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Abstract. Let G(V,E) be a simple, undirected graph where V is the set of vertices and E is the set of

edges. A b-dimensional cube is a Cartesian product I1 × I2 × · · · × Ib, where each Ii is a closed interval of

unit length on the real line. The cubicity of G, denoted by cub(G) is the minimum positive integer b such

that the vertices in G can be mapped to axis parallel b-dimensional cubes in such a way that two vertices

are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be

represented as the intersection of intervals on the real line - i.e., the vertices of an interval graph can be

mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding

intervals overlap. Suppose S(m) denotes a star graph on m + 1 nodes. We define claw number ψ(G) of the

graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily

shown that the cubicity of any graph is at least ⌈log
2
ψ(G)⌉.

In this paper, we show that, for an interval graph G ⌈log
2
ψ(G)⌉ ≤ cub(G) ≤ ⌈log

2
ψ(G)⌉ + 2. It is not

clear whether the upper bound of ⌈log
2
ψ(G)⌉+ 2 is tight: till now we are unable to find any interval graph

with cub(G) > ⌈log
2
ψ(G)⌉. We also show that, for an interval graph G, cub(G) ≤ ⌈log

2
α⌉, where α is the

independence number of G. Therefore, in the special case of ψ(G) = α, cub(G) is exactly ⌈log
2
α⌉.

The concept of cubicity can be generalized by considering boxes instead of cubes. A b-dimensional box is a

Cartesian product I1×I2×· · ·×Ib, where each Ii is a closed interval on the real line. The boxicity of a graph,

denoted box(G), is the minimum k such that G is the intersection graph of k-dimensional boxes. It is clear

that box(G) ≤ cub(G). From the above result, it follows that for any graph G, cub(G) ≤ box(G) ⌈log
2
α⌉.
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1 Introduction

Let G(V,E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b-dimensional

box is a Cartesian product R1 × R2 × · · · × Rb, where each Ri is a closed interval on the real line. When each

interval has unit length, we will call such a box a b-dimensional cube. The cubicity (respectively boxicity) of G,

denoted by cub(G) (box(G)), is the minimum positive integer b such that the vertices in G can be mapped to axis

parallel b-dimensional cubes (boxes) in such a way that two vertices are adjacent in G if and only if their assigned

cubes (boxes) intersect. Cubicity and boxicity were introduced by Roberts in [20]. Yannakakis [24] proved that it

is NP-complete to determine if the cubicity of a graph is at most 3. It was shown by Cozzens [8] that computing

the boxicity of a graph is NP-hard. This was strengthened by Kratochvil [17] who showed that deciding whether

boxicity of a graph is at most 2 itself is NP-complete.

Roberts [20] showed that for any graph G, cub(G) ≤ ⌊2n/3⌋ and box(G) ≤ ⌊n/2⌋. By definition, the cubicity

and boxicity of a complete graph is 0. The cube representation of special classes of graphs like hypercubes,
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co-bipartite and complete multipartite graphs were investigated in [7, 24, 20]. Scheinerman [21] showed that the

boxicity of outer planar graphs is at most 2. Thomassen [22] proved that the boxicity of planar graphs is at

most 3. Adiga [1] showed that the cubicity of threshold graphs is exactly ⌈log2 α⌉ where α is the independence

number of the graph. In [9], Cozzens and Roberts studied the boxicity of split graphs. Boxicity and cubicity find

applications in niche overlap and problems of fleet maintenance in operations research (for more information see

[9]). If a graph has a box or cube representation in low dimension, some well known NP-hard problems become

either polynomial time solvable or will have a much better approximation ratio. For example, it is easy to see

that the maximum clique problem is polynomial-time solvable for graphs with bounded boxicity, while in general

it is an NP-hard problem. Finding the maximum independent set is hard to approximate within a factor n
1
2
−ǫ

for general graphs. However, it is approximable to a factor of
⌊

1 + 1
c
log n

⌋d−1
given a box representation in d

dimension. It is interesting to note that coloring problems on low boxicity graphs were considered as early as

1948 [2]. Kostochka [16] provides an extensive survey on colouring problems of intersection graphs. In [15, 11] the

complexity of finding the maximum independent set in bounded boxicity graphs is considered. In [14, 10] cubicity

has been studied in comparison with sphericity. Some other related references are [4, 6, 23, 19].

