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BAXTER PERMUTATIONS AND PLANE BIPOLAR ORIENTATIONS

NICOLAS BONICHON, MIREILLE BOUSQUET-MÉLOU, AND ÉRIC FUSY

Abstract. We present a simple bijection between Baxter permutations of size n and plane
bipolar orientations with n edges. This bijection translates several classical parameters of
permutations (number of ascents, right-to-left maxima, left-to-right minima...) into natural
parameters of plane bipolar orientations (number of vertices, degree of the sink, degree of the
source...), and has remarkable symmetry properties. By specializing it to Baxter permutations
avoiding the pattern 2413, we obtain a bijection with non-separable planar maps. A further
specialization yields a bijection between permutations avoiding 2413 and 3142 and series-
parallel maps.

1. Introduction

In 1964, Glen Baxter, in an analysis context, introduced a class of permutations that now
bear his name [1]. A permutation π of the symmetric group Sn is Baxter if one cannot find
i < j < k such that π(j + 1) < π(i) < π(k) < π(j) or π(j) < π(k) < π(i) < π(j + 1). These
permutations were first enumerated around 1980 [8, 25, 30, 10]. More recently, they have been
studied in a slightly different perspective, in the general and very active framework of pattern
avoiding permutations [6, 14, 19, 22]. In particular, the number of Baxter permutations of Sn

having m ascents, i left-to-right maxima and j right-to-left maxima is known to be [25]:

ij

n(n+ 1)

(
n+ 1

m+ 1

)[(
n− i− 1

n−m− 2

)(
n− j − 1

m− 1

)
−
(
n− i− 1

n−m− 1

)(
n− j − 1

m

)]
. (1)

A few years ago, another Baxter, the physicist Rodney Baxter, studied the sum of the Tutte
polynomials TM (x, y) of non-separable planar maps M having a fixed size [2]. He proved that
the coefficient of x1y0 in TM (x, y), summed over all rooted non-separable planar maps M having
n + 1 edges, m + 2 vertices, root-face of degree i + 1 and a root-vertex of degree j + 1 was
given by (1). He was unaware that these numbers had been met before (and bear his name),
and that the coefficient of x1y0 in TM (x, y) is the number of bipolar orientations of M [21, 18].
This number is also, up to a sign, the derivative of the chromatic polynomial of M , evaluated
at 1 [23].

This is an amusing coincidence — are all Baxters doomed to invent independently objects
that are counted by the same numbers? — which was first noticed in [6]. It is the aim of
this paper to explain it via a direct bijection between Baxter permutations and plane bipolar
orientations. Our bijection is simple to implement, non-recursive, and has a lot of structure: it
translates many natural statistics of permutations into natural statistics of maps, and behaves
well with respect to symmetries. When restricted to Baxter permutations avoiding the pattern
2413, it specializes into a bijection between these permutations and rooted non-separable planar
maps, which is related to a recursive description on these maps by Dulucq et al. [13]. The key of
the proofs, and (probably) the reason why this bijection has so much structure, is the existence
of two isomorphic generating trees for Baxter permutations and plane orientations.

It is not the first time that intriguing connections arise between pattern avoiding permu-
tations and planar maps. For instance, several families of permutations, including two-stack
sortable permutations, are equinumerous with non-separable maps [31, 33, 13, 9]. Connected

2000 Mathematics Subject Classification. Primary 05A15; Secondary 05C30.
Key words and phrases. Baxter permutations, bipolar orientations.
The three authors are supported by the project GeoComp of the ACI Masses de Données and by the French

“Agence Nationale de la Recherche”, project SADA ANR-05-BLAN-0372.

1

http://arxiv.org/abs/0805.4180v1


2 N. BONICHON, M. BOUSQUET-MÉLOU, AND É. FUSY

1342-avoiding permutations are equinumerous with bicubic planar maps [5], and 54321-avoiding
involutions are equinumerous with tree-rooted maps [26, 20, 3, 6]. Finally, a bijection that sends
plane bipolar orientations to 3-tuples of non-intersecting paths appears in [17]. These configu-
rations of paths are known to be in one-to-one correspondence with Baxter permutations [14].
More bijections between these three families of objects are presented in [15]. However, our con-
struction is the first direct bijection between Baxter permutations and plane bipolar orientations.
Moreover, it has interesting properties (symmetries, specializations...) that the bijections one
may obtain by composing the bijections of [15] do not have.

Let us finish this introduction with the outline of the paper. After some preliminaries in
Section 2, we present our main results in Section 3: we describe the bijection Φ, its inverse
Φ−1, and state some of its properties. In particular, we explain how it transforms statistics on
permutations into statistics on orientations (Theorem 2), and how it behaves with respect to
symmetry (Proposition 4). In Section 4 we introduce two generating trees, which respectively
describe a recursive construction of Baxter permutations and plane bipolar orientations. We
observe that these trees are isomorphic, which means that Baxter permutations and orientations
have a closely related recursive structure. In particular, this isomorphism implies the existence of
a (recursively defined) canonical bijection Λ between these two classes of objects, the properties
of which reflect the properties of the trees (Theorem 12). We prove in Section 5 that our
construction Φ coincides with the canonical bijection Λ, and then (Section 6) that our description
of Φ−1 is correct. Section 7 is devoted to the study of two interesting specializations of Φ, and
the final section presents possible developments of this work.

2. Preliminaries

2.1. Baxter permutations

A permutation π = π(1) · · ·π(n) will be represented by its diagram, that is, the set of points
(i, π(i)). Hence the group of symmetries of the square, of order 8, acts on permutations of Sn.
This group is generated (for instance) by the following two involutions:

– the inversion π 7→ π−1, which amounts to a reflection around the first diagonal,
– the reversion of permutations, which maps π = π(1) . . . π(n) on rev(π) = π(n) . . . π(1).

It is clear from the definition given at the beginning of the introduction that the reversion leaves
invariant the set Bn of Baxter permutations of size n. It is also true that the inversion leaves Bn

invariant, so that Bn is invariant under the 8 symmetries of the square (Fig. 1). The invariance
of Bn by inversion follows from an alternative description of Baxter permutations in terms of
barred patterns [19], which we now describe. Given two permutations π and τ = τ1 · · · τk, an
occurrence of the pattern τ in π is a subsequence π(i1), . . . , π(ik), with i1 < . . . < ik, which
is order-isomorphic to τ . If no such occurrence exists, then π avoids τ . Now π avoids the
barred pattern τ = τ1 · · · τi−1τiτi+1 · · · τk if every occurrence of τ1 · · · τi−1τi+1 · · · τk in π is a

−1

rev−1rev

rev −1 rev

−1

Figure 1. The symmetries of the square act on Baxter permutations.
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sub-sequence of an occurrence of τ1 · · · τi−1τiτi+1 · · · τk. Then Baxter permutations are exactly
the 253̄14- and 413̄52-avoiding permutations.

We equip R
2 with the natural product order: v ≤ w if x(v) ≤ x(w) and y(v) ≤ y(w), that is,

if w lies to the North-East of v. Recall that for two elements v and w of poset P , w covers v if
v < w and there is no u such that v < u < w. The Hasse diagram of P is the digraph having
vertex set P and edges corresponding to the covering relation. We orient these edges from the
smaller to the larger element.

Given a permutation π, a left-to-right maximum (or: lr-maximum) is a value π(i) such that
π(i) > π(j) for all j < i. One defines similarly rl-maxima, lr-minima and rl-minima.

