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Loebl–Komlós–Sós Conjecture: dense case

Jan Hladký∗ Diana Piguet†

Abstract

We prove a version of the Loebl–Komlós–Sós Conjecture for dense graphs. For each
q > 0 there exists a number n0 ∈ N such that for each n > n0 and k > qn the following
holds: if G is a graph of order n with at least n

2
vertices of degree at least k, then each tree

of order k + 1 is a subgraph of G.

Keywords: Loebl–Komlós–Sós Conjecture, Ramsey number of trees.

1 Introduction

Embedding problems play a central role in Graph Theory. A variety of graph embeddings
(subgraphs, minors, subdivisions, immersions, etc) have been studied extensively. A graph
(finite, undirected, loopless, simple; here as well as in the rest of the paper) H embeds in a
graph G if there exists an injective mapping φ : V (H) → V (G) which preserves the edges of H,
i. e., φ(x)φ(y) ∈ E(G) for every edge xy ∈ E(H). As a synonym we say that G contains H (as
a subgraph) and write H ⊆ G. Let H be a family of graphs. The graph G is H-universal if it
contains every graph from H. This fact is denoted by H ⊆ G.

In this paper we investigate embeddings of trees. This topic has received considerable
attention during the last 40 years. The class Tℓ consists of all trees of order ℓ. One can ask
which properties force a graph G to be Tℓ-universal. One sufficient condition for Tℓ-universality
can be given in terms of minimum degree.

Fact 1.1. If a graph G has the minimum degree δ(G) ≥ k then Tk+1 ⊆ G.

To prove Fact 1.1 it suffices to embed a given tree T ∈ Tk+1 greedily in the host graph G.
Loebl, Komlós and Sós conjectured (see [10]) that the minimum degree condition can be relaxed
to a median degree one.

Conjecture 1.2 (LKS Conjecture). Let G be a graph of order n. If at least n
2 of the vertices

of G have degree at least k, then Tk+1 ⊆ G.

The bound on k of the minimal degree of large degree vertices cannot be decreased. Indeed,
if G is a graph with maximum degree k − 1, then it does not contain a star K1,k. The graph
shown in Figure 1 shows that the requirement on the number of large degree vertices cannot be
relaxed substantially below n

2 . See [28] and [13] for further discussions.
There have been several partial results concerning the LKS Conjecture. In [3], Bazgan, Li

and Woźniak proved the conjecture for paths. Piguet and Stein [22] proved that the LKS Con-
jecture is true when restricted to the class of trees of diameter at most 5, improving upon results
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Figure 1: A graph with almost half of its vertices of degree k which does not contain a path of
length k.

of Barr and Johansson [2] and of Sun [26]. There are several results proving the LKS Conjecture
under additional assumptions on the host graph. Soffer [25] showed that the conjecture is true
if the host graph has girth at least 7. Dobson [7] proved the conjecture when the complement
of the host graph does not contain a K2,3.

A special case of the LKS Conjecture is when k = n
2 . This is often referred to as the

(n2 –n
2 –n

2 ) Conjecture, or Loebl’s Conjecture. Zhao [28] proved the conjecture for large graphs.

Theorem 1.3. There exists a number n0 ∈ N such that if a graph G of order n > n0 has at
least n

2 of the vertices of degrees at least n
2 , then T⌊n2 ⌋+1 ⊆ G.

An approximate version of the LKS Conjecture for dense graphs was proven by Piguet and
Stein [23].

Theorem 1.4. For each q, ε > 0 there exists a number n0 such that for each n > n0 and k > qn
the following holds. If G is a graph of order n with at least n

2 vertices of degree at least (1+ ε)k,
then Tk+1 ⊆ G.

In this paper we strengthen Theorem 1.4 by removing the ε term.

Theorem 1.5 (Main Theorem). For each q > 0 there exists a number n0 = n0(q) ∈ N such
that for each n > n0 and k > qn the following holds. If G is a graph of order n with at least n

2
vertices of degree at least k, then Tk+1 ⊆ G.

We can see from our proof of Theorem 1.5 that the requirement on the number of vertices
of large degree can be relaxed in the case when n

k
is far from being an integer.

Theorem 1.6. For each q2 > q1 > 0 such that the interval [ 1
q2
, 1
q1

] does not contain any integer,
there exist ε = ε(q1, q2) > 0 and n0 such that for each n > n0 and k ∈ (q1n, q2n) the following
holds: if G is a graph of order n with at least (12−ε)n vertices of degree at least k, then Tk+1 ⊆ G.

In the paper, we explicitly prove only Theorem 1.5. In Section 2 we sketch how the proof
method can be revised to give Theorem 1.6. However, determining the optimal value of ε(q1, q2)
remains open. Note also that Theorem 1.5 has slightly weaker assumptions on G than Theo-
rem 1.3 when reduced to the case k = ⌊n2 ⌋ — when n is odd, the requirement on degrees of
large vertices in Theorem 1.5 is smaller by one compared to Theorem 1.3.

The property which is considered in the LKS conjecture is given in terms of the median
degree. If we consider the average degree instead we obtain a famous conjecture of Erdős and
Sós which dates back to 1963.

Conjecture 1.7 (ES Conjecture, [8, p.30]). Let G be a graph of order n with more than 1
2(k−2)n

edges. Then Tk ⊆ G.
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If true, the ES Conjecture is sharp. After several partial results on the problem, a break-
through was achieved by Ajtai, Komlós, Simonovits and Szemerédi, who announced a proof of
the Erdős–Sós Conjecture for large k.

Theorem 1.8. There exists a number k0 such that for each k > k0 the following holds: if a
graph G of order n has more than 1

2(k − 2)n edges, then Tk ⊆ G.

A version of Theorem 1.8 for k linear in n could be obtained by an application of the
Regularity Lemma; such a theorem would be a counterpart to Theorem 1.5. The proof of
Theorem 1.8 by Ajtai et al. uses a decomposition technique which substantially generalizes the
Regularity Lemma, and which is applicable even to sparse graphs. Hladký, Komlós, Piguet,
Simonovits, Stein, and Szemerédi [14, 15, 16, 17] used this decomposition technique to prove an
approximate version of the LKS Conjecture (see also [18] for a high-level overview of the proof).

Theorem 1.9. For each ε > 0 there exists a number k0 such that for each k > k0 the following
holds. If G is a graph of order n with at least (12 + ε)n vertices of degrees at least (1 + ε)k, then
Tk+1 ⊆ G.

We believe that the techniques developed for Theorem 1.5 and for Theorem 1.9 can be
utilized to proving the LKS Conjecture for k sufficiently large.

The current work builds on techniques of Zhao [28] and of Piguet and Stein [23]. We
postpone a detailed discussion of similarities between our approach and theirs and of our own
contribution until Section 2. After the first version of this manuscript was posted on the arXiv,
Oliver Cooley [5] published an independent proof of Theorem 1.5.

1.1 Ramsey number of trees

In this section we show the connection between the LKS Conjecture and the Ramsey number
of trees. For two graphs F and H we write R(F,H) for the Ramsey number of the graphs F
and H. This is the smallest number m such that in each red/blue edge-coloring of Km there is
a red copy of F or a blue copy of H. For two families of graphs F and H the Ramsey number
R(F ,H) is the smallest number m such that in each red/blue edge-coloring of Km the graph
induced by the red edges is F-universal, or the graph induced by the blue edges is H-universal.
Theorem 1.5 implies an almost tight upper bound (up to an additive error of one) on the Ramsey
number of pairs of families of trees of similar orders. This partially answers a question of Erdős,
Füredi, Loebl and Sós [10]. For a fixed real p ∈ (0, 12) consider two natural numbers ℓ1 and ℓ2
such that

n0 < ℓ1 ≤ ℓ2 <
ℓ1
p
, (1.1)

where n0 = n0(
p
2 ) comes from Theorem 1.5. Consider any red/blue edge-coloring of the graph

Kℓ1+ℓ2 . We color a vertex v ∈ V (Kℓ1+ℓ2) red if it incident with at least ℓ1 red edges, and blue
otherwise (in which case it is incident with at least ℓ2 blue edges). Thus at least half of the
vertices of Kℓ1+ℓ2 have the same color. Applying Theorem 1.5 to the graph whose edges are
induced by this color, we conclude that R(Tℓ1+1,Tℓ2+1) ≤ ℓ1 + ℓ2.

For the lower bound, first consider the case when at least one of ℓ1 and ℓ2 is odd. It is a
well-known fact that there exists a red/blue edge-coloring of Kℓ1+ℓ2−1 such that the red degree
of every vertex is ℓ1 − 1. Neither a red copy of K1,ℓ1 nor a blue copy of K1,ℓ2 is contained in
Kℓ1+ℓ2−1 with this coloring. Thus R(Tℓ1+1,Tℓ2+1) > ℓ1 + ℓ2 − 1. A construction in a similar
spirit shows that R(Tℓ1+1,Tℓ2+1) > ℓ1+ℓ2−2, if both ℓ1 and ℓ2 are even. Under the assumptions
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given by (1.1) we thus have

R(Tℓ1+1,Tℓ2+1) = ℓ1 + ℓ2 , if ℓ1 is odd or ℓ2 is odd, and (1.2)

ℓ1 + ℓ2 − 1 ≤ R(Tℓ1+1,Tℓ2+1) ≤ ℓ1 + ℓ2 , otherwise. (1.3)

The ES Conjecture, if true, shows that the lower bound in (1.3) is attained.
Ramsey numbers of several other classes of trees have been investigated; the reader is referred

to a survey of Burr [4] and to newer results in [9, 11, 12].

2 Outline of the proof

We iterate the following procedure in steps i = 1, 2, 3, . . .. At the beginning of step i we
are given sets V1, . . . , Vi−1 that were obtained in previous steps. We then find a set Q ⊆
V (G) \ ⋃j<i Vj such that at least about a half of the vertices in Q are large (i. e., of degree
at least k). Furthermore, the set Q is almost isolated from the rest of the graph. Using the
Regularity Lemma, we try to embed T in Q. If we do not succeed, then we can extract from Q
a subset Vi ⊆ Q of size approximately k which is nearly isolated from the rest of the graph, and
for which at least half of the vertices are large. If we cannot embed T in any of the iterating
steps (i. e., V (G) \⋃i Vi

∼= ∅), we obtain a particular configuration of the graph G, called the
Extremal Configuration. The structure of G is then very similar to that depicted in Figure 1.
In this case, we prove that T ⊆ G, without the use of the Regularity Lemma.

In the remainder of the overview, we explain in more detail the proof of the part using the
Regularity Lemma, as well as the part when G is in the Extremal configuration.

The Regularity Lemma Part. Before applying the Regularity Lemma, we first resolve two
simple cases. The first one is when Q is close to a bipartite graph with one of its color classes
being the large vertices (see Lemma 5.1). The second case (see Lemma 5.5) is when the tree T
is locally unbalanced (see the definition on page 14). In both cases easy arguments show that
T ⊆ G.

In other cases we use the Regularity Lemma on the graph G and obtain a cluster graph
G. We apply a matching lemma (Lemma 5.8) to the subgraph induced by the clusters in Q.
This lemma guarantees the existence of one of two certain matching structures in G. Each of
these structures exposes a matching M in the cluster graph, and two clusters A and B that
are adjacent in G and that have high average degree to the matching M . These structures are
called Case I and Case II. The principle of the embedding is to use the edges of M to embed
parts of the tree T in them, and use the clusters A and B to connect these parts.

The Extremal Case Configuration. In the Extremal case we are given disjoint sets V1, . . . , Vi ⊆
V (G) such that each of them has size approximately k, contains at least nearly k

2 large vertices,
and each set Vj is almost isolated from the rest of the graph.

If the sets V1, . . . , Vi exhaust the whole graph G, we are able to show T ⊆ G as follows.
We find a set Vi0 so that most of T can be embedded in Vi0 . We may need to use a few edges
that connect distinct sets Vj and embed some part of T outside Vi0 . The way of finding these
“bridges” depends on the structure of the tree T .

If V1, . . . , Vi do not exhaust G, the method remains the same. However, it has two possible
outcomes. Either we show that T ⊆ G or we are able to exhibit a set Q ⊆ V \⋃j<i Vj with the
properties as above allowing the next step of the iteration.
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Strengthening of Theorem 1.5 — Theorem 1.6. The only place where we use the exact
bound on the number of large vertices is the last step of the Extremal case. That is, the whole
vertex set V (G) is decomposed into sets V1, . . . , Vs, each of size approximately k. Assume now
that k ∈ (q1n, q2n). We have n = |V1| + |V2| + . . . + |Vs| ≈ ks ∈ (q1sn, q2sn), yielding that the
the interval (q1s, q2s) must contain 1 (or at least to be “close to 1”). Thus the Extremal case
cannot occur when [ 1

q2
, 1
q1

] ∩ N = ∅. This suffices to prove Theorem 1.6.

Relation to previous work. The proof of Theorem 1.5 is inspired by techniques used to
prove Theorem 1.4 ([23]) and Theorem 1.3 ([28]). Both these papers build on a seminal paper of
Ajtai, Komlós and Szemerédi [1] where an approximate version of the (n2 –n

2 –n
2 ) Conjecture was

proven. In [1] the basic strategy is outlined. It is worth noting that even though [1] addresses
explicitly only the (n2 –n

2 –n
2 ) Conjecture the proof actually yields Theorem 1.4 in the regime

k
n
≥ 1

2 . As in the proof overview above, the key step is a certain matching lemma applied to
the cluster graph of the host graph.

The key ingredient in [28] was to identify — using the approach of Ajtai, Komlós and
Szemerédi combined with the Stability method of Simonovits [24] — one extremal case. This
extremal case was analysed and resolved by ad-hoc methods. The main contribution of [23] is a
more general matching lemma, which is applicable even when k

n
< 1

2 . In this paper we further
strengthen the matching lemma from [23]. The Extremal case is an extensive generalization of
the Extremal case from [28].

Algorithmic questions. Let us remark that our proof of Theorem 1.5 yields a polynomial
time algorithm for finding an embedding of each tree T ∈ Tk+1 in G, given that k and G satisfy
the conditions of Theorem 1.5. Indeed, all the existential results we use (Regularity Lemma,
and various matching theorems) are known to have polynomial-time constructive algorithmic
counterparts. We omit details.

3 Notation and preliminaries

For n ∈ N we write [n] = {1, 2, . . . , n}. The symbol △ means the symmetric difference of
two sets. The function ci : R → Z is the closest integer function defined by ci(x) = ⌊x⌋ if
x− ⌊x⌋ < 0.5, and ci(x) = ⌈x⌉ otherwise.