In this paper, we consider the cubicity of interval graphs. Graphs with boxicity at most 1 are precisely the

well-studied class of interval graphs. A graph is an interval graph if and only if its vertices can be mapped to

intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap.

Similarly, a graph has cubicity at most 1 if and only if it is an indifference graph (also known as unit-interval graph

or proper interval graph). We define indifference graph more formally later in the paper. It is easy to see that

boxicity and cubicity are generalizations of the concept of interval graphs and indifference graphs respectively.

From the definition of boxicity and cubicity, it is easy to see that any cube representation of a graph will also

serve as a box representation. Hence, box(G) ≤ cub(G). Therefore, it is indeed interesting to ask the following

question: what is the cubicity of a graph whose boxicity is 1?

Chandran and Mathew [5] showed that cubicity of an interval graph is at most ⌈log2 |V |⌉. They gave a con-

structive proof where all vertices were first numbered distinctly from {1, . . . , |V |} and the cube representing a

vertex was determined by the binary representation of the number assigned to it. This was later improved to

⌈log2∆⌉+ 4 in [3], where ∆ is the maximum degree of G. In that paper, the vertices are ordered in a particular

manner and then grouped into disjoint blocks of 2∆ vertices. We improve this bound further. To state our result,

we first introduce a parameter called claw number of a graph. Recall that a star graph on n vertices is the complete

bipartite graph K1,n−1. We denote it by S(n− 1).

Definition 1. The claw number ψ(G) of a graph G is the largest positive integer m such that S(m) is an

induced subgraph of G.

Our result is as follows:

Theorem 1. Let G be an interval graph with claw number ψ and independence number α.

⌈log2 ψ⌉ ≤ cub(G) ≤ min(⌈log2 ψ⌉+ 2, ⌈log2 α⌉).

It is not clear whether the upper bound of ⌈log2 ψ⌉ + 2 is tight. We have not been able to find any interval

graph with cubicity greater than ⌈log2 ψ⌉. Also, notice that α can be arbitrarily high compared to ψ. Consider

for example, a path on n > 2 vertices for which ψ = 2 and α = ⌈n/2⌉.

For the special case of ψ = α, cub(G) is exactly ⌈log2 α⌉. It is to be observed that if a graph has a universal

vertex (i.e. a vertex adjacent to all other vertices), then, ψ = α. For example, a connected threshold graph is an

interval graph which has a universal vertex. Threshold graphs are an important and well-studied class of graphs
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[18]. It is clear that the cubicity of a connected threshold graph is exactly ⌈log2 α⌉. This result was proved in

[1] using a different constructive method. Theorem 1 is therefore a generalization of this result. To compare the

result of this paper with the result cub(G) ≤ log2∆+4 given in [3] note that ∆ can be arbitrarily high compared

to ψ. One example is a complete graph, where ψ = α = 1, whereas ∆ = |V | − 1.

Also, this particular upper bound of ⌈log2 α⌉ allows us to bound the cubicity of any arbitrary graph in terms

of its boxicity. It is stated below.

Corollary 1. Let G be any graph. cub(G) ≤ box(G) ⌈log2 α⌉.

This is an improvement over the upperbound cub(G) ≤ box(G) ⌈log2 |V |⌉ given by Chandran and Mathew [5].

The star graph S(3) is also known as a claw. Claw free graphs are those which do not contain an induced

copy of a claw. An interval graph is claw free if and only if it is an indifference graph [13]. Our result can be

considered as an extension of this result by observing that for an indifference graph, cubicity is at most 1 and its

claw number is at most 2.

