multicycles. These are shown to be classes of multigraphs
for which the edge strength is always equal to the chromatic index.
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1 Introduction

During a banquet, n people are sitting around a circular table. The table is large,
and each participant can only talk to her/his left and right neighbors. For each pair
i, j of neighbors around the table, there is a given number mij of available discussion
topics. Assuming that each participant can only discuss one topic at a time, and
that each topic takes an unsplittable unit amount of time, what is the minimum
duration of the banquet, after which all available topics have been discussed? What
is the minimum average elapsed time before a topic is discussed?

In this paper, we show that there always exists a scheduling of the conversations
such that these two minima are reached simultaneously. The underlying mathemat-
ical problem is that of coloring a multicycle with n vertices and mij parallel edges
between consecutive vertices i and j.

Let G = (V,E) be a finite undirected (multi)graph without loops. A vertex
coloring of G is an application from V to a finite set of colors such that adjacent
vertices are assigned different colors. The chromatic number χ(G) of G is the mini-
mum number of colors that can be used in a coloring of G. An edge coloring of G is
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an application from E to a finite set of colors such that adjacent edges are assigned
different colors. The minimum number of colors in an edge coloring is called the
chromatic index χ′(G).

In the sequel, we assume that colors are positive integers. The vertex chromatic
sum of G is defined as Σ(G) = min

{
∑

v∈V f(v)
}

where the minimum is taken over
all colorings f of G. Similarly, the edge chromatic sum of G, denoted by Σ′(G), is
defined as Σ′(G) = min

{
∑

e∈E f(e)
}

, where the minimum is taken over all edge
colorings. In both case, a coloring yielding the chromatic sum is called a minimum
sum coloring.

The chromatic sum is a useful notion in the context of parallel job scheduling.
A conflict graph between jobs is a graph in which two jobs are adjacent if they
share a resource, and therefore cannot be run in parallel. If we assume that each
job takes a unit amount of time, then a scheduling that minimizes the makespan
is a coloring of the conflict graph with a minimum number of colors. On the other
hand, a minimum sum coloring of the conflict graph corresponds to a scheduling
that minimizes the average time before a job is completed. In our example above,
jobs are conversations, resources are the banqueters, and the conflict graph is the
line graph of a multicycle.

We also define the minimum number of colors needed in a minimum sum coloring
of G. This number is called the strength s(G) in the case of vertex colorings, and
the edge strength s′(G) in the case of edge colorings. Trivially, we have s(G) ≥ χ(G)
and s′(G) ≥ χ′(G).

Previous results

Chromatic sums have been introduced by Kubicka in 1989 [12]. The computa-
tional complexity of determining the vertex chromatic sum of a simple graph has
been studied extensively. It is NP-hard even when restricted to some classes of
graphs for which finding the chromatic number is easy, such as bipartite or interval
graphs [2,19]. Approximability results for various classes of graphs were obtained in
the last ten years [1,6,9,5]. Similarly, computing the edge chromatic sum is NP-hard
for bipartite graphs [7], even if the graph is also planar and has maximum degree
3 [13]. Strong hardness results have also been given for the vertex and edge strength
of a simple graph by Salavatipour [18], and Marx [14].

It has been known for long that the vertex strength can be arbitrarily larger than
the chromatic number [4]. Nicoloso et al. however showed that s(G) = χ(G) for
proper interval graphs [17], and that s(G) ≤ min{n, 2χ(G)− 1} for general interval
graphs [16]. An analog of Brooks’ theorem for the vertex strength of simple graphs
has been proved by Hajiabolhassan, Mehrabadi, and Tusserkani [8]: s(G) ≤ ∆(G)
for any simple graph G that is not an odd cycle nor a complete graph, where ∆(G)
is the maximum degree of a vertex in G.

Concerning the relation between the chromatic index and the edge strength,
Mitchem, Morriss and Schmeichel [15] proved the following inequality, similar to
Vizing’s theorem : s′(G) ≤ ∆(G)+1, for any simple graph G. Although it has been
conjectured by Harary and Plantholt [20] that s′(G) = χ′(G) for any simple graph
G, this has been disproved by Mitchem et al. [15] and Hajiabolhassan et al. [8].
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Our results

We considermultigraphs, in which parallel edges are allowed, and give two classes
of multigraphs for which we always have s′(G) = χ′(G). We prove the following two
results:

(i) s′(G) = ∆(G) if G is a bipartite multigraph,

(ii) s′(G) = max{∆(G), ⌈m/k⌉} if G is an odd multicycle, i.e. a cycle with parallel
edges, of order n = 2k + 1 with m edges.