We use standard graph theory terminology and notation, following Diestel’s book [6]. We
define here only symbols that are not used there. The order of a graph H and the number
of its edges are denoted by v(H) and e(H), respectively. For two vertex sets X and Y we
write E(X,Y ) for the set of edges with one end-vertex in X and the other in Y . We write
e(X,Y ) = |E(X,Y )| (note that edges inside X ∩ Y get counted only once). When X and
Y are disjoint, we write H[X,Y ] for the bipartite graph they induced. For a vertex x and a
vertex set X we define deg(x,X) = degX(x) = e({x},X). For two sets X,Y ⊆ V (H) we define

the average degree from X to Y by degH(X,Y ) = e(X,Y \X)
|X| . We write degH(X) as a short for

degH(X,V (H)). Let X and Y are arbitrary (not necessarily disjoint vertex sets). We define two
variants of the minimum degree: δ(X) = minv∈X deg(v), and δ(X,Y ) = minv∈X deg(v, Y ). In
this case, we may write H in the subscript (e.g. δH(X)) to emphasize which graph we are dealing
with. We denote by N(x) the set of neighbors of the vertex x, by NX(x) the neighborhood of x
restricted to a set X, i. e., NX(x) = N(x) ∩X, and by N(X) the set of all vertices in H which
are adjacent to at least one vertex from X, i. e., N(X) =

⋃

v∈X N(v).
Let P = v1v2 . . . vℓ be a path. For arbitrary sets of vertices X1,X2, . . . ,Xℓ we say that P is

an X1 −X2 − . . .−Xℓ-path if vi ∈ Xi for every i ∈ [ℓ]. An edge xy is an X − Y edge if x ∈ X
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and y ∈ Y and a matching M is an X − Y matching if its every edge is an X − Y edge.
A pair (H,ω) is a weighted graph if H is a graph and ω : E(H) → (0,+∞) is a weight

function. For two sets X,Y ⊆ V (H) the weight of the edges crossing from X to Y is defined by
ω(X,Y ) =

∑

xy∈E(X,Y ) ω(xy). Denote also by ω the weighted degree, ω(v) =
∑

u∈V (H),vu∈E(H) ω(vu).
For a vertex v and a vertex set X we define ω(v,X) analogously to deg(v,X).

We omit rounding symbols when this does not effect the correctness of calculations.

3.1 Trees

Let T be a rooted tree with a root r ∈ V (T ). We define a partial order � on V (T ) by saying
that a � b if and only if the vertex b lies on the (unique) path connecting a with r. If a � b and
a 6= b we say that a is below b. A vertex a is a child of b if a � b and ab ∈ E(T ). The vertex b is
then the parent of a. Ch(b) denotes the set of children of b. The parent of a vertex a is denoted
Par(a) (note that Par(a) is undefined if a = r). We extend the definitions of Ch(·) and Par(·)
to an arbitrary set U ⊆ V (T ) by Par(U) =

⋃

u∈U Par(u) and Ch(U) =
⋃

u∈U Ch(u). We say
that a tree T1 ⊆ T is induced by a vertex x ∈ V (T ) if V (T1) = {v ∈ V (T ) : v � x} and we
write T1 = T (r, ↓ x), or if the root is obvious from the context T1 = T (↓ x). Subtrees induced
by a vertex are called end subtrees. Other subtrees are called internal subtrees. A subtree T0
of T is a full-subtree, if there exists a vertex y ∈ V (T ) and a set C ⊆ Ch(y), C 6= ∅ such that
T0 = T [{y} ∪⋃b∈C{v : v � b}]. Internal vertices are simply non-leaf vertices.

We will want to find a full-subtree in such a way that we have some control over its order
or over its number of leaves. To this end we will use the following fact.

Fact 3.1 ([28, Fact 7.9]). Let (T, r) be a rooted tree of order m with ℓ leaves.

(i) For each integer m0, 0 < m0 ≤ m, there exists a full-subtree T0 of T of order m̃ ∈ [m0
2 ,m0].

(ii) For each integer ℓ0, 0 < ℓ0 ≤ ℓ, there exists a full-subtree T0 of T with ℓ̃ proper leaves
(i.e. leaves of T ), where ℓ̃ ∈ [ ℓ02 , ℓ0].

For each tree F we write F⊕ and F⊖ for the vertices of its two color classes with F⊕ being
the larger one. We define the gap of the tree F as gap(F ) = |F⊕| − |F⊖|. For a tree F , a
partition of its vertices into sets U1 and U2 is called semi-independent if |U1| ≤ |U2| and U2 is
an independent set. Furthermore, the discrepancy of (U1, U2) is disc(U1, U2) = |U2| − |U1| and
the discrepancy of F is defined as

disc(F ) = max{disc(U1, U2) : (U1, U2) is semi-independent} .

Clearly, gap(F ) ≤ disc(F ).
The next three facts relate discrepancy to other properties of trees.

Fact 3.2 ([28, Fact 6.9]). Let (U1, U2) be a semi-independent partition of a tree T of order
v(T ) > 1. Then U2 contains at least |U2| − |U1| + 1 leaves.

Fact 3.3. Let r be a vertex of a tree F , and let (U1, U2) be any semi-independent partition of F .
Let K be a subset of the components of the forest F − {r} and let V (K) denote all the vertices
contained in the components of K. Then

(i) ||V (K) ∩ F⊕| − |V (K) ∩ F⊖|| ≤ disc(F ) + 1, and

(ii) |V (K) ∩ U2| − |V (K) ∩ U1| ≤ disc(F ) + 1.

6



Proof. We focus first on (i). The statement is obvious when |V (K) ∩ F⊕| − |V (K) ∩ F⊖| = 0.
Suppose that |V (K) ∩ Fa| − |V (K) ∩ Fb| = ℓ > 0, where a, b ∈ {⊕,⊖}, a 6= b is a choice of
the color classes. It is enough to exhibit a semi-independent partition (W1,W2) of the tree
F with |W2| − |W1| ≥ ℓ − 1. Partition the components of the forest F − {r} that are not
included in K into two families A and B so that A contains those components K 6∈ K for which
|V (K) ∩ Fa| ≥ |V (K) ∩ Fb|. Then the partition below satisfies the requirements.

W1 = {r} ∪ (V (K) ∩ Fb) ∪ (V (A) ∩ Fb) ∪ (V (B) ∩ Fa) ,

W2 = (V (K) ∩ Fa) ∪ (V (A) ∩ Fa) ∪ (V (B) ∩ Fb) .

The proof of (ii) is similar, and we only sketch it. Again, we shall exhibit a semi-independent
partition (W1,W2) with |W2|− |W1| ≥ |V (K)∩U2|− |V (K)∩U1|−1. We put r into W1. On the
components of K the partition into W1 and W2 is inherited from the partition (U1, U2). Every
component K 6∈ K of F − {r} is partitioned so that W2 gets the majority color class of K.

Fact 3.4. Suppose that T is a tree with disc(T ) ≤ ℓ. Let V (T ) = U1∪̇U2 be a partition such
that U2 is independent. Then for the set X of the leaves in U1 that have another leaf-sibling
in U1 we have |X| ≤ ℓ+ |U1| − |U2|.
Proof. We have |X| ≥ 2|Par(X)|. Thus, if |X| > ℓ+ |U1| − |U2|, we consider the partition

(

(U1 \X) ∪ Par(X) , (U2 \ Par(X)) ∪X
)

.

Even though we do not necessarily have Par(X) ⊆ U2 this is semi-independent partition of
discrepancy at least |U2| − |U1| + 2(|X| − |Par(X)|) > ℓ, a contradiction.

3.2 Greedy embeddings

Given a tree T and a graph H there are several situations when one can embed T in H greedily.
The simplest such setting is given in Fact 1.1. An analogous procedure works if H is bipartite,
H = (V1, V2;E), and δ(V1, V2) ≥ |T⊕|, δ(V2, V1) ≥ |T⊖|. The facts stated below generalize the
greedy procedure.

Fact 3.5 ([28, Fact 7.2(2)]). Let (U1, U2) be a semi-independent partition of a tree T . If there are
two disjoint sets of vertices V1 and V2 of a graph H such that min{δ(V1, V2), δ(V1, V1), δ(V2, V1)} ≥
|U1| and δ(V1) ≥ v(T ) − 1, then T ⊆ H.

Fact 3.6 ([28, Fact 7.2(1)]). Suppose that H is a graph with a bipartite subgraph K = (W1,W2;J).
If δ(K) > ℓ

2 and δH(W1) ≥ ℓ then Tℓ+1 ⊆ H.

Fact 3.7. Suppose H ′ ⊆ H are two graphs. If δ(H ′) ≥ x and δH(V (H ′)) ≥ ℓ, then F ⊆ H for
each tree F ∈ Tℓ+1 with at least ℓ− x leaves.

Proof. We first embed the internal vertices of F in H ′ using the greedy procedure from Fact 1.1.
We can then extend this embedding using the high degrees of V (H ′).

The next lemma allows us to embed a tree T into a graph containing a bipartite subgraph
H which can almost accomodate T . So, additional connecting structures M, E that will allow
to divert small parts of T elsewhere are introduced. The main structures assumed in the lemma
are shown in Figure 2.

Lemma 3.8. Suppose that α ∈ (0, 1
10 ) is arbitrary. For each tree T ∈ Tk+1 with less than αk

leaves the following holds. Suppose that a bipartite graph H = (A,B;E) and graphs {Hκ}κ∈I
(where I is arbitrary) are pairwise vertex-disjoint subgraphs of a graph G on vertex set V .
Suppose that the following properties are fulfilled.
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Figure 2: The situation in Lemma 3.8. Most of the set T⊖ is embedded in A, most of the set T⊕
will be embedded in B. The connections E and M are used to divert parts of T to the graphs
Hκ.

(i) δ(Hκ) > 34αk for each κ ∈ I.

(ii) δG(A) ≥ k.

(iii) There exists an A− (
⋃

κ(V (Hκ)))-matching E, and a family M of pairwise vertex-disjoint
A− (V \ V (H)) − (

⋃

κ V (Hκ)) paths. Moreover, V (E) ∩ V (M) = ∅.

(iv) |E| + |M| < αk.

(v) |A| + |E| ≥ |T⊖|.

(vi) |B| + |E| + |M| ≥ |T⊕| − 1.

(vii) δ(A,B) ≥ |B| − αk.

(viii) The set B has a decomposition B = Ba∪̇Bd, |Bd| ≤ αk, δ(Ba, A) ≥ |A| − αk, and
there exists a family Q of |Bd| pairwise vertex-disjoint A − Bd − A paths. Moreover,
V (Q) ∩ (V (E) ∪ V (M)) = ∅.

Then, T ⊆ G.

The proof is given in the Appendix.

3.3 Specific notation

A graph H is said to have the LKS-property (with parameter k) if at least half of its vertices

have degree at least k, i. e., we have |L| ≥ v(H)
2 , where L = {v ∈ V (H) : degH(v) ≥ k}.

When we refer to q, n0, n, k or G in the rest of the paper, we always refer to the objects from
the statement of Theorem 1.5. The vertex set of G is denoted by V . We partition V = L∪̇S,
where L = {v ∈ V : deg(v) ≥ k} and S = {v ∈ V : deg(v) < k}. We call the vertices from L
large and the vertices from S small. The hypothesis of Theorem 1.5 implies that |L| ≥ n

2 .
Finally T denotes a tree of order k + 1 that we want to embed in G.

We write α≪ β to express that α is sufficiently small compared to β.

4 Proof of the Main Theorem (Theorem 1.5)

The proof of Theorem 1.5 is based on an iterated application of Lemma 4.1 and 4.2 below. To
state Lemma 4.1 we need to introduce the notion of (β, σ)-extremality. The (β, σ)-extremality
says that a part of a graph resembles the extremal structure as in Figure 1. For two reals
β, σ ∈ (0, 1), a partition of the vertex set V = V1∪̇V2∪̇ . . . ∪̇Vℓ∪̇Ṽ is (β, σ)-extremal if the
following conditions are satisfied.
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• ℓ ≥ 1 .

• (1 − β)k ≤ |Vi| ≤ (1 + β)k for each i ∈ [ℓ] .

• Ṽ = ∅ or |Ṽ | > σk .

• e(Vi, V \ Vi) ≤ βk2 for each i ∈ [ℓ] , and e(Ṽ , V \ Ṽ ) ≤ βk2 .

• (12 − β)k ≤ |Vi ∩ L| for each i ∈ [ℓ] .

• |Ṽ ∩ L| ≤ (12 − σ)|Ṽ | .

Lemma 4.1 below, which will be proved in Section 7, deals with a graph that admits an
extremal partition.

Lemma 4.1. Given a number q > 0, there exists a constant cE > 0 such that the following
holds. For each σ ≤ cE there exists a number β ∈ (0, σ) such that if G is a graph satisfying
the LKS-property with k ≥ qn that admits a (β, σ)-extremal partition V = V1∪̇ . . . ∪̇Vℓ∪̇Ṽ , then
Tk+1 ⊆ G, or there exists a set Q ⊆ Ṽ such that

(i) |Q| > k
2 .

(ii) |Q ∩ L| > |Q|
2 .

(iii) e(Q,V \Q) < σk2 .

The next statement, which will be proved in Section 6, entails the regularity part of the
proof of Theorem 1.5.

Lemma 4.2. Given numbers q, c, ρ > 0 there are numbers λ ∈ (0, ρ) and n0 = n0(q, c, ρ) ∈ N

such that for each graph G on n ≥ n0 vertices satisfying the LKS-property with k ≥ qn with a
subset V∗ ⊆ V having the following properties

(i) |V∗| > ck ,

(ii) e(V∗, V \ V∗) ≤ λk2 , and

(iii) |L ∩ V∗| ≥ 1
2 (1 − λ)|V∗| ,

there exists a subset V ′ ⊆ V∗ such that

⋄ (1 − ρ)k ≤ |V ′| ≤ (1 + ρ)k ,

⋄ |V ′ ∩ L| ≥ 1
2 |V ′| , and

⋄ e(V ′, V \ V ′) ≤ ρk2 ,

or Tk+1 ⊆ G.