1.1 Preliminaries and Results

In this section, we mention some useful properties and results regarding interval graphs and cubicity. Here, we

give a formal definition of indifference graphs which we make use of in later sections.

Definition 2. Indifference graph: A graph G(V,E) is an indifference graph if and only if there exists a function

Π : V −→ R such that for two distinct vertices u and v, u and v are adjacent if and only if |Π(u) − Π(v)| ≤ t,

for some fixed positive real number t.

It is easy to see that a graph has cubicity 1 if and only if it is an indifference graph.

Property 1. (See Golumbic [13] for a proof.) A graph G is an interval graph if and only if its maximal cliques can

be linearly ordered such that for every vertex u the maximal cliques containing u occur consecutively.

For a graph G(V,E), let Gi(V,Ei), i ∈ {1, 2, . . . , k} be such that E = E1 ∩ E2 ∩ · · · ∩ Ek. Then we say that G is

the intersection of Gi’s 1 ≤ i ≤ k and denote it as G =

k
⋂

i=1

Gi. Cubicity (Boxicity respectively) can be stated in

terms of intersection of indifference graphs (interval graphs) as follows:

Lemma 1. Roberts [20] The cubicity (boxicity) of a graph G is the minimum positive integer b such that G is

the intersection of b indifference graphs (interval graphs). Moreover, if G =
⋂m−1
i=0 Gi, for some graphs Gi, then,

cub(G) ≤
∑m−1
i=0 cub(Gi) and box(G) ≤

∑m−1
i=0 box(Gi).

The following result is easy to prove.

Lemma 2. Suppose H is an induced subgraph of G, then cub(G) ≥ cub(H).

2 Proof of Theorem 1

The lower bound is easy to see and is as follows. Since the claw number of G is ψ, it has an induced subgraph

S(ψ) and cub(S(ψ)) = ⌈log2 ψ⌉ (See Roberts [20]). By Lemma 2, cub(G) ≥ cub(S(ψ)) = ⌈log2 ψ⌉.

Our aim is to construct ⌈log2 ψ⌉ + 2 indifference graphs and show that G is the intersection of these graphs,

thereby proving the upper bound. First, we describe a vertex numbering which is essential for the construction

of the indifference graphs. This vertex numbering is almost identical to that described by Gardi [12] where the

author uses this numbering to partition interval graphs into proper interval subgraphs.
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2.1 Vertex Labelling and the Primary Maximum Independent Set

Let G(V,E) be an interval graph. Let C : C0, C1, . . . , Ck−1 correspond to a linear ordering of maximal cliques

satisfying Property 1, where Ci corresponds to the set of vertices in the ith maximal clique. For a vertex u, let

cu = {i|u ∈ Ci}. It is clear that cu is a set of consecutive integers. Let r(u) = max
i∈cu

i and l(u) = min
i∈cu

i denote the

rightmost and the leftmost cliques containing u respectively. Note that two vertices u and v are adjacent if and

only if cu ∩ cv 6= ∅.

Let η : V −→ Z be a labelling of vertices obtained in the following manner: Choose a vertex u0 such that

r(u0) ≤ r(v), ∀v 6= u0. Assign label 0 to u0 and all vertices adjacent to u0. u0 will be considered as a special

vertex among vertices labelled 0. Continue the same way considering only the unlabelled vertices and numbering

incrementally at each stage until all the vertices are labelled. Let IC = {u0, u1, . . .} be the collection of special

vertices. We define the algorithm more formally below:

Let V0 = V , IC = ∅, i = 0;

while Vi 6= ∅ do

ui ∈ Vi be such that r(ui) ≤ r(v) ∀v ∈ Vi;

V ′ = {ui} ∪ {v ∈ Vi|v is adjacent to ui};

η(w) = i, ∀w ∈ V ′;

Vi+1 = Vi \ V
′;

IC ←− IC ∪ {ui};

i←− i+ 1;

end

Observation 1. For any vertex v, η(v) ≤ i if and only if l(v) ≤ r(ui).