2.2. Plane bipolar orientations

A planar map is a connected graph embedded in the plane with no edge-crossings, considered
up to continuous deformation. A map has vertices, edges, and faces, which are the connected
components of R2 remaining after deleting the edges. The outer face is unbounded, the inner
faces are bounded. The map is separable if there exists a vertex whose deletion disconnects the
map. A plane bipolar orientation O is an acyclic orientation of a planar map M with a unique
source s (vertex with no ingoing edge) and a unique sink t (vertex with no outgoing edge), both
on the outer face (Fig. 2). The poles of O are s and t. One of the oriented paths going from s
to t has the outer face on its right: this path is the right border of O, and its length is the right
outer degree of O. The left outer degree is defined similarly.

O∗

right vertex
f

source

right face
v

O

s

t

Figure 2. Left: A plane bipolar orientation, having right (left) outer degree 2
(3), and its dual. Right: Local properties of plane bipolar orientations.

It can be seen that around each non-polar vertex v of a plane bipolar orientation, the edges
are sorted into two blocks, one block of ingoing edges and one block of outgoing edges: around
v, one finds a sequence of outgoing edges, then a sequence of ingoing edges, and that’s it (Fig. 2,
right). The face that is incident to the last outgoing edge and the first ingoing edge (taken in
clockwise order) is called the right face of v. Symmetrically, the face that is incident to the last
ingoing edge and the first outgoing edge (still in clockwise order) is called the left face of v.
Dually, the border of every finite face f contains exactly two maximal oriented paths (Fig. 2,
right), forming a small bipolar orientation. Its source (resp. sink) is called the source (resp. sink)
of f . The other vertices of the face are respectively called right and left vertices of f : if v is a
right vertex of f , then f is the left face of v.

A map M is rooted if one of the edges adjacent to the outer face is oriented, in such a way
the outer face lies on its right. In this case, a bipolar orientation of M is required to have source
s and sink t, where s and t are the endpoints of the root edge. As recalled above, the number
of such orientations of M is the coefficient of x1y0 in the Tutte polynomial TM (x, y) (this is
actually true of any graph G with a directed edge). This number is non-zero if and only if M is
non-separable [24].

A map M is bipolar if two of its vertices, lying on the outer face and respectively called the
source (s) and the sink (t) are distinguished. In this case, a bipolar orientation of M is required
to have source s and sink t. There is of course a simple one-to-one correspondence between
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rooted maps and bipolar maps, obtained by deleting the root edge and taking its starting point
(resp. ending point) as the source (resp. sink). It will be convenient (and, we hope, intuitive) to
use the following notation: if M is rooted, M̌ is the bipolar map obtained by deleting the root
edge. If M is bipolar, M̂ is the rooted map obtained by adding a root-edge. In this case, M
admits a bipolar orientation if and only if M̂ is non-separable.

Two natural transformations act on the set On of (unrooted) plane bipolar orientations having
n edges. For a plane bipolar orientation O, we define mir(O) to be the mirror image of O, that
is, the orientation obtained by flipping O around any line (Fig. 3). Clearly, mir is an involution.

The other transformation is duality. The dual plane orientation O∗ of O is constructed as
shown on Fig. 2. There is a vertex of O∗ in each bounded face of O, and two vertices of O∗

(its poles) in the outer face of O. The edges of O∗ connect the vertices corresponding to faces
of O that are adjacent to a common edge, and are oriented using the convention shown in the
figure. Note that (O∗)∗ is obtained by changing all edge directions in O, so that the duality is
a transformation of order 4. The transformations mir and O 7→ O∗ generate a group of order 8
(Fig. 3). We shall see that our bijection Φ allows us to superimpose Figs. 1 and 3. That is, if
Φ(π) = O, then Φ(π−1) is mir(O) and Φ(rev(π)) is mir(O∗).

mir

mir

mir

mir

Figure 3. A group of order 8 acts on plane bipolar orientations. The dashed
edges join an orientation to its dual, the others join mirror images.

3. Main results

3.1. From Baxter permutations to plane bipolar orientations

Let π be a Baxter permutation. We first construct an embedded digraph φ(π) with straight
edges having black and white vertices. The black vertices are the points bi = (i, π(i)). The white
vertices correspond to the ascents of π. More precisely, for each ascent a (i.e., π(a) < π(a+1)),
let ℓa = max{π(i) : i < a + 1 and π(i) < π(a + 1)}. The Baxter property implies that for
all i > a such that π(i) > π(a), one has actually π(i) > ℓa (see Fig. 4). Create a white
vertex wa = (a + 1/2, ℓa + 1/2). Finally, add two more white vertices w0 = (1/2, 1/2) and
wn = (n+ 1/2, n+ 1/2). (In other words, we consider that π(0) = 0 and π(n+ 1) = n+ 1.) We
define the embedded digraph φ(π) to be the Hasse diagram of this collection of black and white
vertices for the product order on R

2, drawn with straight edges (Fig. 5, middle). Of course, all
edges point to the North-East. We will prove in Section 5 the following proposition.

Proposition 1. For all Baxter permutation π, the embedded graph φ(π) is planar (no edges
cross), bicolored (every edge joins a black vertex and a white one), and every black vertex has
indegree and outdegree 1.

These properties can be observed on the example of Fig. 5. Erasing all black vertices yields
a plane bipolar orientation with source w0 and sink wn, which we define to be Φ(π) (see Fig. 5,
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right). Observe that every point of the permutation gives rise to an edge of Φ(π): we will say
that the point corresponds to the edge, and vice-versa. We draw the attention of the reader on
the fact that the slightly vague word “correspond” has now a very precise meaning in this paper.

ℓa+1
∅

wa

π(a)

π(a+ 1)

ℓa

a a+1

∅

Figure 4. The insertion of white vertices in ascents.

Figure 5. The Baxter permutation π = 5 3 4 9 7 8 10 6 1 2, the Hasse diagram
φ(π) and the plane bipolar orientation Φ(π).

Theorem 2. The map Φ is a bijection between Baxter permutations and plane bipolar orienta-
tions, which transforms standard parameters as follows:

size ↔ # edges, # ascents ↔ # non-polar vertices,
# lr-maxima ↔ left outer degree, # rl-minima ↔ right outer degree,
# rl-maxima ↔ degree of the sink, # lr-minima ↔ degree of the source.

By Euler’s formula, the number of inner faces of Φ(π) is the number of descents of π. This
theorem is proved in Section 5. It explains why the numbers (1) appear both in the enumeration
of Baxter permutations [25] and in the enumeration of bipolar orientations [2].

3.2. The inverse bijection

Let O be a plane bipolar orientation, with vertices colored white. Let O′ be the bicolored
oriented map obtained by inserting a black vertex in the middle of each edge of O (Fig. 6, left).
Recall how the in- and out-going edges are organized around the vertices of O (Fig. 2, right).
Let Tx be obtained from O′ by retaining, at each white vertex, only the first incoming edge in
clockwise order (at the sink, we only retain the incoming edge lying on the right border). All
vertices of Tx, except from the source of O, have now indegree one, and can be reached from the
source. Hence Tx is a plane tree rooted at the source.

Similarly, let Ty be obtained from O′ by retaining, at each white vertex, the last incoming
edge in clockwise order (at the sink, we only retain the incoming edge lying on the left border).
Then Ty is also a spanning tree of O′, rooted at the source of O.
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Label the black vertices of Tx in prefix order, walking around Tx clockwise. Label the black
vertices of Ty in prefix order, but walking around Ty counterclockwise. For every black vertex v
of O′, create a point at coordinates (x(v), y(v)), where x(v) and y(v) are the labels of v in Tx

and Ty respectively. Let Ψ(O) be the collection of points thus obtained (one per edge of O).