Proof of Theorem 1.5. Given q > 0 let cE be given by Lemma 4.1. Further let β be given by
Lemma 4.1 with input parameters q, cE and σ = cE. Set c = qβ

2 and C = ⌈1
q
⌉. We find a

sequence of parameters

0 < σ1 ≪ ρ1 ≪ σ2 ≪ ρ2 ≪ · · · ≪ ρC−1 ≪ σC ≪ ρC , (4.1)

9



constructed as follows. Set ρC = c. Inductively for each i = C, . . . , 1 let σi = λ(q, c, ρi) be given
by Lemma 4.2 for input parameters q, c and ρi. Further let βi be given by Lemma 4.1 with
input parameters q, cE and σi

2 . Finally for i > 1 set ρi−1 = βi

C
. Set n0 = max

i=1,...,C
{n0(q, c, ρi)},

where the numbers n0(q, c, ρi) are from Lemma 4.2.
Let G be a graph satisfying the conditions of Theorem 1.5 (i.e., q is fixed, n ≥ n0, and

k > qn).
Recall that ci(x) denotes the closest integer to x. Let ϑ = ci(n

k
). We iterate the following

process for at most ϑ steps. In step i, i ≤ ϑ, we prove that Tk+1 ⊆ G or we define a set
Vi ⊆ V \⋃j<i Vj such that the following conditions are fulfilled for each j ∈ [i].

(P1)i (1 − ρi)k ≤ |Vj | ≤ (1 + ρi)k,

(P2)i |L ∩ Vj | ≥ (12 − ρi)k, and

(P3)i e(Vj , V \ Vj) ≤ ρik
2.

In step i = 1, we apply Lemma 4.2 with parameters q, c, ρ1 and input set V∗ = V . We obtain
that Tk+1 ⊆ G, or there exists a set V1 satisfying (P1)1, (P2)1, and (P3)1. In step i > 1, suppose
that we have sets V1, . . . , Vi−1 satisfying (P1)i−1, (P2)i−1, and (P3)i−1. Set V ∗ = V \⋃j<i Vj .

First assume that |V ∗| > ck. If |L∩V ∗| ≥ 1
2(1−σi)|V ∗|, the graph G satisfies the conditions

of Lemma 4.2 (with input parameters q, c, ρi and input set V∗ = V ∗). Indeed, |V ∗| > ck by
assumption, e(V ∗, V \ V ∗) ≤ (i − 1)ρi−1k

2 ≤ βik
2 < σik

2 because V1, . . . , Vi−1 satisfy (P3)i−1,
and |L ∩ V ∗| ≥ 1

2(1 − σi)|V ∗| by assumption.
If |L∩V ∗| < 1

2(1−σi)|V ∗|, then the partition V = V1∪̇ . . . ∪̇Vi−1∪̇V ∗ is (Cρi−1,
σi

2 )-extremal.
Indeed,

• i > 1;

• (1 − Cρi−1)k ≤ (1 − ρi−1)k ≤ |Vj | ≤ (1 + ρi−1)k ≤ (1 + Cρi−1)k for each j ≤ i − 1 by
(P1)i−1;

• |V ∗| > ck ≥ σik
2 by assumption;

• e(Vj , V \ Vj) ≤ ρi−1k
2 ≤ Cρi−1k

2 for each j ≤ i− 1 by (P3)i−1 and
e(V ∗, V \ V ∗) ≤ (i− 1)ρi−1k

2 < Cρi−1k
2;

• |Vj ∩ L| ≥ (12 − ρi−1)k ≥ (12 − Cρi−1)k for each j ≤ i− 1 by (P2)i−1;

• |V ∗ ∩ L| < 1
2 (1 − σi)|V ∗| = (12 − σi

2 )|V ∗|.

Therefore Lemma 4.1 with parameters q, cE,
σi

2 applies. Thus Tk+1 ⊆ G, or there exists a set
Q ⊆ V ∗ satisfying Lemma 4.1 (i)–(iii). It is enough to assume the latter case. Here again, the
graph G satisfies the conditions of Lemma 4.2 (with input parameters q, c, ρi and input set V∗ =

Q). Indeed, |Q| > k
2 ≥ qβ

2 k = ck, e(Q,V \Q) < σi

2 k
2 < σik

2 and |Q ∩ L| > |Q|
2 > 1

2 (1 − σi)|Q|.
Thus Lemma 4.2 yields that Tk+1 ⊆ G, or that there exists a set Vi ⊆ Q satisfying Properties
(P1)i–(P3)i.

It remains to deal with the case |V ∗| ≤ ck. The set V is decomposed into sets V1, . . . , Vi−1,
each of which is of size approximately k, and a little set V ∗. Thus, i − 1 = θ. Having found
sets V1, . . . , Vϑ satisfying (P1)ϑ–(P3)ϑ, we set V ′

1 = V1 ∪ V ∗ and V ′
j = Vj for j ≥ 2. The thus

defined partition V = V ′
1∪̇ . . . ∪̇V ′

ϑ∪̇∅ is (β, cE)-extremal. Indeed, by (P1)ϑ–(P3)ϑ, we have

• ϑ ≥ 1;
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• (1−β)k ≤ (1− ρϑ)k ≤ |Vj | ≤ |V ′
j | ≤ |Vj |+ |V ∗| ≤ (1 + ρϑ + c)k ≤ (1 +β)k for each j ≤ ϑ;

• e(V ′
j , V \ V ′

j ) ≤ e(Vj , V \ Vj) + e(V ∗, V \ V ∗) ≤ ρϑk
2 + (ϑ − 1)ρϑk

2 ≤ βk2 for each j ≤ ϑ
(the summand e(V ∗, V \ V ∗) is necessary only when j = 1);

• |V ′
j ∩ L| ≥ |Vj ∩ L| ≥ (12 − ρϑ)k ≥ (12 − β)k for each j ≤ ϑ.

Lemma 4.1 with parameters q, cE and σ = cE yields that Tk+1 ⊆ G (as no new set Q can
be found).

5 Tools for the proof of Lemma 4.2

5.1 Sparsity in the set of large vertices

Suppose that G is a graph with the LKS-property with parameter k such that its set L of large
vertices is almost independent. In this section we provide an ad-hoc argument showing that
in (a situation a bit more general than) the setting above, we have Tk+1 ⊆ G. Indeed, in this
case G is close to a k-regular bipartite graph with color classes L and S, and thus we are roughly
in the setting of Fact 3.6.

Lemma 5.1. For every q > 0 there exists a real cS > 0 such that for each c ∈ (0, cS] and each
n-vertex graph G = (V,E) with the LKS-property with parameter k > qn, and with a set V∗ ⊆ V
satisfying

(i) |V∗| > 4
√
ck ,

(ii) e(V∗, V \ V∗) < ck2 ,

(iii) (12 − c)|V∗| < |V∗ ∩ L| , and

(iv) e(G[V∗ ∩ L]) < cn2 ,

we have Tk+1 ⊆ G.

Proof. Set cS = q910−8. Let c ∈ (0, cS] be arbitrary. Let G be any graph satisfying the
assumptions of the lemma. First observe that

|V∗| ≥ 3k
4 . (5.1)

Indeed, suppose the contrary. Assumptions (i) and (iii) imply that |V∗ ∩ L| ≥ (12 − c) 4
√
ck >

1
4

4
√
ck. By the negation of (5.1), each vertex in V∗ ∩ L emanates at least k

4 edges into V \ V∗.
Therefore e(V∗ ∩ L, V \ V∗) > 1

16
4
√
ck2, a contradiction to (ii).

Fix a set L1 ⊆ L ∩ V∗ of size |L1| = (12 − c)|V∗|. Define L2 = {u ∈ L1 : deg(u, V∗ \ L1) ≥
(1 − 2

√
c)k}. For each vertex x ∈ L1 \ L2 we have that deg(x,L1) + deg(x, V \ V∗) > 2

√
ck,

otherwise x would have been included in L2. Summing up (ii) and (iv), we have e(G[L1]) +
e(L1 \ L2, V \ V∗) < 2cn2. Theorefore, we have that

|L1 \ L2| ≤
4cn2

2
√
ck

(5.1)

< 3
√
cq−2|V∗| ≤

1

2
4
√
c|V∗| .

Consequently,
|L2| > (12 − 4

√
c)|V∗| . (5.2)

We verify that the set S̃ = {u ∈ V∗ \ L1 : deg(u,L2) ≥ (1 − 8
√
c)k} covers almost the whole set

V∗ \ L1. Define L∗ = {y ∈ V∗ \ L1 : deg(y, L2) ≥ k}. Observe that L∗ ⊆ L ∩ S̃. By (iv), less
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than cn2 edges of E[L2, V∗ \L1] are incident with a vertex from L∗. Hence the number of edges
in the bipartite graph B = G[L2, V∗ \ (L1 ∪ L∗)] is at least

e(B) ≥ |L2|(1 − 2
√
c)k − cn2

(5.2),(5.1)

≥ (12 − 2 4
√
c)|V∗|k . (5.3)

On the other hand, we upper-bound the number of edges in the graph B using the fact that for
each x ∈ S̃\L∗ and for each y ∈ V∗\(L1∪S̃) we have that degB(x) < k and degB(y) ≤ (1− 8

√
c)k,

respectively.

e(B) ≤ |S̃ \ L∗|k + |V∗ \ (L1 ∪ S̃)|(1 − 8
√
c)k

[

as S̃ ∪ (V∗ \ (L1 ∪ S̃)) = V∗ \ L1

]

= |V∗ \ L1|k − 8
√
c|V∗ \ (L1 ∪ S̃)|k

= (12 + c)|V∗|k − 8
√
c|V∗ \ (L1 ∪ S̃)|k. (5.4)

Combining (5.3) with (5.4) we obtain

|V∗ \ (L1 ∪ S̃)| ≤ 3 8
√
c|V∗| ≤

3 8
√
ck

q
. (5.5)

By the choice of L2 and S̃, the minimum degree of the vertices in L2 in the bipartite graph
G1 = G[L2, S̃] is at least (1 − 2

√
c)k − |V∗ \ (L1 ∪ S̃)|, and of those in S̃ at least (1 − 8

√
c)k.

By (5.5) and the choice of cS we have that δ(G1) > k
2 .

Fact 3.6 applied on the graphs B and G yields that Tk+1 ⊆ G.

5.2 Cutting trees, and (un)balanced trees

Definition 5.2. An ℓ-fine partition of a tree T ∈ Tk+1 rooted at a vertex R ∈ V (T ) is a
quaternary D = (WA,WB ,DA,DB) with the following properties.

(i) WA and WB are sets of vertices in V (T ). DA and DB are sets of subtrees in T . Further,
V (T ) is a disjoint union of WA, WB, and the sets V (t), t ∈ DA∪̇DB.

(ii) The distance from each vertex in WA to each vertex in WB is odd. The distance between
each pair of vertices in WA or between each pair of vertices in WB is even.

(iii) No tree from DA is adjacent1 to any vertex in WB. No tree from DB is adjacent to any
vertex in WA.

(iv) v(t) ≤ ℓ for each tree t ∈ DA ∪ DB.

(v) R ∈WA ∪WB.

(vi) max{|WA|, |WB |} ≤ 12k
ℓ
.

(vii) DB contains no internal tree.

(viii) We have
∑

t∈DA
t end-tree

v(t) ≥
∑

t∈DB

v(t) .

(ix) Each internal tree from DA is adjacent to two vertices of WA.

1a subtree t is adjacent to a vertex v if there is at least one edge from v to V (t)
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For an ℓ-fine partition D = (WA,WB ,DA,DB) the trees from DA ∪ DB are called shrubs.
For a subset F ⊆ DA ∪ DB , we denote the vertices contained in F by V (F) and we write
v(F) = |V (F)|.

It is proven in [23] that for every ℓ each tree can be cut up in a way which results in a
partition that satisfies (i)–(viii) of Definition 5.2. Here we extend this result by the additional
requirement of (ix) from Definition 5.2.

Lemma 5.3. Let T ∈ Tk+1 be a tree rooted at a vertex R and let ℓ ∈ N, ℓ < k. Then the rooted
tree (T,R) has an ℓ-fine partition.

For the proof, we shall need the following easy claim.

Fact 5.4 ([28, Proposition 7.11]). Let T be a tree with ℓ leaves. Then T has at most ℓ − 2
vertices of degree at least three.

Proof of Lemma 5.3. We first cut up the tree T into components of order at most ℓ. To this
end we start with an empty set W1 and place a token v on the root R. At each step we check
whether all the components of T − v possibly except the one containing R are of individual
orders at most ℓ. If that is the case then we insert v into W1, and we delete v as well as all the
said components from T . We restart with the token v again on R. Otherwise, we move v one
vertex down to any component of order more than ℓ. Obviously, at the stage when the process
terminates, we have |W1| ≤ k+1

ℓ+1 . Last, we add R to W1. Then |W1| ≤ k+1
ℓ+1 + 1.

Next, we want to refine the set of cut vertices W1 in order to satisfy (ix) of Definition 5.2.
To this end, consider the components D≥3 of T −W1 that neighbour at least 3 vertices of W1.
Fix an arbitrary tree t ∈ D≥3. Let X(t) ⊆ V (t) be the neighbors of W1. Let X ′(t) be all
the vertices of X(t) with the �-maximal element removed. We have |X ′(t)| = |X(t)| − 1.
Consider the tree branch(t) ⊆ t induced by the paths in t connecting all the pairs of vertices
of X(t). Let Y (t) be the vertices of degree at least 3 in branch(t). By Fact 5.4, we have
|Y (t)| ≤ |X(t)| − 2 < |X ′(t)|. Observe that a map assigning to each vertex of

⋃

t∈D≥3
X ′(t)

any of its �-minimal neighbors in W1 is injective. Set W2 = W1 ∪
⋃

t∈D≥3
Y (t). By the above,

|W2| ≤ |W1| +
∑

t∈D≥3
|X ′(t)| ≤ 2|W1| ≤ 2(k+1)

ℓ+1 + 2. Let SA and SB be a partition of all the
components of T −W2 where the respective membership of a component to SA or to SB is given
by the parity of the distance of that component to R, and further such that

∑

t∈SA
t end-tree

v(t) ≥
∑

t∈SB
t end-tree

v(t) .

In particular, we can write W2 = W2A∪̇W2B where W2A are the parents of all the components
of SA and W2B are the parents of all the components of SB .

It remains to add further cut vertices in order to satisfy (iii) and (vii) of Definition 5.2.
Initially, set W3 = W2. For each internal tree tB ∈ SB we take its unique �-maximal vertex
and add it to the set W3. Further, we add Par(W2B) ∩ V (tB) to W3. For each internal tree
tA ∈ SA we add Par(W2B) ∩ V (tA) to W3. See Figure 3. As each vertex of W2B has at most
one parent lying in some internal tree from SA ∪ SB, we have

|W3| ≤ |W2| + |{internal trees in SB}| + |W2B | .