Proof. Since v is adjacent to uη(v), we have l(v) ≤ r(uη(v)). It is clear that r(uη(v)) ≤ r(ui) since η(v) ≤ i.

Therefore, l(v) ≤ r(ui).

Suppose η(v) > i. From the algorithm, it implies that r(v) > r(ui). Suppose l(v) ≤ r(ui), that is l(v) ≤ r(ui) ≤

r(v). This implies that v is adjacent to ui. Then, by the algorithm η(v) ≤ i, a contradiction. ⊓⊔

Observation 2. For two vertices v and w, if η(v) = η(w), then v and w are adjacent.

Proof. Let η(v) = η(w) = i. From Observation 1 and from the algorithm it follows that l(v) ≤ r(ui) ≤ r(v) and

l(w) ≤ r(ui) ≤ r(w). Therefore, r(ui) ∈ cv ∩ cw. Hence proved. ⊓⊔

Let l be the number of iterations in the algorithm for graph G, i.e. Vl−1 6= ∅ and Vl = ∅.

Observation 3. IC is a maximum independent set. Hence, |IC | = α.

Proof. From the vertex numbering algorithm it is evident that C is an independent set. Suppose there exists an

independent set of size greater than l. By pigeon hole principle, at least two vertices in this set will be assigned

the same number and by Observation 2, they will be adjacent to each other, a contradiction. ⊓⊔

IC is crucial to our construction. From now on we refer to it as the primary independent set with respect to the

linear ordering C.

Observation 4. 0 = r(u0) < r(u1) < · · · < r(uα−1) = k − 1.
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Proof. From Observation 1 we see that for i < α − 1, r(ui) < l(ui+1) ≤ r(ui+1). Hence, r(u0) < r(u1) < · · · <

r(uα−1). Next we show that r(u0) = 0 and r(uα−1) = k − 1.

Suppose, r(u0) 6= 0, then it is clear from the algorithm that for all vertices v with l(v) = 0, r(v) > 0. This

implies that C0 is a subset of C1, which contradicts the maximality of the cliques.

It is easy to see that r(uα−1) ≤ k − 1. Suppose r(uα−1) = t < k − 1. Consider any vertex v ∈ Ck−1. Clearly,

r(v) = k − 1 > t. Since η(v) ≤ α − 1, from Observation 1, l(v) ≤ t. Therefore, l(v) ≤ t ≤ r(v) which implies

v ∈ Ct. Hence, Ck−1 ⊆ Ct, which contradicts the maximality of the cliques. ⊓⊔

2.2 Defining the Indifference Graphs

Recall that C : C0, C1, . . . , Ck−1 is a linear ordering of the maximal cliques of G and IC = {u0, . . . , uα−1} is the

primary independent set with respect to C. We can assume that ψ(G) = 2p, where p is a positive integer. If not,

we will work with another interval graph G′ constructed in such a way that ψ(G′) = 2p and G is an induced

subgraph of G′. To construct G′ from G we consider a vertex v ∈ Ck−1. Let m be the largest positive integer

such that there exists an induced S(m) in G with v being the central vertex of this S(m). To obtain G′, we

add 2p −m new vertices v0, . . . , v2p−m−1 to G such that they form an independent set and are adjacent to only

v. Then it is easy to verify that G′ would correspond to the following linear ordering of the maximal cliques:

C′ : C ′
0, C

′
1, . . . , C

′
k+2p−m−1, where, C

′
i = Ci 0 ≤ i ≤ k − 1 and C ′

k+i = {v, vi} 0 ≤ i ≤ 2p −m − 1. Clearly, C′

satisfies Property 1 and therefore G′ is an interval graph. Moreover, we have an induced star S(2p) with v as the

central vertex. Clearly, the remaining vertices of G are unaffected by this construction. Hence, ψ(G′) = 2p.