These two statements are extensions of two classical results from König and Berge,
respectively.

2 Bipartite Multigraphs

The following well-known result has been proved by König in 1916.

Theorem 1 (König’s theorem [11]). Let G = (V,E) be a bipartite multigraph and
let ∆ denotes its maximum degree. Then χ′(G) = ∆.

Let C be the set of colors used in an edge coloring of a multigraph G. We denote
by Cx the subset of colors in C assigned to edges incidents with vertex x of G. We
also denote by dG(x) the degree of vertex x in G.

We now show that in a bipartite multigraph, the edge chromatic sum can always
be obtained with χ′(G) colors.

Theorem 2. Let G = (V,E) be a bipartite multigraph and let ∆ denotes its maxi-
mum degree. Then s′(G) = χ′(G) = ∆.

Proof. We proceed by contradiction. It is sufficient to assume that s′(G) = ∆ + 1.
So, there is an edge coloring f for G using ∆+1 colors such that

∑

e∈E f(e) = Σ′(G).
Let C = {1, . . . ,∆ + 1} be the set of colors used by f . Choose an edge [a, b]0 in
G having color ∆ + 1. Clearly, Ca ∪ Cb = {1, . . . ,∆}, otherwise, there exists a
color α ∈ {1, . . . ,∆} not used by any edge adjacent to both vertices a and b which
can be used to color edge [a, b]0. We would obtain a new edge coloring f ′ such that
∑

e∈E f ′(e) <
∑

e∈E f(e) which is a contradiction to the minimality of f . Therefore,
there exist colors α ∈ Ca \ Cb and β ∈ Cb \ Ca such that α, β ≤ ∆.

Let Pαβ denotes a maximal (α, β)-path beginning at vertex a. Notice that such
a path cannot end at vertex b, otherwise G contains an odd cycle contradicting the
fact that G is bipartite. So, we can recolor the edges on Pαβ by swapping colors α
and β. Moreover, after such a color swap, color α is such that α 6∈ Ca and α 6∈ Cb

and thus we can color edge [a, b]0 with color α ≤ ∆ obtaining a new edge coloring
f ′.

We now prove that after such a recoloring,
∑

e∈E f ′(e) <
∑

e∈E f(e) (*). First,
note that if the length of Pαβ is even, the recoloring only affects the value of the
edge [a, b]0, so (*) holds. Therefore, it is sufficient to consider the effects of such a
recoloring when the length of Pαβ is odd. Let 2s+1 be the length of Pαβ, with s ≥ 0.
Thus, initially for f we have the sub-sum (∆ + 1) + (s + 1)α + sβ corresponding
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to edge [a, b]0 and to the 2s + 1 edges on Pαβ . After the recoloring, we have for
f ′ that such values have changed to α + (s + 1)β + sα. The change value of f ′

w.r.t. f is β − ∆ − 1 < 0 and so (*) always holds, contradicting in this way the
minimality of f . Therefore, we have proved that if f is an edge coloring for G such
that

∑

e∈E f(e) = Σ′(G), then f uses at most ∆ colors to color the edges of G.

3 Multicycles

Let G be a multigraph without loops with m edges. It is easy to deduce that
χ′(G) ≥ max

{

∆, ⌈m
τ
⌉
}

, where ∆ denotes the maximum degree and τ denotes the
cardinality of a maximum matching in G. This lower bound is indeed tight for
multicycles, defined as cycles in which we can have parallel edges between two
consecutive vertices.

Theorem 3 ([3]). Let G = (V,E) be a multicycle on n vertices with m edges and
degree maximum ∆. Let τ denotes the maximal cardinality of a matching in G.
Then

χ′(G) =







∆, if n is even,

max
{

∆, ⌈m
τ
⌉
}

, if n is odd.

In order to determine the edge strength of a multicycle, we need the following
lemma proved by Berge in [3].