As each internal tree can be associated with a unique vertex of W2 lying directly below it we
get |W3| ≤ 3|W2| ≤ 6(k+1)

ℓ+1 + 6 ≤ 12k
ℓ

. It is straightforward to check that the set W3 parti-
tioned according to the bipartite colouring W3 = WA∪̇WB with the correspondingly partitioned
components DA∪̇DB of T −W3 satisfies all requirements of Definition 5.2.
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Figure 3: Obtaining the set W3 from the set W2 on examples of four internal trees depending
on the parity of the neighbouring vertices of W2 (which are denoted by dots). The newly added
vertices are marked by stars.

The next lemma will allow us to remove trees which are locally unbalanced from further
considerations in our proof of Theorem 1.5. Let us introduce the notion of (un)balanced forest
now. For a real number c ∈ (0, 12) we say that a family C of trees of total order at most k+ 1 is
c-balanced if the forest formed by the trees t ∈ C with |t⊖| > c · v(t) is of order at least ck, i. e.,

∑

t∈C
|t⊖|>cv(t)

v(t) ≥ ck .

Otherwise, we say that C is c-unbalanced.
Note that when C is c-balanced, then

∑

t∈C
|t⊖| ≥ c2k . (5.6)

Lemma 5.5. For each number q > 0 there exists a constant cU > 0 such that the following
holds for each n-vertex graph G with the LKS-property with parameter k > qn. Suppose that
T ∈ Tk+1 is given. If there exists a set W ⊆ V (T ), |W | < cUk such that the family C of all
components of the forest T −W is cU-unbalanced, then T ⊆ G.

Proof. Set cU = cS
6 , where cS is given by Lemma 5.1.

If the set L induces less then cSn
2 edges then we have T ⊆ G by Lemma 5.1 with V∗ = V .

In the rest we assume that G[L] contains at least cSn
2 edges. A well-known fact asserts that

there exists a graph G′ ⊆ G[L] with minimum degree at least half of the average degree of G[L],
i. e., δ(G′) ≥ cSn ≥ 6cU(k + 1).

Let C′ ⊆ C be those trees t ∈ C for which |t⊖| ≤ cUv(t). Since C is cU-unbalanced we have
∑

t∈C\C′ v(t) < cUk. Consequently,

∑

t∈C′

v(t) = v(T ) − |W | −
∑

t∈C\C′

v(t) > k + 1 − cUk − cUk > (1 − 2cU)(k + 1) . (5.7)

Fact 3.2 gives that each tree t ∈ C′, v(t) > 1 contains more than (1− 2cU)v(t) leaves. The same
property holds trivially for each tree t ∈ C′, v(t) = 1. Employing (5.7), we get that there are at
least (1 − 2cU)

∑

t∈C′ v(t) ≥ (1 − 4cU)(k + 1) leaves in the trees of C′. A leaf of a tree t ∈ C′ is
either a leaf of T or it is adjacent to a vertex in W . We root T at an arbitrary vertex r, thus
obtaining a partial order �. Let X be the set of vertices that are leaves of some tree t ∈ C′ but
not leaves of T . Each vertex in X is either a �-minimal or a �-maximal vertex of some tree
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t ∈ C. Let Xmin ⊆ X be the �-minimal vertices and Xmax = X \Xmin. (Note that the vertices
which come out from 1-vertex trees of C′ are included only in Xmin.) As each tree in C′ has a
unique �-maximal vertex we get |Xmax| ≤ h, where h is the number of trees in C′ which have
order more than 1. Observe that each such tree has at least 1

cU
vertices and thus h ≤ cU(k+1).

For each v ∈ Xmin we have |Ch(v)∩W | ≥ 1. Since for each u ∈W it holds |Par(u)∩Xmin| ≤ 1,
we have |Xmin| ≤ |W | < cUk. Summing the bounds we get |X| < 2cU(k + 1). Thus T has at
least (1 − 6cU)(k + 1) leaves. Therefore, we can apply Fact 3.7 on G′ ⊆ G and conclude that
T ⊆ G.

5.3 A matching structure

A graph H is said to be factor critical if for each its vertex v the graph H − v has a per-
fect matching. The following statement is a fundamental result in Matching theory. See [6,
Theorem 2.2.3], for example.

Theorem 5.6 (Gallai–Edmonds Matching Theorem). Suppose that H is a graph. Then there
exist a set Q ⊆ V (H) and a matching M of size |Q| in H such that every component of H −Q
is factor critical and the matching M matches every vertex in Q to a different component of
H −Q.

The set Q in Theorem 5.6 is called a separator. In order to introduce the main result of this
section, Lemma 5.8, we need the following setting.

Setting 5.7. Let s > 0 and let (H,ω) be a weighted graph of order N , with ω : E(H) → (0, s].
Let σ,K be two positive reals with 1

2N < σ < min{ K
32Ns

, 1
30}. Let L be a set of vertices such that

(i) V (H) \ L is an independent set,

(ii) |L| > N
2 − σN ,

(iii) ω(u) ≥ K for every u ∈ L,

(iv) the set L induces at least one edge in H,

(v) ω(u) < (1 + σ)K for every u ∈ V (H) \ L.

Lemma 5.8. Let s,N, σ,K,L, and a graph (H,ω) be as in Setting 5.7. Set L∗ = {u ∈ V (H) :
ω(u) ≥ 1

2(1 + σ)K}. Then there exist a matching M such that at least one of the following
holds.

Case I There are two adjacent vertices A,B ∈ V (H) \ V (M) with A ∈ L, ω(A,V (M)) ≥ K − s,
and ω(B,V (M) ∪ L∗) ≥ 1

2(1 + σ)K. For each edge e ∈M we have |N(A) ∩ e| ≤ 1.

Case II There exists a set O ⊆ V (H) such that for each x ∈ O all but at most 2σN neighbours of x
are covered byM . Furthermore, the set O∩L induces at least one edge, and |V (M ′)\O| ≤
1, where M ′ = {xy ∈M : x, y ∈ N(O)}.

Moreover, observe that each edge e ∈M intersects the set L.

Proof. Among all the matchings satisfying the conclusion of Theorem 5.6, choose a matching M0

that covers the maximum number of vertices from V (H) \ L∗. Let Q be the corresponding
separator. By definition, M0 is a Q− (V (H) \Q)-matching. Set L0 = L\Q and S = V (H) \L.
We distinguish three cases.
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Figure 4: Two resulting matching structures from Lemma 5.8. Dashed lines represent no
connections (in Case I), or sparse connections (in Case II).

• There exists an L0 − L0 edge. Let C be a component of H − Q containing an L0 − L0

edge. If V (M0) ∩ V (C) 6= ∅, then we take {z} = V (M0) ∩ V (C). Otherwise, we choose
z arbitrarily in C. Since C is factor critical, there exists a perfect matching M1 in C − z.
We claim that the conditions of Case II are satisfied for M = M0 ∪ M1, and O = V (C).
Thus, O ∩ L induces an edge. Next, let x ∈ O. We have N(x) \ {z} ⊆ V (M). Therefore,
ω(x, V (M)) ≥ ω(x) − s ≥ ω(x) − 2σNs. Consequently, all but at most 2σN neighbours of x
are covered by M . To check that |V (M ′) \O| ≤ 1, it is enough to observe that each edge of M ′

except at most one is contained entirely in C.

• We have L0 = ∅. Set O = V (H) and M = M0. Setting 5.7 (iv) implies that there is an
edge in O∩L. It is clear that V (M ′) \O = ∅. Since Q ⊇ L, |L| ≥ N

2 −σN , and |V (M)| = 2|Q|
it holds that all but at most 2σN vertices of H are covered by M . The conditions of Case II
are met.

• L0 is an independent set and L0 6= ∅. We first derive some auxiliary properties of the
graph H.

Claim 5.8.1. Each component C of H −Q is a singleton.

Proof. Indeed, since S and L0 are independent, all the edges in each matching in C are in the
form S −L0. Since C is factor critical, we have |V (C−u)∩L0| = |V (C−u)∩S| for each vertex
u ∈ V (C). This is possible only when v(C) = 1.

Claim 5.8.1 implies that M0 is a maximum matching in H. Define L̃ = {u ∈ N(L0) : ω(u) ≥
K}. Observe that L̃ ⊆ Q. By Setting 5.7 (iii), we also have

N(L0) \ L̃ ⊆ Q \ L . (5.8)

Claim 5.8.2. We have L̃ 6= ∅.

Proof. Assume for contradiction that L̃ = ∅. Then for every vertex u ∈ N(L0) we have ω(u) <
K. We get |L0|K ≤ ω(L0,N(L0)) < K|N(L0)| (the second inequality is indeed strict because
N(L0) 6= ∅) implying

|L0| < |N(L0)| . (5.9)

On the other hand, from L̃ = ∅ it follows that N(L0) ∩ L = ∅. Thus every vertex in N(L0) is
matched by M0 to a distinct vertex in L0, a contradiction to (5.9).
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We show that the graph V (H) fulfills the conditions of Case I. Suppose first that B ∈ N(L0)
is such that ω(B,V (M0) ∪ L∗) ≥ 1

2(1 + 2σ)K and let A ∈ N(B) ∩ L0 be arbitrary. Set M =
M0 \{A,B}. It can then be easily shown that that pair (A,B) satisfies the conditions of Case I.

So assume that for every B ∈ L̃ ⊆ N(L0) we have

ω(B,V (M0) ∪ L∗) < 1
2(1 + 2σ)K , (5.10)

which yields

ω(B,X) > 1
2(1 − 2σ)K , (5.11)

where X = V (H) \ (V (M0) ∪ L∗).

Claim 5.8.3. M0 does not contain any edge with both end-vertices in L.

Proof. Indeed, suppose that such an edge xy ∈ M0 exists. Then x ∈ L0 and y ∈ L̃. By (5.11),
ω(y,X) > 1

2(1 − 2σ)K. In particular, there exists a vertex p ∈ NX(y). The matching {yp} ∪
M0 \ {xy} is a matching as in Theorem 5.6 (with separator Q) which covers more vertices of
V (H) \ L∗ than M0. This contradicts the choice of M0.

Observe that for each vertex u ∈ X, we have ω(u, V (M)) = ω(u) < 1
2 (1 + σ)K. As

L̃ ⊆ V (M0), we have ω(u, L̃) < 1
2 (1 + σ)K. We bound ω(L̃,X) from both sides.

(1 − 2σ)|L̃|K
2

(5.11)

≤ ω(L̃,X) ≤ (1 + σ)|X|K
2

,

which yields

|L̃| ≤ 1 + σ

1 − 2σ
|X| . (5.12)

We use (5.10) and L0 ⊆ L∗ to get ω(L̃,L0) ≤ |L̃|(1 + 2σ)K/2. Also, by the definition of L̃, we
have ω(N(L0) \ L̃,L0) ≤ K|N(L0) \ L̃|. Therefore,

|L0|K ≤ ω(Q,L0) ≤ ω(L̃,L0) + ω(N(L0) \ L̃,L0)

≤ (1 + 2σ)
K

2
|L̃| +K|N(L0) \ L̃|

(5.8)

≤ (1 + 2σ)
K

2
|L̃| +K|Q \ L| ,

which gives
2|L0| ≤ (1 + 2σ)|L̃| + 2|Q \ L| . (5.13)

Every vertex in Q \ L is matched with a vertex in L0. The converse is true due to Claim 5.8.3:
if a vertex in L0 is matched then it is matched with a vertex in Q \ L. Therefore, |Q \ L| =
|L0∩V (M0)|. Combined with (5.13) we get that 2|L0 \V (M0)| ≤ (1+2σ)|L̃|. Plugging in (5.12)
we obtain

2|L0 \ V (M0)| ≤
(1 + 2σ)2

1 − 2σ
|X| . (5.14)

By Setting 5.7 (ii), we have |L| > |V (H) \ L| − 2σN . By Claim 5.8.3, we get |L0 \ V (M)| ≥
|X| − 2σN . Combined with (5.14) we obtain

2|X| − 4σN ≤ (1 + 2σ)2

1 − 2σ
|X| .
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We use the bounds σ ≤ min{ K
32Ns

, 1
30} to get

|X| ≤ 4σN

1 − 14σ
≤ 8σN ≤ 8K

32s
. (5.15)

On the other hand, using (5.11) and Claim 5.8.2, we get ω(L̃,X) > 1
2(1−2σ)K|L̃|. As ω(e) ≤ s

for each e ∈ E(H) we get ω(L̃,X) ≤ s|L̃||X|. Combining these two bounds we arrive at

|X| > (1 − 2σ)K

2s
>
K

4s
,

a contradiction to (5.15).

5.4 Regularity Lemma

In this section we recall briefly the Regularity Lemma [27] and establish related notation. The
reader may find more on the Regularity Method in [20, 19, 21].

Let H = (V (H);E(H)) be a graph. For two nonempty disjoint sets X,Y ⊆ V (H) we

denote the density of the pair (A,B) by d(A,B) = e(A,B)
|A||B| . The pair (A,B) is ε-regular, if for

any subsets X ⊆ A, Y ⊆ B with |X| > ε|A| and |Y | > ε|B|, we have |d(X,Y ) − d(A,B)| < ε.
Such sets X and Y are called significant. We say that a vertex v ∈ A is typical with respect to
(“w. r. t.”) a significant set Y ⊆ B, if deg(v, Y ) ≥ (d(A,B)−ε)|Y |. Analogously, if {(A,Bi)}ℓi=1

are ε-regular pairs, and Yi ⊆ Bi are significant, a vertex v ∈ A is typical w. r. t.
⋃ℓ

i−1 Yi, if

deg(v,
⋃ℓ

i=1 Yi) ≥ ∑ℓ
i=1(d(A,Bi) − ε)|Yi|. Note that our definitions of typicality is only one-

sided; this turns out to be sufficient for our proof.

Fact 5.9. Let X,Y1, Y2, . . . , Yℓ be disjoint sets of vertices, such that (X,Y1), (X,Y2), . . . , (X,Yℓ)
are ε-regular pairs. Suppose that sets Wi ⊆ Yi are significant.

(i) All but at most ε|X| vertices of X are typical w. r. t.
⋃ℓ

i=1Wi.

(ii) All but at most
√
ε|X| vertices of X are typical w. r. t. at least

√
εℓ sets Wi.

The proof of (ii) can be found in [28, Proposition 4.5]. We prove (i) in the Appendix. The
next fact is the well-known “slicing property” of regular pairs.

Fact 5.10 ([20, Fact 1.5]). Suppose that (X,Y ) is an ε-regular pair of density d. Let A ⊆ X
and B ⊆ Y be such that |A| > α|X|, and |B| > α|Y | for α > 2ε. Then the pair (A,B) is
max

{

ε
α
, 2ε
}

-regular of density at least d− ε.