Firstly, we provide an outline of the construction. We define a function f(·) which maps each maximal clique

Ci to a unique point on the real line. Then, we define a vertex labelling γ(·). In the ith indifference graph, for

each vertex v, we consider the ith bit position of γ(v) (more formally defined by the bit function bi(·)). If it is 0,

then, v is assigned an interval of length ψ − 1
2 whose right end point coincides with f(r(v)), i.e. the point on the

real line representing the rightmost clique containing v. If it is 1, then, v is assigned an interval of length ψ − 1
2

whose left end point coincides with f(l(v)), the point representing the leftmost clique containing v. The function

f : {0, . . . , k − 1} −→ R is defined as follows:

1. f(r(u0)) = f(0) = 0.

2. For j ∈ {r(ui) + 1, . . . , r(ui+1)}, f(j) = i+ 1
2 + j−r(ui)

2(r(ui+1)−r(ui))
, for 0 ≤ i < α− 1.

Remark 1. From Observation 4 it is clear that f is defined for each i ∈ {0, 1, . . . , k− 1}. Moreover, f is a strictly

increasing function.

Given non-negative integers a and i, the ith bit function bi(·) is defined as bi(a) =
⌊

a
2i

⌋

mod 2. Now we define

γ : V −→ {ψ, . . . , 3ψ − 1} as follows:

γ(u) =











η(u) mod ψ + ψ, if
⌊

η(u)
ψ

⌋

is even,

η(u) mod ψ + 2ψ, if
⌊

η(u)
ψ

⌋

is odd.
(1)

Recall that p = log2 ψ. Note that γ(u) is defined in such a way that for 0 ≤ i ≤ p − 1, bi(γ(u)) = bi(η(u)), i.e.

the first p bit positions of γ(u) and η(u) are identical. bp(γ(u)) = 1 and bp+1(γ(u)) = 0 when
⌊

η(u)
ψ

⌋

is even and

bp(γ(u)) = 0 and bp+1(γ(u)) = 1 when
⌊

η(u)
ψ

⌋

is odd.

Now, we define p + 2 = log2 ψ + 2 indifference graphs U0, U1, . . . , Up+1 as follows. For each Ui we define

Πi : V −→ R as per Definition 2: For u ∈ V ,

Πi(u) =

{

f(r(u))− ψ + 1
2 , if bi(γ(u)) = 0,

f(l(u)), if bi(γ(u)) = 1,
(2)

5



where 0 ≤ i ≤ p+1. In the graph Ui, two vertices u and v are made adjacent if and only if |Πi(v)−Πi(u)| ≤ ψ−
1
2 .

2.3 Proof of G =

p+1
⋂

i=0

Ui

Lemma 3. For any vertex v, j ∈ cv implies f(j) ∈
[

Πi(v), Πi(v) + ψ − 1
2

]

, 0 ≤ i ≤ p+ 1.

Proof. Let η(v) = m. In order to handle some boundary cases, we define certain notations. If q < 0, then, let

r(uq) = −1. If q > α− 1, then, let r(uq) = r(uα−1) = k − 1.

Claim 1. j ∈ cv implies r(um−1) + 1 ≤ j ≤ r(um+ψ−1).

Proof. If m = 0, then it is clear that l(v) = 0 = r(u0) = r(u−1) + 1. Suppose m > 0. From Observation 1 it

immediately follows that l(v) ≥ r(um−1) + 1 and therefore j > r(um−1).

Next, we show that j ≤ r(um+ψ−1). Suppose m ≥ α− ψ. Since q = m+ ψ − 1 ≥ α− 1, we have r(um+ψ−1) =

r(uq) = r(uα−1) = k − 1. But trivially, j ≤ k − 1. Hence, we assume that m < α − ψ. Suppose v = um,

then this is trivially true from Observation 4. Hence, we assume that v 6= um. Now, if there exists j ∈ cv

such that j > r(um+ψ−1), then t = r(um+ψ−1) + 1 ∈ cv, since by Observation 1, l(v) ≤ r(um+ψ−1) and cv

is a set of consecutive integers. There exists a vertex w ∈ Ct such that w /∈ Cq, for q < t, since otherwise