Theorem 3. For every plane bipolar orientation O, the set of points Ψ(O) is the diagram of
the Baxter permutation Φ−1(O).

This can be checked on the examples of Figs. 5–6, and is proved in Section 6. The construction
Ψ is closely related to an algorithm introduced in [12] to draw planar orientations on a grid.

10

5
10

4 6

7

8

3

2

1

9
1

2

3

4
5

67

8
9

Figure 6. A bipolar orientation O, and the trees Tx and Ty used to compute
the coordinates of the points of Ψ(O).

3.3. Symmetries and specializations

3.3.1. Symmetries. We now describe how the symmetries of the square, which act in a natural
way on Baxter permutations, are transformed through our bijection.

π−1

ρ(π)

Figure 7. The Hasse diagram and the bipolar orientations associated to π−1

and ρ(π), where π = 5 3 4 9 7 8 10 6 1 2 is the Baxter permutation of Fig. 5.

Proposition 4. Let π be a Baxter permutation and O = Φ(π). Then

Φ(π−1) = mir(O) and Φ(rev(π)) = mir(O∗).
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By combining both properties, this implies

O∗ = Φ(ρ(π)),

where ρ is the clockwise rotation by 90 degrees.
Moreover, if the point p = (i, π(i)) of π corresponds (via the bijection Φ) to the edge e of O,

then the point (π(i), i) of π−1 corresponds to the edge mir(e) in mir(O), and the point ρ(p) in
ρ(π) corresponds to the dual edge of e in O∗.

The symmetry properties dealing with the inverse and the rotation are illustrated in Fig. 7.
The first one is easily proved from the definition of φ and Φ. Indeed, it is clear from Fig. 4
that π has an ascent at a if and only if π−1 has a ascent at ℓa, and that the white dots of the
embedded graph φ(π−1) are the symmetric of the white dots of φ(π) with respect to the first
diagonal. Of course this holds for black vertices as well. Hence the Hasse diagram φ(π−1) is
obtained by flipping the diagram φ(π) around the first diagonal. The first property follows, as
well as the correspondence between the point (π(i), i) and the edge mir(e).

The second property is non-trivial, and will be proved in Section 5.

3.3.2. Specializations. As recalled in Section 2, a bipolar map M has a bipolar orientation if
and only if the rooted map M̂ is non-separable.

Take a Baxter permutation π and the bipolar orientation Φ(π), with poles s and t. Let M be

the underlying bipolar map, and define Φ̂(π) to be the rooted non-separable M̂ . We still call s
and t the source and the sink of the rooted map. It is not hard to see that different permutations
may give the same map. However,

Proposition 5. The restriction of Φ̂ to Baxter permutations avoiding the pattern 2413 (that is,
to permutations avoiding 2413 and 413̄52) is a bijection between these permutations and rooted
non-separable planar maps, which transforms standard parameters as follows:

– if π has length n, m ascents, i lr-maxima, j rl-maxima, k lr-minima and ℓ rl-minima,

– then Φ̂(π) has n + 1 edges, m non-polar vertices, a sink of degree j + 1, a source of
degree k+1 and the face that lies to the right (resp. left) of the root edge has degree i+1
(resp. ℓ+ 1).

This proposition is proved in Section 7.1. The fact that permutations avoiding 2413 and 413̄52
are equinumerous with non-separable planar maps was already proved in [13], by exhibiting
isomorphic generating trees for these two classes. This isomorphism could be used to describe a
recursive bijection between permutations and maps. It turns out that, up to simple symmetries,
our direct, non-recursive bijection, is equivalent to the one that is implicit in [13]. This is
explained in Section 7.3.

Observe that, if π is a Baxter permutation avoiding 2413, then π−1 is a Baxter permutation

avoiding 3142. As Φ(π−1) = mir(Φ(π)), the restriction of Φ̂ to Baxter permutations avoiding
3142 is also a bijection with non-separable planar maps. We now describe what happens when we

restrict Φ̂ to permutations avoiding both 2413 and 3142 (such permutations are always Baxter
as they obviously avoid the barred patterns 253̄14 and 413̄52).

Proposition 6. The restriction of Φ̂ to permutations avoiding the patterns 2413 and 3142 is
a bijection between these permutations and rooted series-parallel maps, which transforms the
standard parameters in the same way as in Proposition 5.

We say that a rooted non-separable mapM is series-parallel if it does not contain the complete
graph K4 as a minor. The terminology is slightly misleading: the map that can be constructed
recursively using the classical series and parallel constructions (Fig. 16) is not M itself, but the
bipolar map M̌ . This is the case for the bipolar map of Fig. 5, and one can check that the
associated permutation avoids both 2413 and 3142. Details are given in Section 7.2, with the
proof of Proposition 6.
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It is easy to count series-parallel maps, using their recursive description (we are in the simple
framework of decomposable structures [16]). The series that counts them by edges is (up to a
factor t accounting for the root edge) the generating function of large Schröder numbers [28,
Exercise 6.39],

S(t) = t
1− t−

√
1− 6t+ t2

2
=

∑

n≥1

tn+1

n∑

k=0

(n+ k)!

k!(k + 1)!(n− k)!
.

Thus the number of permutations of size n avoiding 2413 and 3142 is the nth Schröder number,
as was first proved in [32]. See also [19], where this result is proved via a bijection with certain
trees.

4. Generating trees

A generating tree is a rooted plane tree with labelled nodes satisfying the following property:
if two nodes have the same label, the lists of labels of their children are the same. In other words,
the (ordered) list of labels of the children is completely determined by the label of the parent.
The rule that tells how to label the children of a node, given its label, is called the rewriting rule
of the tree. In particular, the tree T with root (1, 1) and rewriting rule:

(i, j) ❀

{
(1, j + 1), (2, j + 1), . . . (i, j + 1),
(i+ 1, j), . . . (i+ 1, 2), (i+ 1, 1),

(2)

will be central in the proofs of our results. The first three levels of this tree are shown in Fig. 8,
left. In this section, we describe a generating tree for Baxter permutations, and another one
for plane orientations, which are both isomorphic to T . The properties of these trees, combined
with this isomorphism, imply the existence of a canonical bijection between Baxter permutations
and plane orientations satisfying the conditions stated in Theorem 2. In the next section, we
will prove that this bijection coincides with our map Φ.

4.1. A generating tree for Baxter permutations

Take a Baxter permutation π of length n+ 1, and remove the value n+1: this gives another
Baxter permutation, denoted π, of length n. Conversely, given σ ∈ Bn, it is well known, and
easy to see, that the permutations π such that π = σ are obtained by inserting the value n+ 1:

• either just before an lr-maximum of σ,
• or just after an rl-maximum of σ.

This observation was used already in the first paper where Baxter permutations were counted [8].
We write π = Lk(σ) if π is obtain by inserting n+ 1 just before the kth lr-maximum of σ, and
π = Rk(σ) if π is obtain by inserting n+1 just after the kth rl-maximum of σ (with the convention
that the first lr-maximum is σ(n)). We henceforth distinguish left and right insertions, or L- and
R-insertions for short. This is refined by talking about (L, k)-insertions (and (R, k)-insertions)
when we need to specify the position of the insertion.

This construction allows us to display Baxter permutations as the nodes of a generating tree
Tb. The root is the unique permutation of size 1, and the children of a node σ having i lr-maxima
and j rl-maxima are, from left to right,

L1(σ), L2(σ), . . . , Li(σ), Rj(σ), . . . , R2(σ), R1(σ).