A partition V (H) = V0∪̇V1∪̇ . . . ∪̇VN of the vertex set a graph H is called (ε,N)-regular if
|V0| < εv(H), |Vi| = |Vj | for every i, j ∈ [N ], and for each i ∈ [N ] at most εN pairs (Vi, Vj)
(where j ∈ [N ]) are not ε-regular. The sets V1, . . . , VN are called clusters.

We are now ready to state a standard version Szemerédi’s original result [27].

Theorem 5.11 ([27]). For every ε > 0 and every m0, r ∈ N, there exist numbers M0, N0 ∈ N

such that every graph H of order m ≥ N0 whose vertex sets is partitioned into r sets V (H) =
O1∪̇O2∪̇ . . . ∪̇Or admits an (ε,N)-regular partition V (H) = V0∪̇V1∪̇ . . . ∪̇VN for some m0 ≤
N ≤M0 such that for every i ∈ [N ] we have Vi ⊆ Oj for some j ∈ [r].

In the above setting, let Hd denote the graph obtained from H by deleting the edges incident
to V0, contained in some Vi, or in pairs of clusters that are irregular or of density smaller than
some fixed constant d. Let H denote the cluster graph induced by Hd. That is, H has order N ,
its vertices are V (H) = {V1, . . . , VN} and edges are

E(H) = {ViVj : (Vi, Vj) is a ε-regular pair with density at least d} .

Set degH(C,D) := degHd
(C,D), for any disjoint sets C,D ⊆ V (H). The function degH induces

a weight function on H.
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5.5 Embedding lemmas

In this section, we introduce tools for embedding trees into regular pairs. Similar results are folk-
lore. Here we give statements tailored to our needs; their proofs are included in the Appendix.
The first lemma deals with embedding a tree into one regular pair.

Lemma 5.12. Let (t, r) be a rooted tree, and d > 2ε > 0. Let (X,Y ) be an ε-regular pair
with |X| = |Y | = s and density d(X,Y ) ≥ d. Let P ′ ⊆ P ⊆ X and Q′ ⊆ Q ⊆ Y be such

that min{|P |, |Q|} ≥ ∆ and max{|P ′|, |Q′|} ≥ ∆, where ∆ ≥ εs+v(t)
d−2ε . Then there exists an

embedding φ of t to P ∪Q such that the root r is mapped to P ′ ∪Q′. Moreover, if |P ′| ≥ ∆, the
vertex r can be mapped to P ′, and if |Q′| ≥ ∆, the vertex r can be mapped to Q′.

The next lemma deals with embedding a tree using a matching structure in the underlying
cluster graph. A simplified picture of the situation is given in Figure 5.

Figure 5: A simplified picture of an embedding provided by Lemma 5.13. The lemma provides
with an embedding of a tree with a given fine partition (WX ,WY ,DX ,DY ). The cut-vertices WX

and WY are mapped to X and Y , respectively. The shrubs DY are mapped to the part V Y of the
regular matching M . The shrubs DX are embedded using one of three different ways which is
indicated by the partition DX = D1∪̇D2∪̇D3. The shrubs of D1 are mapped to V X \⋃ V (MX).
The shrubs of D2 which are required to be balanced are mapped to V X ∩⋃V (MX). Finally,
the shrubs of D3 are accommodated to a set V Z with their roots placed to an additional set of
clusters Z.

Lemma 5.13. Let 0 < ε, ξ, d ≤ 1 and τ, s be such that τ/s ≤ ε ≤ ξ2d/400. Let F be a
tree of order at most k+ 1 with a τ -fine partition (WX ,WY ,DX ,DY ) and let D1∪̇D2∪̇D3 be an
arbitrary partition of DX . Let H be a cluster graph corresponding to an ε-regular partition of an
n-vertex graph H, whose edges have density at least d and clusters have size s. Let XY ∈ E(H),
and X ′ ⊆ X, Y ′ ⊆ Y such that |X ′|, |Y ′| ≥ (1 − d/2)s. Let Z ⊆ V (H) \ {X,Y }. Further let
MX ⊆M be matchings in H disjoint from Z ∪ {X,Y } such that for each edge of MX contains
at most one vertex of NH(X). Let V X , V Y , V Z ⊆ ⋃

V (M) be pairwise disjoint sets. Suppose
that

(i) For all CD ∈M , |C ∩ V X | = |D ∩ V X |, |C ∩ V Y | = |D ∩ V Y |, and |C ∩ V Z | = |D ∩ V Z |.

(ii) For all C ∈ V (M), |C ∩ V X |, |C ∩ V Y |, |C ∩ V Z | ∈ {0} ∪ (εs, s].
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(iii) If DY 6= ∅, then degH(Y, V Y ) ≥ v(DY ) + ξn .

(iv) If D1 6= ∅, then degH(X,V X \⋃V (MX)) ≥ v(D1) + ξn .

(v) If D2 6= ∅, then D2 is c-balanced and degH(X,V X ∩⋃V (MX)) ≥ v(D2) − c2k + ξn .

(vi) If D3 6= ∅, then degH(X,
⋃Z) ≥ |V (D3) ∩ NF (WX)| + ξn .

(vii) If D3 6= ∅, then for each Z ∈ Z, degH(Z, V Z) ≥ v(D3) + ξn .

Then there is an embedding ϕ of F in H such that ϕ(WX) ⊆ X ′, ϕ(WY ) ⊆ Y ′, ϕ(V (DY )) ⊆ V Y ,
and ϕ(V (DX)) ⊆ (V X ∪ V Z ∪⋃Z).

6 Proof of Lemma 4.2

Suppose that q, c, and ρ are given. Let cS be given by Lemma 5.1 for input parameter q.
Further, let cU be given by Lemma 5.5 for input parameter q. Set reals ζ, α, γ, β, ϑ, λ, κ so that

0 < α≪ β ≪ γ ≪ λ≪ ζ ≪ ϑ≪ κ≪ min{ρ, c, cS, cU, q}.

Let n0 (the minimal order of the graph) and Π1 (the upper bound for the number of clusters)
be the numbers given by the Regularity Lemma 5.11 for input parameters α (for precision),
Π0 = 2

α
(for the minimum number of clusters) and 4 (for the number of pre-partition classes).

Let G be a graph of order n ≥ n0 that has the LKS-property. We can assume that G is
LKS-minimal, that is, there is no proper spanning subgraph G′ ⊆ G with the LKS-property.
Then clearly,

the set S is independent . (6.1)

Let V∗ ⊆ V satisfy the assumptions of Lemma 4.2 and let T ∈ Tk+1 be arbitrary. Our goal
is to show that T ⊆ G. Root T at an arbitrary vertex R, and consider any τ -fine partition
(WA,WB ,DA,DB) of (T,R), with τ = αk

Π1
. The existence of such a partition follows from

Lemma 5.3.
Prepartition the vertex set V into V∗ ∩ L, V∗ ∩ S,L \ V∗, and S \ V∗. By the Regularity

Lemma 5.11, there exists a partition V = C0∪̇C1∪̇ . . . ∪̇CN satisfying the following.

(R1) Π0 ≤ N ≤ Π1,

(R2) |Ci| = s for each i ∈ [N ],

(R3) |C0| ≤ αn,

(R4) for each i ∈ [N ], all but at most αN pairs (Ci, Cj) (where j ∈ [N ]) are α-regular,

(R5) for each i ∈ [N ], if Ci ∩ L 6= ∅ then Ci ⊆ L, and if Ci ∩ V∗ 6= ∅ then Ci ⊆ V∗.

Let Gγ denote the graph obtained from G by deleting the edges incident to C0, contained
in some Ci, or in pairs of clusters that are irregular or of density smaller than γ and let G be
the corresponding cluster graph with weight function degG. Observe that by (R1)–(R4) we
have

e(Gγ) ≥ e(G) − 2αn2 − γn2 ≥ e(G) − λk2 . (6.2)

Denote by L the set of clusters contained in L ∩ V∗ which have large average degree in V∗:

L = {C ∈ V (G) : C ⊆ L ∩ V∗, degG(C, V∗) ≥ k −
√
λn} .
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Note that (R5) supports the definition and observation below. Let V∗ be the set of clusters
contained in V∗; we write N∗ = |V∗|. Observe that each cluster inside L ∩ V∗ is in L, unless
it sends many edges to V \ V∗. To estimate the size of L, we set B = {C ∈ V (G) : C ⊆
V∗,degG(C, V \ V∗) ≥

√
λn
2 }. It follows from the assumptions of Lemma 4.2 that

|B| ≤ 3
√
λN . (6.3)

Further, observe that we have

L ⊃ {C ∈ V (G) : C ⊆ V∗ ∩ L} \ B . (6.4)

The ratio |L ∩ V∗| : |V∗| approximately corresponds to |L| : |V∗|. More precisely, we use later
the following lower-bound on |L|,

|L| ≥ 1
2(1 − 2λ)N∗ − |B| ≥ N∗

2 − 4
√
λN ≥ N∗

2 − ζN∗ , (6.5)

where we use λ≪ ζ ≪ c, q.
Let H be the subgraph of G induced by V∗ such that all the edges induced by the set V∗ \L

are removed. The cluster graph H naturally inherits the function degG of G (which is denoted
by degH). The next lemma gives some simple properties of H.

Lemma 6.1.

(i) For each C ∈ L, we have
∑

D∈NH(C) degH(C,D) =
∑

D∈NG(C,V∗)
degG(C,D).

(ii) All but at most 3
√
λN clusters C ∈ V∗ \ L satisfy
∑

D∈NH(C)

degH(C,D) ≥
(

∑

D∈NG(C,V∗)

degG(C,D)
)

− 3
√
λn .

Proof. Part (i) follows directly. Let us now deal with part (ii). By (6.3), for any cluster C ∈
V∗ \ (L∪B), we have degH(C) ≥ degG(C, V∗)− |B|s ≥ degG(C, V∗)− 3

√
λn, as edges of G sent

by C go either to B or are kept in H. At most 3
√
λN clusters in V∗ \ L may be contained in

B.

6.1 Matching structure in the cluster graph

Set c′ = min{cS, c4}. If e(G[V∗ ∩ L]) < c′n2, then the conditions of Lemma 5.1 are satisfied
for the set V∗ and parameter cL5.1 = c′. Indeed, the assumptions (i)–(iii) of Lemma 5.1 follow
from the assumptions of Lemma 4.2, and the fact that λ ≪ c′. Then, by Lemma 5.1 we get
Tk+1 ⊆ G. Therefore, we assume in the rest of the proof that e(G[V∗ ∩ L]) ≥ c′n2. By (6.2) as
λ≪ c′, we get e(Gγ [V∗ ∩ L]) ≥ c′

2 n
2.

Lemma 6.2. The set L induces at least one edge in H.

Proof. By (6.4) and (6.3) at most 4
√
λn2 of the edges of E(Gγ [V∗ ∩L]) are not induced by the

vertices of
⋃L. As e(Gγ [V∗ ∩ L]) ≥ c′

2 n
2 ≫ 4

√
λn2, L induces at least one edge in G. This

edge is also an edge in H.

The weighted graph (H,degH) satisfies the conditions of Lemma 5.8 with parameters s,
N = N∗, σ = ζ, and K = k−

√
λn. Let us verify Conditions (i)–(v) of Setting 5.7. Condition (i)

is satisfied by the way H was derived from G. Condition (ii) follows from (6.5). Condition (iii)
is given by the definition of L. Condition (iv) was derived in Lemma 6.2. Finally, Condition (v)
follows from the definitions of L and L. Lemma 5.8 ensures that one of the two specific matching
structures in H exists.

Case I: There are two adjacent clusters A,B and a matching M in H− {A,B} such that:
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(a) We have degH(A,V (M)) ≥ k − 2
√
λn.

(b) For each edge e ∈M we have |NH(A) ∩ e| ≤ 1.

(c) There is a set L∗ ∈ V (H) such that for all C ∈ L∗ we have degH(C) ≥ (1 + ζ
2)k2 and

degH(B,V (M) ∪ L∗) ≥ (1 + ζ
2 )
k

2
. (6.6)

Case II: There exist a set of clusters O ⊆ V (H) and a matching M in H such that:

(a) O ∩ L induces at least one edge in H.

(b) |V (MO) \ O| ≤ 1, where MO = {CD ∈M : C,D ∈ NH(O)}.

(c) All clusters of O ∩ L and all but at most 3
√
λN clusters C ∈ O \ L satisfy

degH(C, V (M)) ≥ degG(C, V∗) − 3ζn .

To see this, recall that by the assertion of Lemma 5.8 we have that
∑

D∈NH(C)∩V (M)

degH(C,D) ≥
∑

D∈NH(C)

degH(C,D) − 2ζn

for each C ∈ O. Thus the assertion follows from Lemma 6.1.

(d) Each edge of M intersects L.

We partition DA = TF ∪̇TA, where TF are the internal shrubs and by TA are the end-shrubs
of DA. Recall that DB contains only end-shrubs and that v(DB) ≤ v(TA). We shall assume
that TF ∪ TA ∪ DB is cU-balanced, otherwise T ⊆ G by Lemma 5.5.

As we shall show shortly, the proof of Lemma 4.2 follows from the following three statements,
proofs of which are postponed to subsequent sections.

Lemma 6.3. If we have Case I, then T ⊆ G.

Lemma 6.4. If we have Case II, then T ⊆ G, or for any two clusters A,B ∈ O ∩ L that are
adjacent in H, there exists a matching MA ⊆ M − {A,B} such that MA and VA =

⋃

V (MA)
satisfy the following properties.

(i) degH(A,C),degH(A,D) > (1 − 2ϑ)s and degH(A,CD) > (2 − 3ϑ)s, for all CD ∈MA.

(ii) degH(A,V (MA)) ≥ (1 − 8ϑ)k.

(iii) (1 − 8ϑ)k ≤ |VA| ≤ k.

(iv) V (MA) ⊆ O.

(v) If v(DB) ≥ 4
√
ζk, then degH(B,V (MA)) ≥ (1 − 9ϑ)k.

(vi) If v(DB) < 4
√
ζk, then there exists a matching MB ⊆ M − (V (MA) ∪ {A,B}) such that

|MB | ≤ 4
√
ζN and v(DB) + λk ≤ degH(B,V (MB)) ≤ v(DB) + λk + 2s.

(vii) |VA ∩ L| ≥ 1
2 |VA|.

Lemma 6.5. Suppose we have Case II and let A,B ∈ O ∩ L, AB ∈ E(H). Suppose that
MA, MB and VA satisfy (i)–(vii) from Lemma 6.4. (For convenience, we take MB = ∅ if the

assumption of Lemma 6.4 (vi) is not satisfied.) If |eGγ (VA, V \ VA)| ≥ κn2

2 , then T ⊆ G.

