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Abstract

An S-colouring of a cubic graph G is an edge-colouring of GG by points of a Steiner
triple system S such that the colours of any three edges meeting at a vertex form
a block of §. In this note we present an infinite family of point-intransitive Steiner
triple systems S such that (1) every simple cubic graph is S-colourable and (2) no
proper subsystem of S has the same property. Only one point-intransitive system
satisfying (1) and (2) was previously known.
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1 Introduction

A Steiner triple system S = (V, B) of order v consists of a set V' of v elements,
called points, and a collection B of 3-element subsets of V', called blocks, such
that every 2-element subset of V' is contained in exactly one block. It is well
known that a Steiner triple system of order v exists if and only if v =1 or 3
(mod 6) (see Kirkman [5]).

Given a Steiner triple system S, an S-colouring of a cubic graph G is an
edge-colouring of G by points of & such that the colours of any three edges
meeting at a vertex form a block of §. This kind of colouring was introduced
by Archdeacon [1] in 1986 and later studied by a number of authors (for
example, see [2,4,6,8]). Interesting connections between Steiner colourings
and several difficult conjectures, such as the cycle double cover conjecture and
the Fulkerson conjecture, are discussed in [1,7,8].

One of the questions that naturally arise in this area is whether a given
Steiner triple system S is universal, that is, whether every simple cubic graph
admits an S-colouring. Somewhat surprisingly, the best known geometric
examples of Steiner triple systems, the projective systems PG(n,2) and the
affine systems AG(n, 3), include no universal member [4]. The first universal
Steiner triple system (of order 381) was found by Grannell et al. [2]. Pal and
Skoviera [9] improved this result by identifying a subsystem of the previous
system of order 21 that is also universal. Further significant progress was made
by Kral” et al. [6] who proved that every non-trivial point-transitive Steiner
triple system that is neither projective nor affine is universal. In particular,
the smallest order of a universal system is 13. In contrast, very little is known
about colourings by point-intransitive Steiner triple systems. In fact, only one
universal point-intransitive system is currently known [6].

In this note we describe an infinite family of point-intransitive universal
Steiner triple systems based on the Wilson-Schreiber construction [10,11]. The
smallest member of the family has order 15. Infinitely many of these systems
are minimally universal, that is, they do not contain a proper universal sub-
system. A detailed discussion and proofs will appear in a further paper [3].

2 Wilson-Schreiber Systems and Colourings

Let A be an Abelian group of order n, written additively. We construct a
Steiner triple system S of order v = n 4+ 2 whose points are the elements of
A and two additional points « and 3. The construction applies only when,
for every prime divisor p of n, the order of —2 (mod p) is even; we call such



a group admissible. Since v is the order of a Steiner triple system, we have
v = 1lor3 (mod 6), so n = 1orb (mod 6), and therefore neither 2 nor 3
divides n.

Let us list all unordered triples (a, b, ¢) of elements of A with a+b+c¢ =0
and repetitions allowed. For each triple (a, b, ¢) with pairwise distinct entries
we include the set {a, b, c} as a block of S. The triples of the form (a, a, —2a)
where a € A—0 can be partitioned into orbits under the action of the mapping
z+— —2z, z € A. Since A is admissible, the number of triples in each orbit is
even. Pick one of the orbits and replace the repeated element in each triple by
« and [ alternately along the orbit. Process each orbit similarly, and include
all sets {«, a, —2a} and {3, b, —2b} obtained in this way as blocks of S. Finally,
replace the triple (0,0,0) with {0, «, #} and include it in S.

It is easy to see that, with the above collection of blocks, § is a Steiner
triple system. Since there exist infinitely many primes p such that —2 has
even order (mod p), there are infinitely many such Wilson-Schreiber systems.
Furthermore, it can be shown that the systems constructed from the prime
groups Z, do not contain any non-trivial proper subsystem [3].

Every Wilson-Schreiber system S constructed from an admissible group
A of order greater than 9 is point-intransitive, that is, it contains two points
that cannot be mapped onto each other by an automorphism of the system.
This follows from the fact that the number of mitres having 0 as an apex
differs from the number having © € A — 0 as an apex, where a mitre is partial
subsystem of S having the form {{a, b, ¢}, {a,d, e}, {a, f,9},{0,d, f},{c,e,g}}
and the apex of the mitre is the point a.

Our main result is the following theorem.

Theorem 2.1 Let S be a Wilson-Schreiber system obtained from an admis-
sible Abelian group of order greater than 9. Then S is universal.

To show that & is universal we employ a sufficient condition based on the
existence of certain substructures in S. A rooted configuration is a configura-
tion C of points and 3-element blocks with one distinguished point, the root.
A rooted homomorphism of C into S is a homomorphism C — S such that the
root of C is mapped to a given point of S.

The following result, based on ideas from [4] and [6], will be proved in [3].

Theorem 2.2 Let P be a set of points of a Steiner triple system S. Suppose
that for every configuration C; € U = {Cy,Cy,...,Cr} (see Fig. 1) and for
every point y € P there exists a rooted homomorphism C; — S taking the
points of C; to P and the root toy. Then S is universal.



Sketch of proof of Theorem 2.1. First observe that every non-trivial
subgroup of an admissible group is admissible, and that the Wilson-Schreiber
system constructed from a subgroup is a subsystem of that constructed from
the whole group. By the classification of finite Abelian groups, and since Zs,
Zs, and Zq, are not admissible groups, it suffices to prove the result for all
admissible cyclic groups of prime order p > 13 as well as for three individual
groups Zs X Zs, Zs X Ly, and Zg X Zs.

Let p > 13 be a prime, and let S be a Wilson-Schreiber system based
on Z,. To apply Theorem 2.2, we take P = (Z, — 0) U {«, 3} and define D to
be the partial subsystem of S induced by the points from P. For each C; we
construct two particular rooted homomorphisms C; — D, one taking the root
to o or 3 and the other taking the root to some element of Z, — 0. All other
rooted homomorphisms C; — D required by Theorem 2.2 are then obtained
from these two by applying automorphisms of S. As an example, in Table 1
we display the two homomorphisms for the configuration C3. The remaining
configurations, as well as the three small groups will be dealt with in [3].

(a) Co (b) C1
root
oot
(e) C4 (f) Cs (2) Co (h) C7

Fig. 1. Set of configurations U from Theorem 2.2



group root |a | b c | dle|fl g

Zoyp>13| —2 [1|=3| 2 | —4|3|7| =5

Table 1
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