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Abstract

In this paper, we establish a novel balanced separator theorem for Unit Disk Graphs
(UDGs), which mimics the well-known Lipton and Tarjan’s planar balanced shortest
paths separator theorem. We prove that, in any n-vertex UDG G, one can find
two hop-shortest paths P (s, x) and P (s, y) such that the removal of the 3-hop-
neighborhood of these paths (i.e., N3

G[P (s, x)∪P (s, y)]) from G leaves no connected
component with more than 2/3n vertices. This new balanced shortest-paths—3-
hop-neighborhood separator theorem allows us to build, for any n-vertex UDG G,
a system T (G) of at most 2 log 3

2

n + 2 spanning trees of G such that, for any two

vertices x and y of G, there exists a tree T in T (G) with dT (x, y) ≤ 3 · dG(x, y) +
12. That is, the distances in any UDG can be approximately represented by the
distances in at most 2 log 3

2

n + 2 of its spanning trees. Using these results, we

propose a new compact and low delay routing labeling scheme for UDGs.

Keywords: unit disk graphs, collective tree spanners, routing and distance
labeling schemes, balanced separators, efficient graph algorithms.
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1 Introduction

A common assumption for wireless ad hoc networks is that all nodes have the
same maximum transmission range. By proper scaling, one can model these
networks with Unit Disk Graphs (UDGs), which are defined as the intersection
graphs of equal sized circles in the plane. In other words, there is an edge
between two vertices in an UDG if and only if their Euclidean distance is no
more than one.

In this paper, we propose a new compact and low delay routing labeling
scheme for Unit Disk Graphs. We show that one can assign each vertex of
an n-vertex UDG G a compact O(log2 n)-bit label such that, given the label
of a source vertex and the label of a destination, it is possible to compute
efficiently, based solely on these two labels, a neighbor of the source vertex
that heads in the direction of the destination. We prove that this routing
labeling scheme has a constant hop route-stretch (= hop delay), i.e., for each
two vertices x and y of G, it produces a routing path with h(x, y) hops such
that h(x, y) ≤ 3 · dG(x, y) + 12, where dG(x, y) is the hop distance between x
and y in G. To the best of our knowledge, this is the first compact routing
scheme for UDGs which not only guaranties delivery but has a low hop delay.
It is easy to see that, for UDGs, a constant hop route-stretch implies a constant
length route-stretch. Note also that, unlike geographic routing or any other
routing strategies for UDGs (see [3,4,8] and papers cited therein), our routing
scheme is degree-independent. The label assigned to a vertex in our scheme
can be interpreted as its virtual coordinates. To assign those labels to vertices,
we need to know only the topology of the input unit disk graph and relative
Euclidean lengths of its edges.

To obtain our routing scheme, we establish a novel balanced separator the-
orem for UDGs, which mimics the well-known Lipton and Tarjan’s planar
balanced shortest paths separator theorem. We prove that, in any n-vertex
UDG G, one can find two hop-shortest paths P (s, x) and P (s, y) such that the
removal of the 3-hop-neighborhood of these paths (i.e., N3

G[P (s, x)∪P (s, y)])
from G leaves no connected component with more than 2/3n vertices. Our
new balanced shortest-paths—3-hop-neighborhood separator theorem allows us
to build, for any n-vertex UDG G = (V, E), a system T (G) of at most
2 log 3

2

n + 2 spanning trees of G such that, for any two vertices x and y of

G, there exists a tree T in T (G) with dT (x, y) ≤ 3 · dG(x, y) + 12. That is,
the distances in any UDG can be approximately represented by the distances
in at most 2 log 3

2

n + 2 of its spanning trees. Taking the union of all these

spanning trees of G, we obtain a hop (3, 12)-spanner H of G (i.e., a spanning
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subgraph H of G with dH(x, y) ≤ 3 · dG(x, y) + 12 for any x, y ∈ V ) with at
most O(n log n) edges. There is a number of papers describing different types
of power-spanners, length-spanners and hop-spanners for UDGs (see [2,5] and
literature cited therein). Many of those spanners have nice properties of being
planar or sparse, or having bounded maximum degree or bounded length (or
hop) spanner-stretch, or having localized construction. Unfortunately, neither
of those papers develops or discusses any routing schemes which could trans-
late the constant spanner-stretch bounds into some constant route-stretch
bounds.