Given Lemmas 6.3–6.5, Lemma 4.2 follows. Indeed, we get that Tk+1 ⊆ G, or eGγ (VA, V \
VA) < κ2n2/2, with VA from Lemma 6.4. In the latter case, the assertions of Lemma 4.2 are
fullfilled with the set V ′ := VA. Indeed, by Lemma 4.2 (ii) and by (6.2), we have eG(VA, V \VA) ≤
eG(V∗, V \ V∗) + eGγ (VA, V \ VA) + e(G) − e(Gγ) ≤ 2λk2 + κn2/2 ≪ ρk2.
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6.2 Proof of Lemma 6.3

We shall partition each cluster C ∈ V (H) so that the partition defines two disjoint sets
V F , V B ⊆ V (G). The embedding ϕ : V (T ) → V (G) of T will be defined in three phases. In the
first phase, we shall embed the subtree T ′ = T [WA ∪WB ∪ V (TF ∪ T M

B )], where T M
B ⊆ DB will

be defined later. The trees TF will be embedded in V F and the trees T M
B in V B . In the second

phase, we shall embed T L
B = DB \ T M

B in V B . In the last phase, we shall embed TA in V (G).
From now on, we write ϕ for the partial embedding (at the current stage) of T .

The difference between the present proof of Theorem 1.5 and its approximate version Theo-
rem 1.4 is that in the proof of Theorem 1.5 we have to fight to gain back small loses caused by
the use of the Regularity Lemma. However, this is not necessary when we have the matching
structure of Case I. Indeed, we can reduce this situation to the “approximate version”, i.e., to
a setting of similar nature as in Theorem 1.4.

Preparation. We partition each cluster C ∈ V (H) into sets CF and CB in an arbitrary way
so that |CF | = (1 − y)|C| and |CB| = y|C|, where

y =
v(TA ∪ DB)

k
· 1

1 + ζ
4

+ λ ≥ 2v(DB)

k
· 1

1 + ζ
4

+ λ. (6.7)

Note that

1 − y ≥ v(TF )

k
+
ζ

8
· v(TA ∪ DB)

k
− λ (6.8)

≥ v(TF )

k
− λ . (6.9)

Set

V B =
⋃

C∈V (H)

CB , V F =
⋃

C∈V (H

CF ,

MB = V B ∩
⋃

V (M) , MF = V F ∩
⋃

V (M) , and LB = V B ∩
⋃

(L∗ \ {A,B}) .

Observe that (6.7) gives y ∈ (λ, 1 − λ). Indeed, the lower bound is trivial and the upper bound
follows from 1

1+ ζ
4

< 1 − 2λ.

Let T M
B ⊆ DB be a maximal subject to

∑

t∈T M
B

v(t) ≤ degH(B,MB) − λn. (6.10)

Let T L
B = DB \ T M

B . From the maximality, we have

∑

t∈T M
B

v(t) ≥ degH(B,MB) − λn− τk or T L
B = ∅ . (6.11)

We now proceed with the three-phase embedding outlined above.

Phase 1 of the embedding. Let A′ ⊆ A be the set of typical vertices w. r. t. all but at
most βN sets C ∈ V (M) and let B′ ⊆ B be the set of typical vertices w. r. t. LB. From
Fact 5.9,

min{|A′|, |B′|} ≥ (1 −√
α)s . (6.12)
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We use Lemma 5.13 to embed the tree T ′ = T [WA ∪WB ∪ V (TF ∪ T M
B )] with the following

setting. The cluster graph is H, with AB ∈ E(H) and A′ ⊆ A, B′ ⊆ B. The set Z is empty. The
tree T ′ has a τ -fine partition (WA,WB ,TF ,T M

B ). We have disjoint sets MF ∪̇MB∪̇∅ ⊆ ⋃V (M).
The sets MF , MB and ∅ play the roles of V X , V Y , and V Z from Lemma 5.13. If TF is cU/2-
balanced, we set D2 = TF , D1 = D3 = ∅ and MX = M . If TF is not cU/2-balanced, we set
D1 = TF , D2 = D3 = ∅, and MX = ∅. In particular, note that

ϕ(V (T ′) \ V (T M
B )) ∩MB = ∅ . (6.13)

We now verify the assumptions of Lemma 5.13, where we use dL5.13 = γ, ξL5.13 = λ, εL5.13 =
α. The parameters 0 < α ≪ λ≪ γ < 1 and τ, s satisfy τ/s < α < λ2γ/400. The bound (6.12)
guarantees that A′ and B′ have sizes as required by the lemma. Condition (i) follows from the
way V F and V B were defined and Condition (ii) holds as y ∈ (λ, 1−λ). Conditions (vi) and (vii)
hold trivially. Condition (iii) follows from (6.10). If TF is cU/2-balanced, Condition (iv) holds
trivially and for Condition (v) observe that

degH(A,MF ) ≥ (1 − y)(degH(A,V (M)) − αn [by (6.9) and Case I(a)]

≥ v(TF ) − 3
√
λn ≥ v(TF ) − c2U

4 k + λn .

As TA ∪ TF ∪ DB is cU-balanced we get that if TF is not cU/2-balanced then TA ∪ DB is
cU/2-balanced. Condition (v) holds trivially and for Condition (iv) observe that

degH(A,MF ) ≥ (1 − y)(degH(A,V (M)) − αn [by (6.8) and Case I(a)]

≥ v(TF ) + v(TA ∪ DB)
ζ

8
− 3

√
λn ≥ v(TF ) + λn .

Phase 2 of the embedding. Phase 2 is skipped when T L
B = ∅. We label the shrubs of T L

B

as t1, . . . , t|T L
B
|. In step i ≥ 1, we define the embedding for the shrub ti in a suitable edge

CD ∈ E(G). Set Ui = ϕ(V (TF ∪ T M
B ) ∪⋃j<i V (tj)). Let xi ∈WB be the parent of the root of

the shrub ti. The vertex ϕ(xi) is typical w. r. t. LB and hence by (6.6), (6.7) and (6.11), we
have

deg(ϕ(xi), L
B) ≥ degH(B,LB) − αn ≥ degH(B,MB ∪ LB) − degH(B,MB) − αn

≥ v(DB) + ζk
4 − v(T M

B ) − λn− τk − 2αn ≥ v(T L
B ) + λn .

Thus there is a cluster C ∈ L∗ with

|N(ϕ(xi)) ∩ C \ Ui| ≥
λn

N
≥ αs+ τ

γ − 2α
.

From the definition of L∗, (6.7), and (6.13) we obtain

degH(C, V B \ Ui) ≥ degH(C, V B) − |ϕ(V (DB)) ∩ Ui| ≥ λk
4 .

Therefore there is a cluster D ∈ NH(C) with |D \Ui| ≥ αs+τ
γ−2α . We use Lemma 5.12 to embed ti

in (C ∪D) \ Ui so that the root of the shrub ti is mapped to N(ϕ(xi)) ∩ C \ Ui.

Phase 3 of the embedding. We label TA as t1, . . . , t|TA|. In step i = 1, . . . , |TA|, we define
the embedding for the shrub ti. Let xi ∈ WA be the parent of the root ri of ti. Set Ui =
ϕ(V (TF ∪ DB) ∪⋃j<i V (tj)). For an edge CD ∈M with C ∈ NH(A) we define

Υi
CD = min{|N(ϕ(xi)) ∩ C \ Ui|, |D \ Ui|} .
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By Lemma 5.12, the shrub ti can be embedded in unused vertices of an edge CD ∈M so that ri
is mapped to a neighbor of ϕ(xi), whenever CD satisfies Υi

CD ≥ λs. If TF ∪DB is cU
2 -balanced

then by (5.6) we have

∑

CD∈M
C∈NH(A)

max{|C∩Ui|, |D∩Ui|} ≤ v(TA)+v(TF ∪DB)−
∑

t∈TF∪DB

|t⊖| ≤ v(TA)+v(TF ∪DB)− c2Uk

4 .

By Fact 5.9 we have

∑

CD∈M
C∈NH(A)

Υi
CD ≥

∑

CD∈M
C∈NH(A)

(|N(ϕ(xi)) ∩ C| − max{|C ∩ Ui|, |D ∩ Ui|})

≥degH(A,V (M)) − 2
√
αn− (v(TF ∪ DB) − c2Uk

4 ) − v(TA) ≥ λn .

If TF∪DB is cU
2 -unbalanced, then TA is cU

2 -balanced. Then by (5.6), max{|V (TA)∩T⊕|, |V (TA)∩
T⊖|} ≤ v(TA) − ( cU2 )2k. We get

∑

CD∈M
C∈NH(A)

Υi
CD ≥

∑

CD∈M
C∈NH(A)

(|N(ϕ(xi)) ∩ C| − max{|C ∩ Ui|, |D ∩ Ui|})

≥degH(A,V (M)) − 2
√
αn− v(TF ∪ DB) − (v(TA) − c2Uk

4 ) ≥ λn .

In both cases, there is an edge CD ∈M with Υi
CD ≥ λs.

6.3 Proof of Lemma 6.4

Let M̃ ⊆M be the minimum matching covering clusters A and B. We claim that

min{degH(A,V (M \ M̃)),degH(B,V (M \ M̃ ))} ≥ k − 4ζn . (6.14)

As A,B ∈ O ∩ L, min{degG(A,V∗),degG(B,V∗)} ≥ k −
√
λn. From Case II (c) and the fact

that |V (M̃ )| ≤ 4, (6.14) follows.
The proof of (i)–(vi) corresponds to Lemma 6.11 from [28]. The hypotheses of [28, Lemma 6.11]

and the present Lemma 6.4 are almost identical. We describe the correspondence and slight
differences. Our Case II (b) implies hypothesis given by Claim 6.7(3) in [28]. Our Case II (c) is
weaker than the corresponding hypothesis given in Claim 6.7(2). In his proof, Zhao only uses
Claim 6.7(2) to deduce that the clusters A and B have a large weight to the matching MZhao

(which corresponds to our matching M). For the adaptation of the proof, we can use (6.14),
instead. To help the reader comparing both statements, we indicate the differences in the
notation

λ ≈ 3γZhao ζ ≈ dZhao ϑ ≈ ηZhao N ≈ 2kZhao s ≈ NZhao k ≈ nZhao n ≈ 2nZhao

MA ≈ Min,Zhao M ≈ MZhao VA ≈ V1,Zhao v(DB) ≈ fb,Zhao MB ≈ Mb,Zhao .
(6.15)

The bound in (iii) is phrased in [28, Lemma 6.11(iii)] in terms of the cluster graph however this
is an inessential difference.

It remains to prove (vii). This follows from Case II (d) as
⋃L ⊆ L.
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6.4 Proof of Lemma 6.5

Let M̃ ⊆ M be the minimum matching covering clusters A and B. Lemma 6.5 follows from
the following Lemmas 6.6, 6.7 and 6.8. Set S̃ = {C : CD ∈ MA, C /∈ L}, S̃ =

⋃ S̃, and
ML = {CD ∈MA : {C,D} ⊆ L}.

Lemma 6.6. If eGγ (S̃, V \ VA) ≥ 53ϑn2, then T ⊆ G .

Lemma 6.7. If eGγ (S̃, V \ VA) < 53ϑn2, then T ⊆ G or |ML| ≥ 9ϑN .

Lemma 6.8. If |ML| ≥ 9ϑN , then T ⊆ G .

To prove Lemmas 6.6–6.8 we use auxiliary Lemmas 6.9, 6.10 and 6.11.

Lemma 6.9. Let P ⊆ V (MA) such that eGγ (
⋃P, V \ VA) ≥ ξn2. Then there exists ξN/2 −

6
√
λN clusters C ∈ P with degH(C, V (M \ (MA ∪MB))) ≥ ξn/2 − 2 4

√
ζn.

Set T ≥3 = {t ∈ DA : |V (t) \ NT (WA)| ≥ 2}. For i = 1, 2, set T i = {t ∈ TA : v(t) = i}.

Lemma 6.10. Let M− ⊆ MA and T ∗
A ⊆ DA. If v(T ∗

A) > 2|M−|s + 10ϑn, then there exist
disjoint matchings Ma,Mb ⊆ (MA ∪MB) \M− such that

degH(A,V (Ma)) ≥ v(DA) − v(T ∗
A) + λk , and (6.16)

degH(B,V (Mb)) ≥ v(DB) + λk . (6.17)

Lemma 6.11. If v(T ≥3) ≥ 51ϑn or v(T1) ≥ 10ϑn, then T ⊆ G .

In the proof of Lemma 6.10 we use the following fact.

Fact 6.12 ([23, Lemma 9]). Let J be a finite nonempty set, and let a, b,∆ > 0. For i ∈ J , let
αi, βi ∈ (0,∆]. Suppose that

a
∑

i∈J αi
+

b
∑

i∈J βi
≤ 1 .

Then J can be partitioned into two sets Ja and Jb so that
∑

i∈Ja αi > a−∆, and
∑

i∈Jb βi ≥ b.

Proof of Lemma 6.9. At least ξN
2 clusters C ∈ P satisfy degG(C, V \ VA) ≥ ξn

2 . From (6.3) we

have that all but most 3
√
λN clusters C of P satisfy degG(C, V \ V∗) <

√
λn/2. Therefore, all

but at most ( ξ2 − 3
√
λ)N clusters C ∈ P satisfy degG(C, V∗ \ VA) ≥ ξn

2 −
√
λn
2 .

By Case II (c) and by Lemma 6.4 (iv), all but at most 3
√
λN clusters C ∈ P satisfy

degH(C, V (M)) ≥ degG(C, V∗) − 3ζn. As degH(C, VA) ≤ degG(C, VA), at least ξN
2 − 6

√
λN

clusters C ∈ P satisfy degH(C, V (M) \ VA) ≥ ξn
2 − 4ζn.

By Lemma 6.4 (v), (vi), for all clusters C ∈ V (H) we have degH(C, V (MB)) ≤ 4
√
ζn. This

proves the lemma.