Ct will be a subset of Ct−1, contradicting the fact that Cis are maximal. Clearly w 6= v. Now we claim that

η(w) = m+ ψ. Since l(w) = t > r(um+ψ−1), by Observation 1, η(w) ≥ m+ ψ. Also l(um+ψ) > r(um+ψ−1) which

implies r(um+ψ) ≥ l(um+ψ) ≥ t = l(w). By the algorithm to compute η(·), r(w) ≥ r(um+ψ). Therefore, we have

l(w) ≤ r(um+ψ) ≤ r(w) which implies that w is adjacent to um+ψ, which in turn means η(w) = m + ψ. Since

v, w ∈ Ct, they are adjacent. Clearly, the vertex set V ′ = {um, um+1, . . . , um+ψ−1, w} forms an independent set

since l(w) = t > r(um+ψ−1). Also, all the vertices of V ′ are adjacent to v since, l(v) ≤ r(um) ≤ r(um+ψ−1) <

l(w) ≤ r(v). Therefore, {v} ∪ V ′ forms an induced star S(ψ + 1), a contradiction. Hence, j ≤ r(um+ψ−1).

Claim 2. f(r(v))− f(l(v)) < ψ − 1
2 .

Proof. From Claim 1 we have r(um−1) + 1 ≤ l(v) ≤ r(v) ≤ r(um+ψ−1). Now, by the definition of f and noting

that f is a strictly increasing function: max
(

m− 1
2 , 0

)

< f(l(v)) ≤ f(r(v)) ≤ min (m+ ψ − 1, α− 1).

To complete the proof, we need to show that [f(l(v)), f(r(v))] ⊆
[

Πi(v), Πi(v) + ψ − 1
2

]

. If bi(γ(v)) = 0,

[

Πi(v), Πi(v) + ψ −
1

2

]

=

[

f(r(v))− ψ +
1

2
, f(r(v))

]

,

and if bi(γ(v)) = 1,
[

Πi(v), Πi(v) + ψ −
1

2

]

=

[

f(l(v)), f(l(v)) + ψ −
1

2

]

.

In both cases it is sufficient to show that f(l(v)) > f(r(v))−ψ+ 1
2 , which immediately follows from Claim 2. ⊓⊔

Lemma 4. If v, w ∈ V such that v and w are adjacent in G, then, v and w are adjacent in all the p+2 indifference

graphs.

Proof. Since v and w are adjacent, cv ∩ cw 6= ∅. From Lemma 3 it follows that if j ∈ cv ∩ cw, then, f(j) ∈
[

Πi(v), Πi(v) + ψ − 1
2

]

∩
[

Πi(w), Πi(w) + ψ − 1
2

]

and hence, |Πi(v)−Πi(w)| ≤ ψ −
1
2 for 0 ≤ i ≤ p+ 1. ⊓⊔

Lemma 5. If v, w ∈ V such that v and w are not adjacent in G, then there exists an indifference graph Ui,

i ∈ {0, . . . , p+ 1}, in which u and w are not adjacent.
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Proof. Without loss of generality we assume that r(v) < l(w). Since l(w) > r(v) ≥ r(uη(v)), from Observation 1

it follows that η(v) < η(w).

Let qv =
⌊

η(v)
ψ

⌋

and qw =
⌊

η(w)
ψ

⌋

. Now we consider the following cases separately:

1. Suppose qw = qv: Recalling that η(u) mod ψ = γ(u) mod ψ, ∀u, γ(v) mod ψ < γ(w) mod ψ. This in turn

implies that there exists i < log2 ψ = p such that bi(γ(v)) = 0 and bi(γ(w)) = 1. Then,

Πi(w)−Πi(v) = f(l(w))− f(r(v)) + ψ −
1

2
> ψ −

1

2
.

The last inequality follows from the fact that, by definition f(·) is a strictly increasing function.