2 Notions and notations

Let V be a set of n = |V | nodes on the Euclidean plane and let G = (V, E)
be the unit disk graph (UDG) induced by those nodes. Let also m = |E|. For
each edge (a, b) of G, by (a, b) we denote also the open straightline segment
representing it, and by |ab| the Euclidean length of the edge/segment (a, b).
For simplicity, in what follows, we will assume that any two edges in G can
intersect at no more than one point (i.e., no two intersecting edges are on the
same straight line), and no three edges intersect at the same point.

For a path P of G, the hop-count of P is defined as the number of edges on
P and the length of P is defined as the sum of the Euclidean length of its edges.
For any two vertices x and y of G, we denote: by dG(x, y), the hop-distance
(or simply distance) in G between x and y, i.e., the minimum hop-count of any
path connecting x and y in G; by lG(x, y), the length-distance in G between x
and y, i.e., the minimum length of any path connecting x and y in G.

Let H = (V, E′) be a spanning subgraph of a graph G = (V, E). We say
that H is: hop (α, β)-spanner of G if dH(x, y) ≤ α · dG(x, y) + β, for any
x, y ∈ V ; length (α, β)-spanner of G if lH(x, y) ≤ α · lG(x, y) + β, for any
x, y ∈ V . It is said (see [1]) that a graph G admits a system of μ collective
tree (α, β)-spanners if there is a system T (G) of at most μ spanning trees of
G such that for any two vertices x,y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ α · dG(x, y) + β.

For a vertex v of G, the kth neighborhood of v in G is the set Nk
G[v] =

{u ∈ V : dG(v, u) ≤ k}. For a set S ⊆ V , by Nk
G[S] =

⋃
v∈S Nk

G[v] we denote
the kth neighborhood of S in G.

A graph family Γ is said (see [7]) to have an l(n) bit (s, r)-approximate

distance labeling scheme if there is a function Label labeling the vertices of
each n-vertex graph in Γ with distinct labels of up to l(n) bits, and there
exists an algorithm/function f , called distance decoder, that given two labels
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Label(v), Label(u) of two vertices v, u in a graph G from Γ, computes, in time
polynomial in the length of the given labels, a value f(Label(v), Label(u))
such that dG(v, u) ≤ f(Label(v), Label(u)) ≤ s · dG(v, u) + r. Note that the
algorithm is not given any additional information, other that the two labels,
regarding the graph from which the vertices were taken. Similarly, a family Γ
of graphs is said (see [7]) to have an l(n) bit routing labeling scheme if there
exist a function Label, labeling the vertices of each n-vertex graph in Γ with
distinct labels of up to l(n) bits, and an efficient algorithm/function, called the
routing decision or routing protocol, that given the label Label(v) of a current
vertex v and the label Label(u) of the destination vertex u (the header of the
packet), decides in time polynomial in the length of the given labels and using
only those two labels, whether this packet has already reached its destination,
and if not, to which neighbor of v to forward the packet.

Let R be a routing scheme and R(x, y) be a route (path) produced by R
for a pair of vertices x and y in a graph G. We say that R has: hop (α, β)-
route-stretch if hop-count of R(x, y) is at most α·dG(x, y)+β, for any x, y ∈ V ;
length (α, β)-route-stretch if length of R(x, y) is at most α · lG(x, y) + β, for
any x, y ∈ V .

3 Intersection lemmas and preliminaries

In this section we present few auxiliary lemmas. Their proofs are omitted in
this version.

Lemma 3.1 In an UDG G = (V, E), if edges (a, b), (c, d) ∈ E intersect, then
G must have at least one of (a, c), (b, d) and at least one of (a, d), (c, b) in E.

Let r be an arbitrary but fixed vertex of an UDG G = (V, E), and
L0, L1, . . . Lq be the layering of G with respect to r, where Li = {u ∈ V :
dG(r, u) = i}. For G, using this layering, we construct a layering tree Torig

rooted at r as follows: each vertex v ∈ Li (i ∈ {1, . . . , q}) chooses a neighbor
u in Li−1 such that |vu| is minimum (closest neighbor in Li−1) to be its fa-
ther in Torig (breaking ties arbitrarily). Let E(Torig) be the edge set of Torig.
This tree Torig will help us to construct a balanced separator for G. It will be
convenient, for each vertex v ∈ V , by L(v) to denote the layer index of v, i.e.,
L(v) = dG(r, v).