Proof of Lemma 6.10. If v(DB) < 4
√
ζk, set Ma = MA \ M− and Mb = MB . From the as-

sumption of the lemma, we have MB ∩M− ⊆ MB ∩MA = ∅. Condition (6.17) follows from
Lemma 6.5 (vi). For (6.16), Lemma 6.5 (ii) gives

degH(A,V (Ma)) ≥ degH(A,V (MA)) − 2|M−|s > k − 8ϑn− 2|M−|s
> v(DA) − v(T ∗

A) + λk .
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If v(DB) ≥ 4
√
ζk, we get Ma,Mb ⊆ MA \M− satisfying (6.16) and (6.17) using Fact 6.12 with

the following setting: ∆ = 2s, a = v(DA)− v(T ∗
A) + 2λk, b = v(DB) + λk, J = MA \M− and for

every CD ∈ J , αCD = degH(A,CD) and βCD = degH(B,CD). By (ii) and (v) of Lemma 6.5,

v(DA) − v(T ∗
A) + 2λk

degH(A,V (MA \M−))
+

v(DB) + λk

degH(B,V (MA \M−))
≤ k − v(T ∗

A) + 3λk

k − 9ϑn− 2|M−|s ≤ 1 ,

as required for an application of Fact 6.12.

Proof of Lemma 6.11.

Claim 6.11.1. If v(T 1) ≥ 10ϑn, then T ⊆ G.

Proof. By Lemma 6.10, with T ∗
A,L5.13 = T 1 and M−

L5.13 = ∅, there exists a partition Ma∪Mb =

M \M̃ satisfying (6.16) and (6.17). We embed the tree T ′ = T −V (T 1) using Lemma 5.13 with
DY,L5.13 = DB and D1,L5.13 = DX,L5.13 = DA \ T 1. It is easy to check that the conditions

of Lemma 5.13 are met. The trees of T 1 are leaves of T whose parent vertices are mapped to
A ⊆ L, and can be then embedded greedily.

We use Lemma 6.9 with setting P = V (MA) and ξ = κ/2, and obtain a set C ⊆ V (MA)
with |C| = 20ϑN such that for all C ∈ C we have

degH(C, V (M \ (MA ∪MB))) ≥ κn
8 . (6.18)

Set M− = {CD ∈ MA : {C,D} ∩ C 6= ∅}. Let T ∗
A ⊆ T ≥3 be maximal, subject to v(T ∗

A) ≤
50ϑn+τ . Hence, v(T ∗

A) ≥ 50ϑn > 2|M−|s+10ϑn. By Lemma 6.10 there are disjoint matchings
Ma,Mb ⊆ (MA ∪MB) \M− satisfying (6.16) and (6.17).

We use Lemma 5.13 to embed the tree T with the τ -fine partition (WA,WB ,DA,DB) in G
with the following setting: HL5.13 = H, X ′

L5.13 = XL5.13 = A, YL5.13 = Y ′
L5.13 = B,

ZL5.13 = C, MX,L5.13 = ∅, ML5.13 = M \ (M̃ ∪ M−), D1,L5.13 = DA \ T ∗
A , D2,L5.13 = ∅,

and D3,L5.13 = T ∗
A , DY,L5.13 = DB , V X

L5.13 =
⋃

V (Ma), V Y
L5.13 :=

⋃

V (Mb), and V Z
L5.13 =

⋃

V (M \ (MA ∪MB)). The parameters εL5.13 = α, ξL5.13 = λq, dL5.13 = γ, τ , and s satisfy
τ/s ≤ α ≤ λ2q2γ/400. Let us now verify the conditions of Lemma 5.13. Conditions (i), (ii),
and (v) trivially hold. Conditions (iv) and (iii) follow from (6.16) and (6.17), respectively.
Condition (vii) follows from (6.18).

For Condition (vi) first observe that |T ∗
A | + |WA| ≥ |V (T ∗

A) ∩ NT (WA)|. This is because
each vertex in V (T ∗

A) ∩NT (WA) is either a root of a shrub, or a predecessor of a vertex in WA.
Moreover, each vertex in WA is a predecessor of at most one such vertex. As T ∗

A ⊆ T ≥3,

degH(A,
⋃

C) ≥ (1 − 2ϑ)20ϑn ≥ v(T ∗
A)/3 + |WA| + λk ≥ |V (T ∗

A) ∩ NT (WA)| + λk .

Proof of Lemma 6.6. Using Lemma 6.9 with the setting P = S̃ and ξ = 53ϑ and obtain a set
C′ ⊆ S̃ of size 18ϑN such that for every C ∈ C′,

degH(C,M \ (MA ∪MB)) ≥ 25ϑn , (6.19)

At least 9ϑN such clusters are in different edges of M . Let C be the set of such clusters. Set
M− = {CD ∈ MA : {C,D} ∩ C 6= ∅} and C− = V (M−) \ C. Note that |M−| = 9ϑN and that
C− ⊆ L.

Lemma 6.11 tells us that T ⊆ G if v(T 1) ≥ 10ϑn or v(T ≥3) ≥ 51ϑn. Therefore, suppose
that v(T 1) < 10ϑn and v(T ≥3) < 51ϑn.
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Observe that DA \ (T ≥3 ∪ T 2 ∪ T 1) consists of those internal shrubs that have at most one
vertex that is not adjacent to WA. Consider a shrub t in DA \ (T ≥3 ∪T 2∪T 1). Any vertex in t
is either a predecessor of WA, or the only vertex of t not adjacent to WA, or the only root in t.
Moreover, t always contains a predecessor of WA, and each vertex in WA is a predecessor of at
most one vertex in such shrubs. Hence, v(DA \ (T ≥3 ∪ T 2 ∪ T 1) ≤ 3|WA|. Therefore

v(T 2) = v(DA) − v(T ≥3) − v(T 1) − v(DA \ (T ≥3 ∪ T 2 ∪ T 1))

≥ k
2 − |WA ∪WB | − 51ϑn − 10ϑn− 3|WA| > 29ϑn .

Let T ∗
A ⊆ T 2 be maximal subject to v(T ∗

A) ≤ 29ϑn. Then v(T ∗
A) ≥ 28ϑn ≥ 2|M−|s+ 10ϑn and

that T −V (T ∗
A) is a tree. By Lemma 6.10 there exist disjoint matchings Ma,Mb ⊆ (MA∪MB)\

M− satisfying (6.16) and (6.17).
Set B′ = B and let A′ ⊆ A be the set of typical vertices w. r. t.

⋃

V (M−). By Fact 5.9 (i)
min{|A′|, |B′|} ≥ (1−α)s. We use Lemma 5.13 to embed T −V (T ∗

A) in A′∪B′∪⋃V (Ma∪Mb)
with DY,L5.13 = DB and D1,L5.13 = DX,L5.13 = DA\T ∗

A . It is easy to check that the conditions
of Lemma 5.13 are met. It remains to embed T ∗

A .
Let C̃ ⊆ ⋃ C be the set of typical vertices w. r. t.

⋃

V (M \ (MA ∪MB). By Fact 5.9 (i)
|⋃ C \ C̃| ≤ αn. As the current embedding satisfies ϕ(WA) ⊆ A′, we get for every x ∈WA,

deg(ϕ(x), C̃ ∪
⋃

C−) ≥ (1 − 2ϑ)2|M−|s− 2αn ≥ 17ϑn ≥ v(T ∗
A)/2 + λn .

We map the roots of the trees in T ∗
A to C̃ ∪ ⋃ C−. The rest of the trees in T ∗

A can be then
embedded greedily using the typicality of the vertices in C̃, (6.19) and that

⋃ C− ⊆ L. Thus,
T ⊆ G as needed.

Proof of Lemma 6.8. The proof is similar (and actually simpler) to that of Lemma 6.6 and we
provide only the needed adaptations. We use ML instead of M−. When T 1 and T ≥3 are small
we use the property that

⋃

V (ML) ⊆ L instead of (6.19) to embed greedily T ∗
A .

Proof of Lemma 6.7.

Claim 6.7.1. There exists a set C ⊆ NH(A) ∩ L ∩ O of size κ
20N such that for every C ∈ C, we

have degH(C, V∗ \ VA) ≥ κn
8 and the clusters of C lie in different edges of M .

Proof. We have

eGγ (VA \ S̃, V∗ \ VA) ≥ eGγ (VA, V \ VA) − eGγ (S̃, V \ VA) − eGγ (V∗, V \ V∗)

≥ κn2

2 − 53ϑn2 − λk2 > κn2

4 .

Thus, κN
8 clusters C of V (MA) \ S̃ satisfy degGγ

(C, V∗ \ VA) ≥ κn
8 . Pick κN

16 of them in
different edges of M , and denote them by C. As V∗ \ L is independent, C ⊆ L. Moreover,
by Lemma 6.4 (iv), we have C ⊆ O. By Lemma 6.1(i), we have V (MA) ⊆ NH(A) and thus C
satisfies the assertion of the claim.

For each X ∈ V (H), we define M∗
X = {CD ∈M : |degH(X,C) − degH(X,D)| ≥ ϑs}.

Claim 6.7.2. For each cluster X ∈ O ∩ L ∩ NH(O ∩ L), we have |M∗
X | < ϑN/2, or T ⊆ G.

We do not prove Claim 6.7.2 here. The proof can be taken verbatim from [28, Lemma 6.15
(Case 1)]. There, Zhao considers two adjacent clusters AZhao, BZhao with high average degree
in a matching. He shows that if for some X ∈ {AZhao, BZhao}, the matching M∗

X is substantial,
then T ⊆ G. (He uses notation Munbal,Zhao ≈ M∗

X ; recall (6.15) for further vocabulary). The
condition of Case II (c) is the counterpart of the property [28, (6.14)].

Let C be given by Claim 6.7.1. Set D = V (M \MA) ∩ O ∩ L.
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Claim 6.7.3. We have T ⊆ G or |D| > κN
17 and eGγ (

⋃ C,⋃D) ≥ κ2n2

340 .

Proof. For each C ∈ C, we apply Claim 6.7.2. We get that |M∗
C | ≤ ϑN/2 as otherwise T ⊆ G

and we are done. Hence, degH(C, V (M \ (MA ∪M∗
C))) ≥ κn

8 − ϑn. Let

M−
C = {D1D2 ∈M : degH(X,D1) < ϑs or degH(X,D2) < ϑs} .

By the definition of M∗
C , the weight C sends to both end-clusters of M \ M∗

C differs by at
most ϑs. Thus, degH(C, V (M \ (MA ∪M∗

C ∪M−
C ))) ≥ κn

8 − 4ϑn. By Case II (d), all edges in
M \ (MA ∪M∗

C ∪M−
C ) meet L. The definition of M∗

C tells us that

degH(C,L ∩ V (M \ (MA ∪M∗
C ∪M−

C ))) ≥ 1

2 + ϑ
degH(C, V (M \ (MA ∪M∗

C ∪M−
C )))

≥ (1 − ϑ)κn16 − 4ϑn .

Case II (b) gives that |V (M \M−
C ) \ O| ≤ 1. Therefore, degH(C,D) > κn

17 , implying |D| ≥ κN
17 .

The assertion follows from the bound on |C| given by Claim 6.7.1.

Claim 6.7.4. We have T ⊆ G or |ML| ≥ κ3N
2·104 .

Proof. Let us assume that T 6⊆ G. In particular, the second assertion of Claim 6.7.3 applies. At
least κN/680 clusters D ∈ D satisfy degGγ

(D, C) ≥ κ2n/680. By Claim 6.7.2, we may assume

that each of these chosen clusters satisfy degGγ
(D, C \V (M∗

D)) ≥ κ2n
680 −ϑn, as otherwise T ⊆ G.

By Lemma 6.1(i), these clusters satisfy degH(D, C \V (M∗
D)) ≥ κ2n

690 . Let C− = V (M)\C. By the

definition of M∗
D, we get degH(D, C−\V (M∗

D)) ≥ κ2n
690−ϑn > κ2n

700 . Observe that C−\V (ML) ⊆ S̃.
As |D| ≥ κN

17 we get,

κ3n2

12·103 < eGγ

(

⋃

D,
⋃

C−
)

≤ eGγ

(

⋃

D, S̃
)

+ eGγ

(

⋃

D, V (ML)
)

≤ 53ϑn2 + |ML|sn ,

implying |ML| ≥ κ3N
2·104 .

Claim 6.7.4 gives the statement of the lemma (recall that κ≫ ϑ).

This finishes the proof of the Lemma 4.2.

7 Proof of Lemma 4.1 (Extremal case)

Let cE be sufficiently small compared to q. Given σ ∈ (0, cE], let β and γ be chosen so that
β ≪ γ ≪ σ. Given a (β, σ)-extremal partition V = V1∪̇ . . . ∪̇Vℓ∪̇Ṽ we show that Tk+1 ⊆ G, or
there exists a set Q ⊆ Ṽ satisfying Properties (i)–(iii) of Lemma 4.1.

The proof of Lemma 4.1 is split into two statements, Lemma 7.1 and Lemma 7.2, according
to the number of leaves of the tree T ∈ Tk+1 considered.

Lemma 7.1. Let T ∈ Tk+1 be a tree that has at most 60γk leaves. Suppose that G admits
a (β, σ)-extremal partition V = V1∪̇ . . . ∪̇Vℓ∪̇Ṽ . Then T ⊆ G, or there exists a set Q ⊆ Ṽ
satisfying Properties (i)–(iii) of Lemma 4.1.

Lemma 7.2. Let T ∈ Tk+1 be a tree that has more than 60γk leaves. Suppose that G admits a
(β, σ)-extremal partition V = V1∪̇ . . . ∪̇Vℓ∪̇Ṽ . Then T ⊆ G.
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Lemma 4.1 follows Lemmas 7.1 and 7.2. The proofs of these lemmas occupy Sections 7.1,
and 7.2. First however, we establish some basic properties of a (β, σ)-extremal partition.
Throughout this section we write m = ci(n

k
) for the integer closest to n

k
. The sets Vi, i ∈ [ℓ] are

called clumps.
Suppose that G admits a (β, σ)-extremal partition V = V1∪̇ . . . ∪̇Vℓ∪̇Ṽ . Then ℓ ≤ m.

Lemma 7.3. For each i ∈ [ℓ] the following holds.

(i) For all but at most
√
βk vertices v ∈ Vi ∩ L, we have that deg(v, Vi) ≥ k −√

βk.

(ii) For all but at most 2
√
βk vertices v ∈ Vi∩S, we have that deg(v, Vi∩L) ≥ |Vi∩L|−

√
βk.

(iii) For all but at most
√
βk vertices v ∈ V \ Vi, we have that deg(v, Vi) <

√
βk.

Proof. (i) Let U = {v ∈ Vi ∩ L : deg(v, Vi) < k −√
βk}. Since every vertex v ∈ U sends at

least
√
βk edges outside Vi, we deduce from e(Vi, V \ Vi) < βk2 that |U | ≤ √

βk.