Hence we find at level n the permutations of Bn. The first layers of Tb are shown on the right
of Fig. 8. Observe that, if σ has i lr-maxima and j rl-maxima, then Lk(σ) has k lr-maxima
and j + 1 rl-maxima, while Rk(σ) has i + 1 lr-maxima and k rl-maxima. In other words, if we
replace in the tree Tb every permutation by the pair (i, j) giving the number of lr-maxima and
rl-maxima, we obtain the generating tree T defined by (2). That is,

Proposition 7. The generating tree Tb of Baxter permutations is isomorphic to the tree T
defined by (2).
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(1, 3) (2, 2) (2, 1) .3.2.1. .2.3.1. .2 1.3. .1.3.2. .1.2.3..3.1 2.

.1.(1, 1)

(1, 2) (2, 2) (3, 1)

.1.2..2.1.(2, 1)(1, 2)

Figure 8. The generating tree T with rewriting rule (2), and the generat-
ing tree Tb of Baxter permutations. The dots represent the possible insertion
positions for the new maximal element.

We now observe a property of the tree Tb that will be crucial to prove one of the symmetry
properties of our bijection.

Proposition 8. The tree obtained from Tb by replacing each permutation π by rev(π) coincides
with the tree obtained by reflecting Tb in a (vertical) mirror.

In other words, if the sequence of insertions (S1, k1), (S2, k2), . . . , (Sn−1, kn−1), where Si ∈
{L,R} and ki ∈ N, yields from the permutation 1 to the permutation π ∈ Bn, then the sequence
(S̄1, k1), (S̄2, k1), . . . , (S̄n−1, kn−1) obtained by replacing all L’s by R’s and vice-versa yields from
1 to rev(π).

Proof. It suffices to observe that

rev(Lk(π)) = Rk(rev(π)) and rev(Rk(π)) = Lk(rev(π)).

4.2. A generating tree for plane bipolar orientations

Let O be a plane bipolar orientation with n+1 edges. Let e be the last edge of the left border
of O, and let v be its starting point. The endpoint of e is the sink t. Perform the following
transformation: if v has outdegree 1, contract e, otherwise delete e. This gives a new plane
bipolar orientation, denoted O, having n edges. Indeed, the degree condition on v guarantees
that the contraction never creates a cycle and that the deletion never creates a sink.

Conversely, let P be an orientation with n edges. We want to describe the orientations O
such that O = P . Our discussion is illustrated in Fig. 9. Let i be the left outer degree of P ,
and j the (in)degree of the sink t of P . Let v1 = s, v2, . . . , vi, vi+1 = t be the vertices of the left
border, visited from s to t. Denote e1, e2, . . . , ej the edges incident to t, from right to left (the

infinite face is to the right of e1 and to the left of ej). The orientations O such that O = P are
obtained by adding an edge e whose contraction or deletion gives P . This results in two types
of edge-insertion:

• Type L. For k ∈ J1, iK = {1, 2, . . . , i}, the orientation Lk(P ) is obtained by adding an
edge from v := vk to t, having the infinite face on its left.

• Type R. For k ∈ J1, jK, the orientation Rk(P ) is constructed as follows. Split the vertex
t into two neighbour vertices t and v, and re-distribute the edges adjacent to t: the edges
e1, e2, . . . , ek−1 remain connected to t, while ek, ek+1, . . . , ej are connected to v. Add an
edge from v to t.

In both cases, the last edge of the left border of the resulting orientation O joins v to t. After
an L-insertion, v has outdegree 2 or more, so that e will be deleted in the construction of O,
giving the orientation P . After an R-insertion, v has outdegree 1, so that e will be contracted
in the construction of O, giving the orientation P . The fact that we use, as in the construction
of Baxter permutations, the notation Lk and Rk is of course not an accident.

We can now define the generating tree To of plane bipolar orientations: the root is the unique
orientation with one edge, and the children of a node P having left outer degree i and sink-degree
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v2

t

s = v1

t

v3

v = v2

v1

Type L (k = 2)

Type R (k = 3)

e4
e3

t
v

v3
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Figure 9. Inserting a new edge in a plane bipolar orientation (i = 3, j = 4).

j are, from left to right,

L1(P ), L2(P ), . . . , Li(P ), Rj(P ), . . . , R2(P ), R1(P ).

Hence we find at level n the orientations with n edges. The first levels of this tree are shown in
Fig. 10. Observe that, if P has left outer degree i and sink-degree j, then Lk(P ) has left outer
degree k and sink-degree i + 1, while Rk(P ) has left outer degree i + 1 and sink-degree k. In
other words, if we replace in the tree To every orientation by the pair (i, j) giving the left outer
degree and the sink-degree, we obtain the generating tree T defined by (2).

Proposition 9. The generating tree To of plane bipolar orientations is isomorphic to the tree
T defined by (2).

Figure 10. The generating tree To of plane bipolar orientations.

We finally observe a property of the tree To that is the counterpart of Proposition 8. Recall
the definitions of the dual and mirror orientations, given in Section 2.2.

Proposition 10. The tree obtained from To by replacing each orientation O by mir(O∗) coincides
with the tree obtained by reflecting To in a (vertical) mirror.

In other words, if the sequence of insertions (S1, k1), (S2, k2), . . . , (Sn−1, kn−1), where Si ∈
{L,R} and ki ∈ N, yields from the root of To to the orientation O ∈ On, then the sequence
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(S̄1, k1), (S̄2, k1), . . . , (S̄n−1, kn−1) obtained by replacing all L’s by R’s and vice-versa yields from
the root to mir(O∗).

Proof. It suffices to observe that

mir((Lk(O))∗) = Rk(mir(O∗)) and mir((Rk(O))∗) = Lk(mir(O∗)).

This should be clear from Fig. 11, which shows that applying Lk to O boils down to applying
Rk to mir(O∗), and that conversely, applying Rk to O boils down to applying Lk to mir(O∗).
Note that this figure only shows O∗, and not its mirror image mir(O∗).

R3

O∗ O L2

Figure 11. How the orientation O∗ is changed when Lk or Rk is applied to O.

We conclude with an observation that will be useful in the proof of Proposition 4.

Remark 11. Take a plane bipolar orientation O having n edges, and label these edges with
1, 2, . . . , n in the order where they were created in the generating tree. Fig. 11 shows that when
the edge e is added to O in the generating tree, the edge mir(e∗) is added to mir(O∗) (we denote
by e∗ the dual edge of e). Consequently, for all edges e of O, the label of e in O coincides with
the label of mir(e∗) in mir(O∗).

4.3. The canonical bijection

We have seen that the generating trees Tb and To are both isomorphic to the tree (2) labelled
by pairs (i, j). This gives immediately a canonical bijection Λ between Baxter permutations and
plane bipolar orientations: this bijection maps the permutation 1 to the one-edge orientation,
and is then defined recursively by

Λ(Lk(π)) = Lk(Λ(π)) and Λ(Rk(π)) = Rk(Λ(π)).

In other words, if π is obtained in the Baxter tree by the sequence of insertions
(S1, k1), (S2, k2), . . . , (Sn−1, kn−1), then Λ(π) is the orientation obtained by the same sequence
of insertions in the tree of orientations.

Theorem 12. The map Λ is a bijection between Baxter permutations and plane bipolar orien-
tations, which transforms standard parameters as follows:

size ↔ # edges, # ascents ↔ # non-polar vertices,
# lr-maxima ↔ left outer degree, # rl-minima ↔ right outer degree,
# rl-maxima ↔ degree of the sink, # lr-minima ↔ degree of the source.
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Moreover, if π is a Baxter permutation and O = Λ(π), then

Λ(rev(π)) = mir(0∗).

