Kneser Colorings of Uniform Hypergraphs
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Abstract

For fixed positive integers r, k and ¢ with ¢ < r, and an r-uniform hypergraph H,
let k(H,k,¢) denote the number of k-colorings of the set of hyperedges of H for
which any two hyperedges in the same color class intersect in at least ¢ vertices.
Consider the function KC(n,r, k,¢) = maxgey, k(H,k,¢), where the maximum
runs over the family H,, of all r-uniform hypergraphs on n vertices. In this paper,
we determine the asymptotic behavior of the function KC(n,r, k,¢) and describe
the extremal hypergraphs. This variant of a problem of Erdds and Rothschild, who
considered colorings of graphs without a monochromatic triangle, is related to the
Erdés-Ko-Rado Theorem [3]| on intersecting systems of sets.
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1 Introduction

A hypergraph H = (V, E) is given by its vertex set V and its set E of hyper-
edges, where e C V for each hyperedge e € E, and H = (V, E) is said to be
r-uniform if each e € E has cardinality r. For a fixed r-uniform hypergraph F,
an r-uniform host-hypergraph H and an integer k, let ¢, (H) be the number
of k-colorings of the set of hyperedges of H with no monochromatic copy of F
and let ¢, p(n) = maxpgey, crr(H), where H,, is the family of all r-uniform
hypergraphs on n vertices. Given an r-uniform hypergraph F, let ex(n, F') be
the usual Turdn number of F, i.e., the maximum number of hyperedges in an
r-uniform n-vertex hypergraph that contains no copy of F'. A hypergraph for
which maximality is achieved is said to be an extremal hypergraph for F.

Every coloring of the set of hyperedges of any extremal hypergraph H for F’
trivially contains no monochromatic copy of F' and, hence, ¢y, (n) > k()
for all & > 2. On the other hand, if Forbp(n) denotes the family of all
hypergraphs with vertex set [n] = {1,...,n} that contain no copy of F, every
2-coloring of the set of hyperedges of a hypergraph H on [n| containing no
monochromatic copy of F' gives rise to a member of Forbp(n); thus ¢y p(n) <
| Forbg(n)|. The size of Forbg(n) was first studied by Erdgs, Kleitman, and
Rothschild [2| for FF = Kj, the triangle. This has been extended since to
several other classes of graphs. For r-uniform hypergraphs, Nagle, Rodl, and
Schacht 5] proved that |Forbg(n)| < 2¢x(nF)+e(") " Thus, for 2-colorings of
the set of hyperedges and any fixed r-uniform hypergraph F we have

2ex(n,F) < CQ’F(TL) < 2ex(n,F)+0(n1~)_ (1)

For r = 2 and cliques F' = K, Alon, Balogh, Keevash, and Sudakov [1|
showed that the lower bound in (1) is the correct value of ¢y ,(n) for n > ny.
Moreover, for 3-colorings, they proved that c3 g, (n) = 3ex(mKe) for n > ng. In
both cases, k = 2 and k = 3, equality is achieved only by the (¢ — 1)-partite
Turén graph on n vertices. However, it was observed in [1] that ¢ g, (n) >
kex(Ke) for any fixed k > 4 and n > ny.

An extension of these results to hypergraphs has been given recently in [4]
for the Fano plane F'. There it was shown in the case of k-colorings, k € {2, 3},
that every 3-uniform hypergraph H on n > ng vertices satisfies ¢ p(H) <
kex(F) wwith equality being attained by a unique extremal hypergraph.

Here, we investigate a variant of this problem, where we forbid pairs of hy-
peredges of the same color that share fewer than ¢ vertices, thus forcing every
color class to be l-intersecting. Formally, for fixed integers r, { with 1 < ¢ < r,
and i € [{], let F,; be the r-uniform hypergraph on 2r —i+ 1 vertices with two



hyperedges sharing exactly i —1 vertices, and let B, , = {F}.; : i € [{]}. Follow-
ing the notation above, let ¢; 5, ,(H) be the number of k-colorings of the set of
hyperedges of a hypergraph H with no monochromatic copy of any F' € B, ,,
which we call (k, £)-Kneser colorings, and let ¢ 5 ,(n) = maxgey, crs,,(H).
We set KC(n,r, k, () = Ck,By.g (n) and k(H, k,0) = ckﬁr’z(H).

In the spirit of [1| and [4], we show that the extremal hypergraphs H on
n vertices, i.e., those for which k(H,k,¢) = KC(n,r,k, ), for colorings with
k = 2 or k = 3 colors are essentially determined by the well-known Erd&s—
Ko—-Rado Theorem [3], while this does not hold for k£ > 4 colors.

2 Kneser Colorings with Two or Three Colors

The following result is a direct application of the Erdés—Ko—Rado Theorem
and its generalizations.

Theorem 2.1 Let n > r > { be positive integers. Then it is KC(n,r,2,0) =
2ex(Bre) - Moreover, equality is achieved by every r-uniform hypergraph H on [n]
whose hyperedges are given by an extremal configuration for B, ,. Conversely,
unless £ =1 and n = 2r, all the extremal hypergraphs have this form.