2. Suppose qw = qv + 1: If qv is odd, then bp(γ(v)) = 0 and bp(γ(w)) = 1 and therefore, as in Case 1, Πp(w)−

Πp(v) > ψ− 1
2 . If qv is even, then bp+1(γ(v)) = 0 and bp+1(γ(w)) = 1 and similarly,Πp+1(w)−Πp+1(v) > ψ− 1

2 .

3. Suppose qw = qv + 2: If qv is even, then, bp(γ(v)) = bp(γ(w)) = 1. Πp(w) −Πp(v) = f(l(w)) − f(l(v)). For

improved readability, let c = qvψ and d = qwψ. Note that η(w) ≥ d, and therefore, from Observation 1,

l(w) ≥ r(ud−1) + 1. Similarly, η(v) ≤ c+ ψ − 1, and again from Observation 1, l(v) ≤ r(uc+ψ−1). Therefore,

f(l(w))− f(l(v)) ≥ f(r(ud−1) + 1)− f(r(uc+ψ−1))

>

(

d− 1 +
1

2

)

− (c+ ψ − 1)

=

(

c+ 2ψ +
1

2

)

− (c+ ψ)

= ψ +
1

2
> ψ −

1

2
.

If qv is odd, then, bp+1(γ(v)) = bp+1(γ(w)) = 1 and in a similar manner as above, we can show that

Πp+1(w)−Πp+1(v) > ψ − 1
2 .

4. Suppose qw > qv +2: If bp(γ(v)) = bp(γ(w)) = 1, then, we can show that Πp(w)−Πp(v) > ψ− 1
2 in the same

way as Case 3. In a similar way, if bp+1(γ(v)) = bp+1(γ(w)) = 1, we can show that Πp+1(w)−Πp+1(v) > ψ− 1
2 .

Otherwise, from the definition of γ(·), it is easy to see that either (1) bp(γ(v)) = 0 and bp(γ(w)) = 1 OR

(2) bp+1(γ(v)) = 0 and bp+1(γ(w)) = 1. As in Case 1 we can show that Πp(w) −Πp(v) > ψ − 1
2 for (1) and

Πp+1(w)−Πp+1(v) > ψ − 1
2 for (2).

Hence proved. ⊓⊔

Combining Lemmas 4 and 5, we have G =
⋂p+1
i=0 Ui. Hence, we have proved Theorem 1.

Note that when ψ = α, the independence number of G, we have
⌊

ηv
ψ

⌋

= 0 and therefore bp(γ(v)) = 1 and

bp+1(γ(v)) = 0 for all vertices v ∈ V . From this, it is easy to see that Up and Up+1 will correspond to complete

graphs. Therefore, cubicity of G will be exactly ⌈log2 α⌉.

Next we observe that, given any interval graph G, we can construct a graph G′ by adding a universal vertex to

G. It is easy to that G′ is an interval graph which contains G as an induced subgraph. Also, ψ(G′) = α(G′) = α.

By Lemma 2, it follows that cub(G) ≤ cub(G′) = ⌈log2 α⌉. Hence, we have proved that ⌈log2 ψ⌉ ≤ cub(G) ≤

min(⌈log2 ψ⌉+ 2, ⌈log2 α⌉).

2.4 Proof of Corollary 1

Let b = box(G). By Lemma 1, there exist b interval graphs, say Gi, 0 ≤ i < b, such that G =
⋂b−1
i=0 Gi.

Since each Gi is a supergraph of G, α(Gi) ≤ α. Therefore, cub(Gi) ≤ ⌈log2 α⌉. Again by Lemma 1, we have

cub(G) ≤
∑b−1
i=0 cub(Gi) ≤ box(G) ⌈log2 α⌉. Hence, we have proved that cub(G) ≤ box(G) ⌈log2 α⌉.
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We observe that this inequality is tight. In fact, given any two positive integers k and l, there exists a graph

G with box(G) = k, α = l such that cub(G) = k ⌈log2 l⌉. One such example is the complete k-partite graph with

|V | = kl (See Roberts [20] for proofs).
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