Proof. The properties of Λ dealing with the size, lr-maxima and rl-maxima follow directly from
the isomorphism of the trees Tb, To and T . The next three properties are proved by observing that
the relevant parameters evolve in the same way in the recursive construction of Baxter permu-
tations and plane bipolar orientations. Indeed, if we replace every node π of Tb by (i, j;m, k, ℓ),
where i, j,m, k, ℓ are respectively the number of lr-maxima, rl-maxima, ascents, lr-minima and
rl-minima of π, we obtain the generating tree with root (1, 1; 0; 1, 1) and rewriting rule:

(i, j;m, k, ℓ) ❀

{
(1, j + 1;m, k + 1, ℓ), (2, j + 1;m, k, ℓ), . . . , (i, j + 1;m, k, ℓ),
(i + 1, j;m+ 1, k, ℓ), . . . , (i+ 1, 2;m+ 1, k, ℓ), (i+ 1, 1;m+ 1, k, ℓ+ 1).

Said in words, the number of ascents increases by 1 in an R-insertion, and is unchanged otherwise.
The number of lr-minima is only changed if we perform an (L, 1)-insertion (and then it increases
by 1), and the number of rl-minima is only changed if we perform an (R, 1)-insertion (and then
it increases by 1).

It is not hard to see that one obtains the same tree by replacing every orientation O of To by
(i, j;m, k, ℓ), where i, j,m, k, ℓ are respectively the left outer degree, the sink-degree, the number
of non-polar vertices, the source-degree and the right outer degree. That is, the number of
vertices only increases (by 1) in an R-insertion, the degree of the source only increases (by 1) in
an (L, 1)-insertion and the right outer degree only increases (by 1) in an (R, 1)-insertion.

Let us finally prove the symmetry property. Let (S1, k1), (S2, k2), . . . , (Sn−1, kn−1) be the
sequence of insertions that leads to π in the Baxter tree. By definition of Λ, this sequence
leads to O = Λ(π) in the tree of orientations. By Propositions 8 and 10, the sequence
(S̄1, k1), (S̄2, k1), . . . , (S̄n−1, kn−1) obtained by swapping the L’s and the R’s leads respec-
tively to rev(π) and mir(O∗) in the trees Tb and To. By definition of Λ, this means that
mir(O∗) = Λ(rev(π)).

5. The mapping Φ is the canonical bijection

In the previous section, we have described recursively a bijection Λ that implements the iso-
morphism between the generating trees Tb and To, and shown it has some interesting properties
(Theorem 12). We now prove that the mapping Φ defined in Section 3 coincides with this canon-
ical bijection Λ. Simultaneously, we prove the properties of the map φ stated in Proposition 1.

Proposition 13. For each Baxter permutation π, the embedded graph φ(π) is planar and bicol-
ored, with black vertices of indegree and outdegree 1. Moreover, Φ(π) = Λ(π).

Proof. The proof is by induction on the size of π. Both statements are obvious for π = 1.
Now assume that the proposition holds for Baxter permutations of size n. Let π ∈ Bn+1, and
let σ be the parent of π in the tree Tb. Then either π = Lk(σ), or π = Rk(σ) for some k.
Let O = Φ(σ) = Λ(σ). We want to prove that φ(π) satisfies the required conditions and that
Φ(π) = Lk(O) (or that Φ(π) = Rk(O) in the case of an R-insertion). Both statements follow
from a careful observation of how φ(σ) is changed into φ(π) as n + 1 is inserted in σ. Some
readers will think that looking for two minutes at Figs. 12 and 13 is sufficient to get convinced of
the result. For the others, we describe below in greater detail what happens during the insertion
of n+1 in σ. Essentially, we describe the generating tree whose nodes are the embedded graphs
φ(π), for π ∈ Bn.
Case 1. The permutation π is obtain by left insertion, that is, π = Lk(σ). Let a + 1 be the
abscissa of the kth lr-maximum of σ. Let i be the number of lr-maxima in σ. Then the left
border of O has i + 1 vertices, ranging from v1 = w0 to vi+1 = wn. The vertex wa is the kth
vertex vk of the left border of O. As n+1 is inserted in σ, the ascents of σ become ascents of π,
and no new ascent is created. All the vertices that occur in φ(σ) occur in φ(π), but some of them
are translated: the white vertex wn moves from (n+1/2, n+1/2) to (n+3/2, n+3/2), and all
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a+ 1a
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Figure 12. How the graph φ(σ) changes during an (L, k)-insertion.
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wn
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Figure 13. How the graph φ(σ) changes during an (R, k)-insertion.

vertices located at abscissa x ≥ a+1 move one unit to the right. These translations, illustrated
by the first two pictures of Fig. 12, stretch some edges but do not affect the covering relations
among vertices. We claim that they also do not affect planarity. Indeed, it is easy to see that
the Hasse diagram of a set S of points in the plane having distinct abscissas and ordinates, has
no crossing if and only if S avoids the pattern 213̄54 [7]. Clearly, this property is not affected
by translating to the right the rightmost points of S.

After the translation operations, one new vertex is created: a black vertex b = (a+ 1, n+ 1)
corresponding to the new value n + 1 in π. We need to study how this affects the covering
relations. That is, which vertices cover b, and which vertices are covered by b?

As b lies at ordinate n+1, it is only covered by wn. This results in a new bicolored edge from
b to wn, which lies sufficiently high not to affect the planarity. Hence b has outdegree 1.

It remains to see which vertices b covers. Clearly it covers wa. But then all the vertices
lying to the South-West of b are actually smaller than wa for our ordering (because σ(a) was an
lr-maximum), so that b covers no vertex other than wa. This means it has indegree 1.

To summarize, one goes from φ(σ) to φ(π), where π = Lk(σ), by

• stretching some edges by a translation of certain vertices,
• inserting one new vertex, b = (a+ 1, n+ 1),
• adding an edge from wa to b, and another one from b to wn.

The resulting graph is still bicolored, with black vertices of indegree and outdegree 1. The
planarity is preserved as all the changes occur to the North-West of the lr-maxima of σ. Finally,
recall that the orientation O = Φ(σ) and Φ(π) are respectively obtained by erasing the black
vertices in φ(σ) and φ(π). It should now be clear that Φ(π) is exactly the result of an (L, k)-
insertion in O: denoting v1, . . . , vi, vi+1 = wn the vertices of the left border of Φ(σ), one has
simply added a new edge from vk = wa to the sink wn in the outer face of Φ(σ).
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Case 2. The permutation π is obtain by right insertion, that is, π = Rk(σ). Let m1, . . . ,mj

be the points of the diagram of σ corresponding to its rl-maxima, from right to left. Then
the sink t = wn of O has degree j, and for all ℓ, the ℓth edge that arrives at t (from right to
left) corresponds to the point mℓ of σ via the correspondence Φ. As noticed in the proof of
Theorem 12, the ascents of σ become ascents of π, and a new ascent occurs at position a, if the
kth rl-maximum of σ is σ(a). In particular, all the vertices that occur in φ(σ) occur in φ(π).
However, some of them are translated: the white vertex wn moves from (n + 1/2, n + 1/2) to
(n + 3/2, n+ 3/2), while the vertices located at abscissa x ≥ a + 1 move one unit to the right.
These translations, illustrated by the first two pictures of Fig. 13, do not affect the planarity nor
the covering relations.