Lemma 1 (Uncolored edge Lemma [3]). Let G be a multigraph without loops with
χ′(G) = r+1. If a coloring of G\ [a, b]0 using a set C of r colors cannot be extended
to color the edge [a, b]0, then the following identities are verified :

(i) |Ca ∪Cb| = r,

(ii) |Ca ∩Cb| = dG(a) + dG(b)− r − 2,

(iii) |Ca \ Cb| = r − dG(b) + 1,

(iv) |Cb \ Ca| = r − dG(a) + 1.

In order to prove the Lemma 1, it suffices to compute a linear system of 3
equations on 3 variables as follows : (i) r = |C| = |Ca∪Cb| = |Ca∩Cb|+ |Ca \Cb|+
|Cb\Ca|; (ii) |Ca\Cb| = dG(a)−1−|Ca∩Cb|; and (iii) |Cb\Ca| = dG(b)−1−|Ca∩Cb|.

Theorem 4. Let G = (V,E) be a multicycle on n vertices with m edges and maxi-
mum degree ∆. Let τ denotes the maximal cardinality of a matching in G. Then

s′(G) = χ′(G) =







∆, if n is even,

max
{

∆, ⌈m
τ
⌉
}

, if n is odd.

Proof. If n is even, by Theorem 2, the result follows. So, we assume that n = 2k+1
for a positive integer k. We proceed by induction on m. Let r = max

{

∆, ⌈m
τ
⌉
}

.

Assume that m = 2k + 1. In this case, G is a simple odd cycle. Color the edges
in G in such a way that there exist k edges colored with color 1, k edges colored
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with color 2 and one edge colored with color 3. Clearly, it is always possible. As
χ′(G) = 3 and k is the size of a maximum matching in G, it is easy to deduce
that the theorem holds for this case. Therefore, we assume that m > 2k + 1 and
assume that the result holds for all multicycles on n vertices with fewer that m
edges. Let [a, b]0 be an edge in G and let G′ = G \ [a, b]0. By induction hypothesis,
we have that there exists an edge coloring f ′ for G′ using r = max

{

∆, ⌈m
τ
⌉
}

≥
max

{

∆′, ⌈m−1

τ
⌉
}

≥ χ′(G′) colors, such that
∑

e∈E′ f ′(e) = Σ′(G′), that is, under
f ′ the multigraph G′ verifies s′(G′) = χ′(G′) ≤ r. Assume, by contradiction, that
s′(G) = r+1. Thus, there exists an edge coloring f for G which uses r+1 colors and
verifies

∑

e∈E f(e) = Σ′(G). Notice that the restriction of f to edges in G′ verifies
∑

e∈E′ f(e) = Σ′(G′), otherwise contradicting the optimality of f in G. So, the edge
[a, b]0 is the only edge in G colored by f with color r+ 1. So, let C = {1, . . . , r} be
the set of colors used by f on the edges in G′ and for each 1 ≤ i ≤ r, let Ei denotes
the set of edges in G′ colored with color i. By induction hypothesis, we have the
following claim.

Claim 1. There exists a color σ ∈ C such that |Eσ| < k.

The claim holds, otherwise we would have that m − 1 =
∑r

i=1
|Ei| = kr, and

r = m−1

k
< m/k, a contradiction.

By Lemma 1, we know that |Ca∪Cb| = r. Hence it is sufficient to analyze the cases
σ ∈ Cb \ Ca (or σ ∈ Ca \ Cb) and σ ∈ Ca ∩ Cb.
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Fig. 1. (a) A multicycle G where χ′(G) = 3 and having an edge colored with color
4. In the proof of Theorem 4, color 3 represents color σ. Figures (a)-(c) (resp.
(d)-(e)) represent the case σ ∈ Ca ∩ Cb (resp. σ ∈ Cb \ Ca) in Theorem 4.

- Case σ ∈ Cb \ Ca. By Lemma 1, there exists a color α ∈ Ca \ Cb. Let G(α, σ)
denote the induced subgraph of G′ by the edges colored by f with colors α and σ.
Let Gb(α, σ) denote the connected component of G(α, σ) containing the vertex b.
Clearly, Gb(α, σ) is a simple (σ, α)-path having b as end-vertex and not containing
vertex a, otherwise, there is a contradiction to Claim 1. So, we can recolor the
edges on the path Gb(α, σ) by swapping colors α and σ in such a way that σ 6∈ Cb.
As color σ 6∈ Ca, we can color the edge [a, b]0 with color σ obtaining in this way an
edge coloring f ′′ for G which uses r colors. See Figure 1 (d)-(e) for an example of
this case.