Lemma 3.2 In Torig, no two edges (a, b) and (c, d) with L(a) = L(c) and
L(b) = L(d) can cross.
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Lemma 3.3 Let (a, b), (c, d) be two edges in Torig that intersect. If L(a) =
L(b) − 1, L(c) = L(d) − 1 and L(a) ≤ L(c), then L(a) = L(c) − 1, (a, d) �∈ E
and (b, c) ∈ E.

For an UDG G = (V, E), in what follows, by Gp = (Vp, Ep) we denote the
planar graph obtained from G by turning each edge intersection point in G
into a vertex in Gp. The vertices of Torig (i.e. vertices of G) will be called
real vertices, to differentiate them from imaginary and null points that will be
defined later. In the following, we will use the term ”element” as a general
name for real vertices, imaginary points and null points. Below, we will create
an imaginary point (details will be given later) at the point where two edges
(a, b) and (c, d) from Torig intersect. By Lemma 3.3, we may assume that
L(a) = L(c) − 1. Now, assuming that the imaginary point is m, we define
a(m) = a, b(m) = b, c(m) = c and d(m) = d.

4 Balanced separators for UDGs

In this short version of the paper, we demonstrate our idea of construction
of a balanced separator on a simple case of special unit disk graphs, so-called
simple-crossing UDGs. For much more complicated case, where we construct
a balanced separator for an arbitrary UDG, we refer the reader to the full
version of the paper. We define a simple-crossing UDG to be an UDG with
each edge crossing at most one other edge.

In what follows, we will transform tree Torig into a special spanning tree
T for the planar graph Gp. Let T = Torig initially. For each two intersecting
edges (a, b) and (c, d) of Torig (by Lemma 3.3, we know L(a) = L(c) − 1), we
do the following. Create a vertex ma,b,c,d at the point where (a, b) and (c, d)
intersect. We call ma,b,c,d an imaginary point. Remove edges (a, b), (c, d) from
T and add vertex ma,b,c,d and edges (ma,b,c,d, d), (a, ma,b,c,d) and (b, ma,b,c,d)
into T . One can see that all the descendants of b and d in T find their way to
the root via a. There are two other kinds of edge intersections in G. Assume
a tree-edge (u, w) intersects a non-tree-edge (s, t). We create a new vertex,
called a null point, say o, at the point where (u, w) and (s, t) intersect. We
remove edge (u, w) from T and add vertex o and edges (u, o), (o, w) into T .
Assume two non-tree-edges (a, b) and (c, d) intersect. We create a new vertex,
called a null point, say o, at the point where (a, b) and (c, d) intersect. We
add vertex o (as a pendant vertex) and edge (a, o) into T .

It is easy to see that T is a spanning tree for Gp. We will need the Lipton
and Tarjan’s planar separator theorem [6] in the following form.
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Theorem 4.1 [6] Let G be any planar graph with non-negative vertex weights
and W be the total weight of G (which is the sum of the weights of its vertices).
Let T be any spanning tree of G rooted at a vertex r. Then, there exist two
vertices x and y in G such that if one removes from G the tree-paths connecting
in T r with x and r with y, then each connected component of the resulting
graph has total weight at most 2/3W .

We can apply Theorem 4.1 to T and Gp by letting the weight of each real
vertex be 1 and the weight of each imaginary or null point be 0 in Gp. Then,
there must exist in T two paths P1 = PT (r, x) and P2 = PT (r, y) such that
removal of them from Gp leaves no connected component with more than 2/3n
real vertices.

Using paths P1 = (x0 = r, x1, . . . , xk−1, xk = x) and P2 = (y0 = r, y1, . . . ,
yl−1, yl = y) of Gp (of T ), we can create a balanced separator for G as follows:
(1) Skip all the null points in P1 and P2;
(2) Skip every imaginary point in Pi which is collinear with its two neighbors
in Pi (i = 1, 2);
(3) For any imaginary point ma,b,c,d in Pi (i = 1, 2) which is not collinear
with its two neighbors in Pi (the only possible case is when L(a) = L(c) − 1
and imaginary point ma,b,c,d connects a and d in Pi), replace the subpath
(a, ma,b,c,d, d) by either (a, c, d) (if (a, c) ∈ E) or (a, b, d) (if (b, d) ∈ E). By
Lemma 3.1, (a, c) or (b, d) is in E.