Then two new vertices are created: a black vertex b = (a+1, n+1) corresponding to the new
value n + 1 in π, and a white vertex w = (a + 1/2, n+ 1/2) corresponding to the new ascent.
We need to study how they affect the covering relations. That is, which vertices cover w or b,
and which vertices are covered by w or b?

As w and b lie respectively at ordinate n + 1/2 and n + 1, it is easily seen that w is only
covered by b, which is only covered by wn. This results in two new bicolored edges, from w to
b, and from b to wn, which lie sufficiently high not to affect the planarity. Moreover, b does not
cover any vertex other than w. We have thus proved that b has indegree and outdegree 1.

It remains to see which vertices w covers. These vertices were covered in φ(σ) by vertices
that are now larger than w. But wn is the only vertex larger than w that was already in φ(σ).
Since by assumption, φ(σ) is bicolored, the vertices covered by w are black, and hence were
rl-maxima in σ. The vertices m1, . . . ,mk−1 are still covered by wn (they lie to the right of w),
but mk, . . . ,mj are covered by w (Fig. 13, right).

To summarize, one goes from φ(σ) to φ(π), where π = Rk(σ), by

• stretching some edges by a translation of certain vertices,
• inserting two new vertices, w = (a+ 1/2, n+ 1/2) and b = (a+ 1, n+ 1),
• adding an edge from w to b, and another one from b to wn,
• re-directing the edge that starts from mr so that it points to w rather than wn, for r ≥ k.

The resulting graph is still bicolored, with black vertices of indegree and outdegree 1. The
planarity is preserved as all the changes occur to the North-East of the rl-maxima of σ. Finally,
recall that the orientations O = Φ(σ) and Φ(π) are respectively obtained by erasing the black
vertices in φ(σ) and φ(π). It should now be clear that Φ(π) is exactly the result of an (R, k)-
insertion in O: the leftmost j − k + 1 edges that were pointing to wn are now pointing to the
new white vertex w.

We now know that Φ coincides with the canonical bijection Λ, whose properties were stated in
Theorem 12. This implies Theorem 2, and the second symmetry property of Proposition 4. The
first property was proved just after the statement of this proposition, as well as the correspon-
dence between the point (π(i), i) and the edge mir(e). To conclude the proof of Proposition 4,
it remains to prove that ρ(p) corresponds to the edge e∗.

Observe that, as n + 1 is inserted in σ to form the permutation π, the edge e that is added
to O = Φ(σ) to form Φ(π) corresponds to the point of ordinate n + 1 in the diagram of π.
Hence, the edge labelling introduced in Remark 11 boils down to labelling every edge of Φ(π)
by the ordinate of the corresponding point of π. Consequently, Remark 11 can be reformulated
as follows: if the point p = (i, π(i)) corresponds to the edge e, then the point rev(p) (which
is the point of rev(π) with the same ordinate as p) corresponds to mir(e∗). Combining this
correspondence with the first one (which deals with π−1 and mir(O)) gives the final statement
of Proposition 4.
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u

v

Path in φ(π) from v to u

Figure 14. Left: The tree Tx obtained from the Baxter permutation π =
5 3 4 9 7 8 10 6 1 2 Right: Why the prefix order and the abscissa order coincide.

6. The inverse bijection

It is now an easy task to prove that the map Ψ described in Section 3.2 is indeed the inverse
of the bijection Φ. As we already know that Φ is bijective, it suffices to prove that Ψ(Φ(π)) = π
for all Baxter permutation π. For a Baxter permutation π, we denote by O the orientation Φ(π)
and by O′ the bicolored oriented map obtained from O by adding a black vertex in the middle
of each edge. Recall that φ(π) is an embedding of O′. This allows us to consider the trees Tx

and Ty as embedded in R
2. In particular, the edge of Tx joining a white vertex v to its parent

is the steepest edge ending at v in φ(π). See Fig. 14, left.
Every point of the diagram of π corresponds to an edge of O. Thus the black vertices that détaillé

we have added to form O′ are in one-to-one correspondence with the points of π. This allows
us to identify the black vertices of O′ with the points of π. We want to check that the order
induced on these vertices by the clockwise prefix order of Tx coincides with the order induced by
the abscissas of the points. Similarly, we want to check that the order induced on the vertices
by the counterclockwise prefix order of Ty coincides with the order induced by the ordinates of
the points. As the constructions of φ and Ψ are symmetric with respect to the first diagonal,
it suffices to prove the statement for the tree Tx. Since we are comparing two total orders, it
suffices to prove that if the vertex v comes just after the vertex u in the prefix order of Tx, then
v lies to the right of u in φ(π). Two cases occur.

If u is not a leaf of Tx, it has a (unique, white) child, the first child of which is v. As all edges
in φ(π) point North-East, v is to the right of u.

If u is a leaf (Fig. 14, right), let w be its closest ancestor (necessarily white) that has at least
one child to the right of the branch leading to u. By definition of the prefix order, the first of
these children is v. Observe that, by definition of Ψ, the path of Tx joining u to its ancestor w
is the steepest (unoriented) path of φ(π) leading from u to w. More precisely, it is obtained by
starting at u, and choosing at each time the steepest down edge, until w is reached. Assume v
is to the left of u. Then it is also below u, and, as φ(π) is a Hasse diagram, there exist paths
in φ(π) from v to u. Take the steepest of these: that is, start from u, take the steepest down
edge that can be extended into a down path ending at v, and iterate until v is reached. Finally,
add the edge (w, v): this gives a path joining w and u that is steeper than the one in Tx, a
contradiction. Hence v lies to the right of u.

7. Specializations

7.1. Baxter permutations avoiding 2413 and rooted non-separable maps

The aim of this subsection is to prove Proposition 5: if we restrict Φ to Baxter permutations
avoiding 2413, add a root-edge from the source to the sink, and forget the orientations of all
(non-root) edges, we obtain a bijection with rooted non-separable planar maps, which transforms
standard parameters of permutations into standard parameters of maps. Our first objective will
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be to describe the orientations corresponding via Φ to 2413-avoiding Baxter permutations. Recall
that the faces of a bipolar orientation have left and right vertices (Fig. 2). The following definition
is illustrated in Fig. 15(a).

Definition 14. Given a plane bipolar orientation O, a right-oriented piece (ROP) is a 4-tuple
(v1, v2, f1, f2) formed of two vertices v1, v2 and two inner faces f1, f2 of O such that:

• v1 is the source of f1 and is a left vertex of f2,
• v2 is the sink of f2 and is a right vertex of f1.

A left-oriented piece (LOP) is defined similarly by swapping ’left’ and ’right’ in the definition of
a ROP. Consequently, a ROP in O becomes a LOP in mir(O) and vice-versa.

i2i1

π(i2)

π(i1)

i4i3

π(i4)

π(i3)

f1

v1
f2

f1

v1
f2

e2

v2 v2

f2

v1

v2

e4

e3

e1

f1

(b)(a) (c)

Figure 15. (a) A right-oriented piece (ROP) in a plane bipolar orientation.
(b) The four distinguished edges of a ROP. (c) A minimal pattern 2413 in a
Baxter permutation yields a ROP in the associated plane bipolar orientation.
The dashed edges come from φ(ρ(π)).

Proposition 15 ([27]). Every bipolar planar map admits a unique bipolar orientation with no
ROP, and a unique plane bipolar orientation with no LOP.

The set of bipolar orientations of a fixed bipolar map can actually be equipped with a structure
of distributive lattice, the minimum (resp. maximum) of which is the unique orientation with no
ROP (resp. LOP) [27].

We can now characterize the image by Φ of 2413-avoiding Baxter permutations.