We want to show that
∑

e∈E f ′′(e) <
∑

e∈E f(e) (**), contradicting s′(G) > r.
If the length of the path Gb(α, σ) is even, then

∑

e∈E f ′′(e)−
∑

e∈E f(e) = σ−r−1 ≤
r − r − 1 < 0. If the length of the path Gb(α, σ) is odd (say 2s + 1, with s ≥ 0),
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then such a difference is equal to (σ + (s + 1)α + sσ) − (r + 1 + (s + 1)σ + sα) =
α− r − 1 ≤ r − r − 1 < 0. Thus, inequality (**) always holds.

- Case σ ∈ Ca ∩ Cb. By Lemma 1, there exist colors α ∈ Ca \ Cb and β ∈ Cb \ Ca

with α 6= β 6= σ. By induction hypothesis, the result holds for G′ = G \ [a, b]0 and
G′ has a minimum sum edge coloring using at most r colors. Thus, the edge [a, b]0
in G is the only edge colored by f with color r + 1.

Let us assume that vertices are ordered clockwise and let b be the right vertex
of edge [a, b]0. Recolor edge [a, b]0 by color β and the edge of color β incident to b
with color r+1 respectively. Notice that such a procedure does change neither the
value of the sum of colors nor the number of colors used. Let [x, y]0 be the current
edge colored by such a recoloring with color r+1 such that x is its left vertex, and
find a color βy ∈ Cy \ Cx. By Lemma 1 such a color βy exists, otherwise there is a
color θ ≤ r such that θ 6∈ Cx and θ 6∈ Cy, and so we can recolor edge [x, y]0 with
color θ which gives a contradiction to the minimality of f . Repeat such a procedure
until current edge [x, y]0 in G colored with color r + 1 is such that σ ∈ Cx \ Cy

or σ ∈ Cy \ Cx. Clearly it is always possible, because the cycle is odd. Moreover,
notice that |Eσ| < k always hold. Assume w.l.o.g. that σ ∈ Cy \ Cx. By relabeling
the vertex set of G in such a way that x becomes a and y becomes b, we are back
to the first case (Figure 1 (a)-(c) gives an example of this case). This concludes the
proof.

4 Generalization

In the generalized optimal cost chromatic partition problem [10], each color has an
integer cost, but this cost does not necessarily correspond to the index of the color.
The cost of a vertex coloring is the

∑

v∈V c(f(v)), where c(i) is the cost of color
i. For any set of costs, our proofs can be generalized to show that the minimum
number of colors needed in a minimum cost edge coloring of G is equal to χ′(G)
when G is bipartite or a multicycle.
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[1] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic
sums and distributed resource allocation. Information and Computation, 140(2):183–
202, 1998.

[2] A. Bar-Noy and G. Kortsarz. Minimum color sum of bipartite graphs. J. Algorithms,
28(2):339–365, 1998.

[3] C. Berge. Graphs and Hypergraphs. North-Holland, 1976.

[4] P. Erdös, E. Kubicka, and A. Schwenk. Graphs that require many colors to achieve
their chromatic sum. Congressus Numerantium, 71:17–28, 1990.

[5] U. Feige, L. Lovász, and P. Tetali. Approximating min sum set cover. Algorithmica,
40(4):219–234, 2004.

6



[6] K. Giaro, R. Janczewski, M. Kubale, and M. Malafiejski. Approximation algorithm for
the chromatic sum coloring of bipartite graphs. In Proc. Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), volume 2462 of
Lecture Notes in Computer Science, pages 135–145. Springer, 2002.

[7] K. Giaro and M. Kubale. Edge-chromatic sum of trees and bounded cyclicity graphs.
Inform. Process. Lett., 75(1–2):65–69, 2000.

[8] H. Hajiabolhassan, M. L. Mehrabadi, and R. Tusserkani. Minimal coloring and strength
of graphs. Discrete Math., 215(1–3):265–270, 2000.
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