When looking at Kneser colorings with at least three colors, the following
result plays an important role.

Lemma 2.2 Let k > 2 be an integer. All optimal solutions s = (s1,...,5¢)
to the maximization problem

max [ [7_; se, (2)

where ¢, s1,...,8. € {1,2,...} and s;+ -+ + s. < k, have the following form:
(a) If k=0 (mod 3), then ¢ = k/3 and all the components of s are equal to 3.

(b) If k =1 (mod 3), then either c = [k/3], with exactly two components equal
to 2 and all remaining components equal to 3, or ¢ = |k/3], with exactly
one component equal to 4 and all remaining components equal to 3.

(c) If k = 2 (mod 3), then ¢ = [k/3] with exactly one component equal to 2
and all remaining components equal to 3.

As a consequence, the optimal value of (2) is 3*/3 if k = 0 (mod 3), 4-3L+/31-1
if k=1 (mod 3), and 2 -3%/3) if k =2 (mod 3).

Aiming towards finding upper bounds on the function KC(n,r,k, ), we
introduce a generalization of the concept of a vertex cover of a graph. For



a positive integer ¢, an (-cover of a hypergraph H is a set C of (-subsets of
vertices of H such that every hyperedge of H contains an element of C'. It may
be shown that, for n sufficiently large, if H* = (V, E) is an r-uniform extremal
hypergraph on [n] with minimum /¢-cover C, then the cardinality of C'is equal
to the number of components ¢ of an optimal solution to the maximization
problem (2). Moreover, H* is complete with respect to the cover C, i.e., every
r-subset of [n] containing some set ¢t € C'is a hyperedge of H*. If k = 3, this
leads directly to the extremal hypergraph H*: it has an ¢-cover of size 1, since
the single optimal solution to (2) is s; = 3, and it must be complete.

Theorem 2.3 Let r > { > 1 be integers. Then, for every n > ng, we have
n—~

KC(n,r,3,0) = 3(7=). Moreover, for n > ng equality is achieved only by the

(n,r,0)-star Sy,

3 Colorings with at Least Four Colors

For k > 4, two additional questions arise. On the one hand, the structural
result of the previous section does not determine precisely the size of a min-
imum (-cover of the extremal hypergraph when & = 1 (mod 3), since there
are two types of optimal solutions to (2). On the other hand, for & > 5, all
optimal solutions to (2) have more than one component, which suggests that
the way in which the cover elements intersect may play a role.

For positive integers k, r > 2, ¢ < r, ¢ and n > max{r,cl}, let C be a
set of cardinality ¢ whose elements are (-subsets of [n]. The (C,r)-complete
hypergraph He,(n) has vertex set [n] and the set of hyperedges is given by
all r-subsets of [n] containing some element of C' as a subset. If C' consists of
exactly [k/3]| mutually disjoint ¢-subsets of [n], then we denote the hypergraph
HC,T(”) by Hn,r,k,f-

For k = 4 colors, we show that KC(n,r, k,¢) is achieved only by hyper-
graphs with minimum /-cover of size two. This leads to the following charac-
terization.

Theorem 3.1 Letr > (¢ > 1 be integers. Given a positive integer n, let H* be
an r-uniform hypergraph on n| satisfying k(H*,4,0) = KC(n,r,4,(). Then,
for n > ng, H* is isomorphic to He,(n) for some £-cover C = {t1,ts}.

If we have k > 5 colors available, the way in which the cover elements
intersect affects the number of Kneser colorings significantly.

Theorem 3.2 Letr > (¢ >1 and k > 5. Let H* be an r-uniform hypergraph
on [n| with k(H*, k, ) = KC(n,r, k,{). Then, for n > ng, the following holds.



(a) If r > 20, then H* is isomorphic to Hy, , 0.
(b) If r < 2¢, then H* is isomorphic to He,(n) for a set C = {t1,...,tew)} of
(-subsets of [n] with c(k) = [k/3], and [t;Ut;| > r for alli,j € [c(k)], i # j.

For the case of arbitrary k£ > 4, we may derive the asymptotic behavior of
KC(n,r k,¢) from a careful estimate on the number «(n,, k,¢) of a special
class of Kneser colorings of the hypergraph H,, , 1 ¢.

Theorem 3.3 Letr > (> 1 and k > 4 be fized integers. Then KC(n,r, k, () =
(14 f(n)) a(n,r, k, L), where f(n) is a function that tends to 0 as n tends to
nfinity, and

(i) a(n,r,k,0) = N(k)D(k)=0) if k=4 or r < 20,

(ii) a(n,r,k,0) < N(&)KEDCE) DE) ) if k> 5 and r > 20, where

(if k=0 (mod 3), N(k) = oy and D(k) = 34

if k=1 (mod 3), N(k) = (L%H)% and D(k)=4- 3ls)-1
33

i k=2 (mod 3), N(k) = ([5] +1) —57 and D(k) =2 3l5]
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