Proposition 16. A Baxter permutation π contains the pattern 2413 if and only if the bipolar
orientation O = Φ(π) contains a ROP. Symmetrically, π contains the pattern 3142 if and only
if O contains a LOP.

Simple examples are provided by π = 25314 and π = 41352. The corresponding orientations
(with a root edge added) are those of Fig. 17.

Proof. Assume O contains a ROP (v1, v2, f1, f2). Denote e1, e2, e3, e4 the four edges shown in
Fig. 15(b). To each of them corresponds a point pi of the diagram of π, with 1 ≤ i ≤ 4. We will
prove that these points form an occurrence of 2413. Recall that the order of the abscissas and
ordinates of these points is obtained from the trees Tx and Ty defined in Section 3.2. Denote by
P (e) the path of Tx that joins (the middle of) the edge e ∈ O to the source. By definition of Tx,
the point of π corresponding to e occurs in π to the left of the point corresponding to e′ if and
only if either e lies on the path P (e′), or P (e) is on the left of P (e′) when the two paths meet.
From this observation and the configuration of a ROP, it is clear that the x-order of the points
pi is p1, p2, p3, p4. By similar arguments, the y-order of these points is p3, p1, p4, p2. Hence they
form an occurrence of 2413.
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Conversely, let π be a Baxter permutation containing an occurrence p1, p2, p3, p4 of the pattern
2413. This means that pj = (ij, π(ij)) with i1 < i2 < i3 < i4 and π(i3) < π(i1) < π(i4) < π(i2).
We can assume that the pi form a minimal occurrence of 2413: that is, the bounding rectangle
R of the pi does not contain any other occurrence of the pattern. Then it is easy to see that
no point of R lies between columns i1 and i2 (this would create a smaller pattern). Similarly,
no point of R lies between columns i3 and i4, or between rows π(i3) and π(i1), or between rows
π(i4) and π(i2). The empty areas are shaded in Fig. 15(c).

We now want to prove that O contains a ROP. Consider an oriented path going from p1 to p2
in the embedded Hasse diagram φ(π). As φ(π) is bipartite and there is no point in R between
columns i1 and i2, this path has length 2, and goes from p1 to p2 via a unique white vertex,
which we denote by v1. As the pi have in- and out-degree 1, there is no other path between
p1 and p2. Similarly, there is a unique oriented path going from p3 to p4, which has length 2.
Denote by v2 the (unique) white vertex of this path.

We will exhibit a ROP whose vertices are v1 and v2. To find the faces of this ROP, we consider
the Baxter permutation π∗ = ρ(π) obtained by a clockwise rotation of π by 90 degrees. After this
rotation, the points ρ(pi) still form a minimal occurrence of 2413. The above arguments imply
that there exists in φ(π∗) a unique path from ρ(p3) to ρ(p1), which has length 2 and contains
only one white vertex w2. Similarly, there exists in φ(π∗) a unique path from ρ(p4) to ρ(p2),
which has length 2 and contains only one white vertex w1. But Φ(π∗) is the dual orientation
O∗ (Proposition 4). Let f1 and f2 be the faces of O that are the duals of w1 and w2. We claim
that (v1, v2, f1, f2) is a ROP of O.

Consider the superposition of the edges of φ(π) and of the edges of φ(π∗), rotated by 90
degrees counterclockwise (dashed lines in Fig. 15(c)). Let ei be the edge of O corresponding to
the point pi, for 1 ≤ i ≤ 4. By Proposition 4, the dual edge e∗i corresponds to the point ρ(pi).
As e∗1 starts from w2, the edge e1 lies on the left border of the face f2 in O. By considering the
points p2, p3 and p4, one proves similarly that e2 lies on the left border of f1, that e3 lies on the
right border of f2 and e4 on the right border of f1. In particular, both v1 and v2 are adjacent
to f1 and f2.

As p4 lies North-East of p1, there is in φ(π) an oriented path from p1 to p4. As p1 has
outdegree 1, the second vertex on this path is v1, and similarly, its next-to-last vertex is v2.
Thus the edge (v1, p2) of φ(π) is followed, in clockwise order around v1, by another outgoing
edge: this implies that v1 is the source of the face f1. At the other end of the path, we observe
that the edge (p3, v2) is followed, in clockwise order around v2, by another ingoing edge: thus
v2 is the sink of f2.

The edge e1 ends at v1 and is on the left border of f2: as the sink of f2 is v2 (and v2 6= v1),
v1 is a left vertex of f2. Symmetrically, v2 is a right vertex of f1.

Hence (v1, v2, f1, f2) is a ROP.

It remains to prove the statement on 3142-avoiding Baxter permutations. Recall that
Φ(π−1) = mir(O) and observe that 2413−1 = 3142. Note also that the map mir transforms
right-oriented pieces on left-oriented pieces. Consequently, a Baxter permutation π avoids 3142
if and only if the orientation Φ(π) has no LOP.

Proof of Proposition 5. The restriction of Φ to 2413-avoiding Baxter permutations is a bijection
between these permutations and bipolar plane orientations with no ROP, which transforms
standard parameters as described in Theorem 2. By Proposition 15, orientations with no ROP
are in bijection with non-separable planar maps (the bijection consists in adding a root-edge
from the source to the sink, and forgetting the orientation of all non-root edges). This bijection
increases by 1 the edge number, the degrees of the source and the sink, and transforms the right
and left outer degrees of the orientation into the degrees of the faces lying, respectively, to the
left and right of the root-edge, minus one. Proposition 5 follows.
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7.2. Permutations avoiding 2413 and 3142, and series-parallel maps

We now prove Proposition 6. We have said that a rooted non-separable planar map M is
series-parallel if it does not contain K4 as a minor. Let M̌ be the corresponding bipolar map.
We will say that M̌ itself is series-parallel. By adapting the proof given for graphs in [4], it is not
hard to see that a bipolar map M̌ is series-parallel if and only if it can be constructed recursively,
starting from the single-edge map, by applying a sequence of series and parallel compositions:

• the series composition of two series-parallel bipolar maps M̌1 and M̌2 is obtained by
identifying the sink of M̌1 with the source of M̌2 (see Fig. 16 (b)),

• the parallel composition of M̌1 and M̌2 is obtained by putting M̌2 to the right of M̌1,
and then identifying the sources of M̌1 and M̌2, as well as their sinks (Fig. 16 (c)).

(a) (b) (c)

t

s

s

s

t

t

M̌2

M̌1

M̌2

M̌1

Figure 16. The operations that build all series-parallel bipolar maps: (a) tak-
ing a single edge, (b) a series composition, (c) a parallel composition.

By Proposition 16, a Baxter permutation π avoids both patterns 2413 and 3142 if and only
if the corresponding plane bipolar orientation has no ROP nor LOP. We have seen in Propo-
sition 15 that every bipolar map M̌ admits a unique orientation with no ROP and a unique
orientation with no LOP, which are respectively the minimal and maximal element of the lattice
of orientations of M̌ . Thus M̌ admits an orientation with no ROP nor LOP if and only if it has
a unique bipolar orientation. Hence to prove Proposition 6, it suffices to establish the following
lemma.

Lemma 17. A bipolar map M̌ admits a unique bipolar orientation if and only if it is series-
parallel.

Proof. From the recursive construction of series-parallel bipolar maps shown in Fig. 16, it is
easily checked that such a map admits a unique bipolar orientation (see also [11, Remark 6.2]).