Let P ′

i be the resulting path obtained from Pi (i = 1, 2). It is easy to
check that P ′

1
and P ′

2
are hop-shortest paths in G. We can also show that

the union of N1

G[P ′

1
] and N1

G[P ′

2
] is a balanced separator for G, i.e., removal of

N1

G[P ′

1
]∪N1

G[P ′

2
] from G leaves no connected component with more that 2/3n

vertices. Assume that removal of P1 and P2 from Gp = (Vp, Ep) results in
removing a set of edges E′

p from Ep, and removal of N1

G[P ′

1
] and N1

G[P ′

2
] from

G = (V, E) results in removing a set of edges E ′ from E. It is easy to check
that, for any edge e′p ∈ E ′

p there exists an edge e′ ∈ E ′ that covers e′p. The
latter implies that N1

G[P ′

1
] ∪ N1

G[P ′

2
] is a balanced separator for G.

In an arbitrary unit disk graph G, an edge may cross any number of other
edges. Our basic strategy for building a balanced separator for G is similar to
one we used in the case of a simple-crossing UDG, but details are much more
complicated. In this version of the paper, we report only the final result.

Theorem 4.2 In any unit disk graph G, one can find two hop-shortest paths
P1 and P2 such that the union of N3

G[P1] and N3

G[P2] is a balanced separator for
G with 2/3-split, i.e., removal of N3

G[P1]∪N3

G[P2] from G leaves no connected
component with more than 2/3n vertices.
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5 Collective tree spanners for UDGs with applications

In this section, we show how one can use the above balanced separator theorem
for UDGs to construct for them collective tree spanners with low stretch and
to develop a compact and low delay routing labeling scheme. The details can
be found in the full version of this paper. Here we list only the final results.

Theorem 5.1 Any unit disk graph G with n vertices and m edges admits a
system T (G) of at most 2 log

3/2
n + 2 collective tree (3, 12)-spanners, i.e., for

any two vertices x and y in G, there exists a spanning tree T ∈ T (G) with
dT (x, y) ≤ 3dG(x, y) + 12. Moreover, such a system T (G) can be constructed
in O((C + m) log n) time, where C is the number of crossings in G.

Corollary 5.2 Any unit disk graph G with n vertices admits a hop (3, 12)-
spanner with at most 2(n − 1)(log

3/2
n + 1) edges.

Theorem 5.3 The family of n-vertex unit disk graphs admits an O(log2 n)
bit (3, 12)-approximate distance labeling scheme with O(log n) time distance
decoder.

Theorem 5.4 The family of n-vertex unit disk graphs admits an O(log2 n) bit
routing labeling scheme. The scheme has hop (3, 12)-route-stretch. Once com-
puted by the sender in O(log n) time, headers never change, and the routing
decision is made in constant time per vertex.

Theorem 5.5 Any unit disk graph G with n vertices and m edges admits a
system T (G) of at most 2 log

3/2
n+2 collective tree length (5, 13)-spanners, i.e.,

for any two vertices x and y in G, there exists a spanning tree T ∈ T (G) with
lT (x, y) ≤ 5lG(x, y) + 13. Moreover, such a system T (G) can be constructed
in O((C + m) log n) time, where C is the number of crossings in G.

Corollary 5.6 Any unit disk graph G with n vertices admits a length (5, 13)-
spanner with at most 2(n − 1)(log

3/2
n + 1) edges.

Theorem 5.7 The family of n-vertex unit disk graphs admits an O(log2 n)
bit (5, 13)-approximate length-distance labeling scheme with O(logn) time dis-
tance decoder.

Theorem 5.8 The family of n-vertex unit disk graphs admits an O(log2 n)
bit routing labeling scheme. The scheme has length (5, 13)-route-stretch. Once
computed by the sender in O(logn) time, headers never change, and the rout-
ing decision is made in constant time per vertex.
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6 Conclusion

In this paper, we showed that every unit disk graph G has a balanced sepa-
rator of form N3

G[P1] ∪ N3

G[P2], where P1 and P2 are hop-shortest paths of
G. Using this separator theorem, we constructed for unit disk graphs collec-
tive tree spanners with low stretch and developed routing labeling schemes
with O(log2n) bit labels and hop (3,12)-route-stretch and length (5,13)-route-
stretch. It is interesting to know if those stretch factors can be improved and if
every unit disk graph G admits a balanced separator of form N1

G[P1]∪N1

G[P2],
where P1 and P2 are (hop- or length-) shortest paths of G.
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