Conversely, assume that M̌ is not series-parallel. This means that the corresponding rooted
map M contains K4 as a minor. Observe that K4 admits exactly two bipolar orientations,
show in Fig. 17. From the Extension Lemma of [11], the two bipolar orientations of K4 can be
extended to two distinct bipolar orientations of M , and thus of M̌ .

This concludes the proof of Proposition 6.

Figure 17. The two bipolar orientations of K4. The first one contains a ROP,
the other one a LOP.
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7.3. A link with a construction of Dulucq, Gire and West

We have seen that the bijection Φ sends 3142-avoiding Baxter permutations onto orientations
with no LOP. Clearly, 3142-avoiding Baxter permutations form a subtree of the generating tree
Tb of Fig. 8: if π avoids 3142, deleting its largest entry will not create an occurrence of this
pattern. As Φ is the canonical bijection between Tb and the tree To of orientations, this implies
that orientations with no LOP form a subtree of To. In this subtree, replace every orientation
by the underlying bipolar map M̌ , and then by the corresponding non-separable rooted map M
(this means adding a root-edge to M̌). This gives a generating tree Tm for rooted non-separable
maps.

In this section we give a description of this tree directly in terms of maps (rather than
orientations). We then observe that, up to simple symmetries, this is the tree that was introduced
in [13] to prove that non-separable planar maps are in bijection with permutations avoiding the
patterns 2413 and 413̄52—equivalently, with 2413-avoiding Baxter permutations. In accordance
with [13], where the children of a node of the generating tree are not explicitly ordered, we will
only describe the non-embedded generating tree. That is, we only explain how to determine the
parent of a given rooted non-separable map.

Let M be a rooted non-separable map. Recall that, by convention, the infinite face lies to
the right of the root-edge. Let e be the edge following the root-edge in counterclockwise order
around the infinite face. We say that M is valid if M \ e is separable.

Proposition 18. Let M be a map of the tree Tm having at least three edges, and let e be defined
as above. The parent of M in Tm is obtained by contracting e if M is valid, and deleting it
otherwise.

Proof. Given the description of the parent of an orientation O in the tree To, and the bijection
between orientations with no LOP and rooted non-separable maps, what we have to prove is the
following statement: if O is a bipolar orientation with no LOP, e the last edge on its left border,
v the starting point of e, and M the associated rooted map, then v has outdegree 1 in O if and
only if M is valid.

Assume first that v has outdegree 2 or more. The parent O of O in To is obtained by deleting
e from O. The corresponding rooted map (obtained by adding to O a root-edge from s to t) is
M \ e. It is non-separable (as it admits a bipolar orientation). This means that M is not valid.

Assume now that v has outdegree 1. Let f1 be the face lying to the right of e in O. If f1 is
the infinite face of O, then M \ e is separable (the source is a separating vertex), so that M is
valid. Now assume that f1 is a bounded face, and let s1 be its source. We need the following
lemma, the proof of which is delayed for the moment.

Lemma 19. The vertex s1 is on the left outer border of O.

This lemma implies that s1 is a separating vertex in M \ e. Indeed, deleting e and s1 from
M disconnects the vertex v from the source (Fig. 18). Hence M is valid.

v

s

t
e

s1

f1

Figure 18. If v has out degree 1, the rooted map M is valid.
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Up to minor changes (declaring e as the root edge, and taking the mirror of maps), we have
recovered the generating tree Tm of rooted non-separable planar maps given in [13, Section 2.1].
In that paper, it is shown that Tm is isomorphic to the generating tree of 2413-avoiding Baxter
permutations. The canonical (and recursive) bijection between these permutations and non-
separable planar maps that results from the existence of this isomorphism is not described
explicitly in [13]. Our paper gives a non-recursive description of this bijection (up to elementary
symmetries), as a special case of a more general correspondence. Note that the structure of the
tree Tm is not as simple as that of the more general tree To. In particular, the description given
in [13] involves an unbounded number of labels, while To is isomorphic to a simple tree T with
two integers labels.

We still have to prove Lemma 19.
Proof of Lemma 19. Assume the lemma is wrong, and that O is a minimal counterexample (in
terms of the edge number). By assumption, s1 is not on the left outer border of O. Thus the
left face of s1, called f2, is finite, with source s2 and sink t2 (Fig. 19(a)). The left border of f1
is an oriented path P0 going from s1 to t, which ends with the edge e. Let P1 be the leftmost
oriented path from s1 to t: at each vertex, it takes the leftmost outgoing edge. By planarity, the
last edge of P1 is also e. The first steps of P1 follow the right border of f2, from s1 to t2. Let
O1 be the set of edges lying betwen P1 \ e and P0 \ e (both paths are included in O1). Then O1

is a bipolar orientation of source s1 and sink v.
Observe that t2 is not incident to f1, otherwise (s1, t2, f1, f2) would form a LOP. Hence the

right face of t2, called f3, is a face of O1 (see Fig. 19(b), where only the orientation O1 and the
faces f1 and f2 are shown). Let s3 be its source, and t3 its sink. As s1 is the source of O1, there
exists an oriented path P from s1 to s3. Consider the following two paths that go from s2 to t3:
the first one follows the left border of f2 and then the portion of the left border of f3 from t2
to t3; the second follows the right border of f2 up to s1, then the path P , and finally the right
border of f3. Let O2 be the plane bipolar orientation formed of the edges lying between these
two paths (Fig. 19(c)).

The orientation O2 has fewer edges than O, and we claim that it is a counterexample to the
lemma. The last edge e′ of its left outer border is also the last edge of the left border of f3.
Hence its starting point lies between t2 and t3, and has outdegree 1 in O2. The face to the right
of e′ is f3. Moreover, the source s3 of f3 is not on the left outer border of O2, as it is separated
from this path by the face f2. Hence O2 is a smaller counterexample than O, which yields a
contradiction.

f2

f1
t2

s1

tv

s2

t3
f3

s3
Pf2

f1

s1

tv

s2

s

e

O1

t2 t3
f3

s3f2

t2

s1
s2

(a) (b) (c)

Figure 19. (a) A plane bipolar orientation with no LOP such that v has out-
degree 1. All edges are North-East oriented. The white areas are faces. The
source of f1 has to be on the left outer border, otherwise, as shown in (b)-(c),
a smaller counterexample can be produced.
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8. Final comments

It is natural to study the restriction of our bijection Φ (or its inverse Φ−1) to interesting
subclasses of permutations (or orientations), for instance those that are counted by simple num-
bers. This is the case for alternating and doubly-alternating Baxter permutations [10, 14, 22],
or for orientations of triangulations [29]. Recently, we have also discovered a new and intriguing
result, which deals with fixed-point-free Baxter involutions. It is easy to construct for them a
generating tree, analogous to the tree Tb of Baxter permutations (Fig. 8). One goes from a node
to its parent by deleting the cycle containing the largest entry. Again, the tree is isomorphic to a
generating tree with two labels (like (2)), that encode the number of lr-maxima and rl-maxima.
Using the techniques of [6], we have proved that the number of such involutions of length 2n is

3. 2n−1

(n+ 1)(n+ 2)

(
2n

n

)
,

which is also known to count Eulerian planar maps with n edges.
After a 90 degrees rotation, Baxter involutions having no fixed point are described by permu-

tation diagrams that are symmetric with respect to the second diagonal, and have no point on
this diagonal. Via the bijection Φ, they correspond to plane orientations having a single source,
but possibly several sinks, lying in the outer face (Fig. 20). It would be interesting to have a
combinatorial understanding of the above formula (and of the various refinements of it that we
have obtained).

Figure 20. A fixed-point-free Baxter involution, rotated by 90 degrees, and
the corresponding plane orientation.
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