(ii) Let W = {v ∈ Vi ∩ S : deg(v, Vi ∩ L) < |Vi ∩ L| −
√
βk}. From

e(Vi ∩ L, Vi ∩ S) > |Vi ∩ L|k − |Vi ∩ L|2 − βk2 > |Vi ∩ L||Vi ∩ S| − 2βk2 , and

e(Vi ∩ L, Vi ∩ S) = e(Vi ∩ L,W ) + e(Vi ∩ L, Vi ∩ S \W )

≤ (|Vi ∩ L| −
√

βk)|W | + |Vi ∩ L|(|Vi ∩ S| − |W |)
= |Vi ∩ L||Vi ∩ S| −

√

βk|W |

we infer that |W | < 2
√
βk.

(iii) Let Z = {v ∈ V \ Vi : deg(v, Vi) ≥
√
βk}. We have

βk2 > e(Vi, V \ Vi) ≥
∑

v∈Z
deg(v, Vi) ≥ |Z|

√

βk ,

which proves the statement.

For each i ∈ [ℓ], we set Li = {u ∈ L : deg(u, Vi) > (1− γ
4 )k}. For every A ⊆ Vi, Lemma 7.3(i)

and the assumption |Vi ∩ L| ≥ (12 − β)k give that

|Li| ≥ (1 − γ
2 )
k

2
and δ(Li, A) ≥ |A| − γk

2
. (7.1)

For each i ∈ [ℓ], we set Si
0 = {v ∈ S∩Vi : deg(v, Li) > |Li|− γk

2 }. As the sets Vi are pairwise
disjoint, so are the sets S1

0 , S
2
0 , . . . , S

ℓ
0. Any vertex v ∈ S∩Vi with deg(v, Vi∩L) ≥ |Vi∩L|−

√
βk

satisfies deg(v, Li) ≥ |Vi ∩ Li| − √
βk − |(Vi ∩ L) \ Li| ≥ |Li| − √

βk − |(Vi ∩ L) \ Li| − |Li \ Vi|.
Therefore by Lemma 7.3(i),(iii) any such vertex v belongs to Si

0. By Lemma 7.3(ii) and by (7.1)
we have

|Li ∪ Si
0| ≥ (1 − γ

2 )k . (7.2)

The next lemma allows to discard trees with substantial discrepancy from further consider-
ations.

Lemma 7.4. Suppose that G admits a (β, σ)-extremal partition V = V1∪̇ . . . ∪̇Vℓ∪̇Ṽ . Then each
tree T ∈ Tk+1 with discrepancy at least 2γk is a subgraph of G.
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Proof. Fix i ∈ [ℓ]. Choose L∗ ⊆ Li with |L∗| = (1− γ
2 )k2 , and set S∗ = (Li ∪ Si

0) \L∗. By (7.2),

|S∗| ≥ (1 − γ
2 )k2 . Using (7.1) and the definition of Si

0, we have

min{δ(L∗, S∗), δ(S∗, L∗), δ(L∗, L∗)} ≥ (1 − 3γ
2 )
k

2
.

Take a semi-independent partition (U1, U2) of T witnessing that disc(T ) ≥ 2γk. We apply
Fact 3.5 to embed T in G using the sets L∗ and S∗.

Lemma 7.5. (i) The sets {Li}i∈[ℓ] are mutually disjoint, or Tk+1 ⊆ G.

(ii) Suppose that Ṽ = ∅. If there exists a vertex u ∈ L \ (
⋃

i L
i), then Tk+1 ⊆ G.

Proof. For each i ∈ [ℓ], fix a set Ai ⊆ Li of size (12 − γ
4 )k, and set Bi = (Li ∪ Si

0) \ Ai.
By (7.1), (7.2) and the definition of the set Si

0 we have

δ(G[Ai, Bi]) ≥
(

1

2
− 5γ

4

)

k . (7.3)

Proof of Part (i). Suppose that there exist distinct indices i, j ∈ [ℓ] and a vertex u ∈ Li ∩ Lj.
Let T ∈ Tk+1 be arbitrary. By Lemma 7.3(iii), we have

|Li ∩ Lj| < k

100
. (7.4)

By Lemma 7.4 we can assume in the following that disc(T ) < 2γk. By Fact 3.1 there exists
a full-subtree T̃ ⊆ T rooted at a vertex r such that v(T̃ ) ∈ [k6 ,

k
3 ]. We map r to u, and embed

the tree T̃ in G[Ai, Bi] greedily. This is possible since

max{|T⊕ ∩ V (T̃ )|, |T⊖ ∩ V (T̃ )|} < v(T̃ )
2 + 2γk ≤ k

6 + 2γk

by Fact 3.3, and the graph G[Ai, Bi] satisfies (7.3). It remains to embed the tree T − T̃ .

By Fact 3.3, we have min{|T⊕ ∩ V (T − T̃ )|, |T⊖ ∩ V (T − T̃ )}| > v(T−T̃ )
2 − 2γk, and thus

max{|T⊕ ∩ V (T − T̃ )|, |T⊖ ∩ V (T − T̃ )|} < 5k
12 + 2γk. We embed T − T̃ in G[Aj , Bj ] greedily

(avoiding the previously used vertices of Li ∩Lj; we use (7.4) to bound the number of occupied
vertices).
Proof of Part (ii). Suppose that there exists a vertex u ∈ L \⋃i L

i. By Part (i) of the lemma,
we may assume that the sets Li are pairwise disjoint. Let

Xi = {u ∈ Ai : deg(u, Vi) > (1 − γ
13m )k} , and

Yi = {u ∈ Bi : deg(u,Li) > |Li| − γk
13m} .

(In applications, we use that deg(u,Xi) > |Xi|− γk
13m for every u ∈ Yi.) Applying Lemma 7.3 (i)–

(ii) to Li, Si
0,Xi and Yi, we get that

|Vi \ (Xi ∪ Yi)| < γk
6m2 . (7.5)

As Xi ⊆ Li and Yi ⊆ Si
0, all the sets Xi and Yi are pairwise disjoint. Without loss of generality,

we assume that deg(u,X1 ∪ Y1) ≥ . . . ≥ deg(u,Xm ∪ Ym). As u ∈ L \ L1 we have

k ≤ deg(u,L) ≤
m
∑

i=1

deg(u,Xi ∪ Yi) + γk
6m ≤ (1 − γ

2 )k +

m
∑

i=2

deg(u,Xi ∪ Yi) + γk
6m

≤ (1 − γ
3 )k + (m− 1) deg(u,X2 ∪ Y2) .
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This yields that

deg(u,X1 ∪ Y1) ≥ deg(u,X2 ∪ Y2) ≥
γk

3(m− 1)
≥ 2 . (7.6)

Let T ∈ Tk+1 be arbitrary. Analogously as in the proof of Lemma 7.4 we have T ⊆ G if
disc(T ) ≥ γk

6m . Therefore we assume that disc(T ) < γk
6m . By Fact 3.1 there exists a full-subtree

T̃ ⊆ T rooted at a vertex r such that v(T̃ ) ∈ [0.3k, 0.6k]. Let D be the set of leaves of T in
NT (r). We first embed the tree T −D, mapping r to u, as described below. The embedding is
then extended to an embedding of T using the fact that u ∈ L.

A 2+-component is a component of the forest T −r of order at least two. Let C be the family
of all 2+-components. For each subfamily C′ ⊆ C, we have by Fact 3.3 and by the assumption
disc(T ) ≤ γk

6m that

max{|V (C′) ∩ T⊖|, |V (C′) ∩ T⊕|} < |V (C′)|
2 + γk

12m + 1 . (7.7)

By (7.5) at most γk
6m vertices of the graph G are not contained in

⋃

i(Xi ∪ Yi). Thus,
deg(u,

⋃

i(Xi ∪ Yi)) ≥ (1 − γ
6m)k. We assign each 2+-component C ∈ C an index iC ∈ [m] such

that C will be mapped to the clump ViC . For each j ∈ [m] we shall require:

deg(u,Xj ∪ Yj) ≥ |{C ∈ C : iC = j}| , and (7.8)
∑

C∈C
iC=j

v(C) ≤ (1 − γ
3 )k . (7.9)

Claim 7.5.1. There exists a family {iC}C∈C such that (7.8) and (7.9) are satisfied.

Proof. We order the 2+-components as C1, . . . , C|C| so that v(C1) ≥ v(C2) ≥ . . . ≥ v(C|C|). For
j = 1, . . . , |C|, take the smallest index i ∈ [m] with the property that after assigning iCj

= i,
the properties (7.8) and (7.9) are satisfied for the partial assignment {iCj′

}j′≤j. If for a given j
there exists no such value i we just mark Cj as unassigned and proceed with j + 1.

We thus need to check that actually each 2+-component Cj was assigned. Suppose for a
contradiction that Cg was not. We have v(C1) ≤ 0.7k, and for ℓ ≥ 2 we have v(Cℓ) ≤ k

ℓ
.

These bounds and (7.6) guarantee us that C1, . . . , C4 can always be assigned; one assignment
satisfying (7.8) and (7.9) is iC1 = iC4 = 1, iC2 = iC3 = 2. Thus g > 4, and consequently
v(Cg) ≤ 0.2k.

To finish the argument, we distinguish two cases. First, assume that deg(u,X1∪Y1) ≥ 0.5k.
Since v(C) ≥ 2 for each C ∈ C, property (7.8) for j = 1 holds trivially. As Cg could not be
assigned with iCg = 1, by (7.9) we get that

∑

iC=1 v(C) > (1 − γ
3 )k − v(Cg). In particular, the

number of 2+-components C that are unassigned, or have iC 6= 1 is less than 1+ γk
6 . Further, the

total order of the 2+-components to be assigned to other clumps is at most v(Cg) + γk
3 < 0.4k.

Thus, (7.9) holds trivially for j > 1. The reason why the component Cg was not assigned is
that it did not satisfy (7.8) for any j > 1. Hence, by (7.5) we have

1 + γk
6 >

∑

j>1

deg(u,Xj ∪ Yj) ≥ k − deg(u,X1 ∪ Y1) −
m
∑

j=1

|Vj \ (Xj ∪ Yj)| ≥
k

3
,

a contradiction with the choice of γ.
Now, consider the case that deg(u,X1 ∪ Y1) < 0.5k. Then deg(u,X2 ∪ Y2) < 0.5k. Observe

that for j = 1, 2 we have
∑

iC=j v(C) ≥ 2 deg(u,Xj ∪ Yj) − γk
3 − v(Cg), as otherwise we could
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have assigned iCg = j without violating (7.8) and (7.9). For j > 2 by similar arguments we
have

∑

iC=j v(C) ≥ min{0.7k, 2 deg(u,Xj ∪ Yj)}. Summing these bounds, we get that

∑

C∈C
v(C) ≥ 2 deg(u,X1∪Y1)+2 deg(u,X2∪Y2)−2

γk

3
−2v(Cg)+

m
∑

j=3

min{0.7k, 2 deg(u,Xj∪Yj)} .

(7.10)
Suppose that for some j > 2 we have 0.7k ≤ 2 deg(u,Xj ∪ Yj). Then 2 deg(u,X1 ∪ Y1) ≥
2 deg(u,X2 ∪ Y2) ≥ 0.7k, and thus

∑

C∈C
v(C) ≥ 0.7k + 0.7k − 2

γk

3
− 2v(Cg) + 0.7k ≥ 1.6k > k ,

where we used that v(Cg) ≤ 0.2k. This is a contradiction. Thus, we can assume that for all
j > 2, 0.7k > 2 deg(u,Xj ∪ Yj). Plugging into (7.10) we get

∑

C∈C
v(C) ≥

m
∑

j=1

2 deg(u,Xj ∪ Yj) − 2
γk

3
− 2v(Cg) ≥ 2 · 0.9k − 2

γk

3
− 2 · 0.2k > k ,

which again gives a contradiction.

We embed the tree T −D as follows. Let us consider the indices {iC}C∈C from Claim 7.5.1.
The vertex r is mapped to u. For each component C ∈ C we map its root rC ∈ V (C) ∩ NT (r)
to one vertex from (XiC ∪YiC )∩NG(u) (so that distinct roots are mapped to distinct vertices).
We denote the image of the root rC by ϕ(rC). The mapping of the roots is extended to an
embedding of all 2+-components. This can be done greedily since each of the graphs G[Xi, Yi]
has minimum degree at least (12 −

γ
12m )k+ 1, and we have by a double application of (7.7) that

∑

C∈C
ϕ(rC)∈Xi

|V (C) ∩ T⊕| +
∑

C∈C
ϕ(rC)∈Yi

|V (C) ∩ T⊖| < (1 − γ
3 )k2 + 2( γk

12m + 1) ≤ δ(G[Xi, Yi]) , and

∑

C∈C
ϕ(rC)∈Xi

|V (C) ∩ T⊖| +
∑

C∈C
ϕ(rC)∈Yi

|V (C) ∩ T⊕| < (1 − γ
3 )k2 + 2( γk

12m + 1) ≤ δ(G[Xi, Yi]) .

Much of the work for proving Lemma 4.1 splits according to the following distinction. A
(β, σ)-extremal partition is said to be abundant if there exists an index i ∈ [ℓ] with |Li| ≥ k+1

2 .
It is called deficient otherwise.

We now derive properties of G in the deficient case. First, we observe that G is decomposed
into clumps.

Lemma 7.6. Suppose that G admits a (β, σ)-extremal deficient partition V = V1∪̇ . . . ∪̇Vℓ∪̇Ṽ .
Then Ṽ = ∅, and ℓ = m. Further,

m(k + 1) > n . (7.11)

Proof. Since the partition is deficient we have |L∩Vi| ≤ k
2 for all i ∈ [ℓ]. Thus by the definition

of (β, σ)-extremality, we have |L| ≤ ℓk2 + (12 − σ)|Ṽ |, and |S| > ℓ(1 − β)k2 + (12 + σ)|Ṽ |. Since

|L| ≥ |S|, we infer that |Ṽ | < γℓk
4σ . This in turn implies that Ṽ = ∅. Thus, ℓ = m. To get the

bound (7.11), we observe that

n = |L| + |S| ≤ 2|L| = 2
m
∑

i=1

|L ∩ Vi| < 2m
k + 1

2
.
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(a) Connecting structure guaranteed by Lemma 7.7. (b) Connecting structure guaranteed by Lemma 7.8.

Figure 6: Structures in Lemma 7.7 and Lemma 7.8

Lemmas 7.7 and 7.8 deal with the deficient case. It may happen that none of the clumps
is suitable for the embedding of the tree T ∈ Tk+1. For this reason, we must find connecting
structures that allow us to distribute parts of T to different clumps. Each lemma is used for a
different type of trees.

For j ∈ [m], set Sj = {v ∈ S : deg(v, Lj) ≥ k
5m}.

Lemma 7.7. Suppose that G admits a (β, σ)-extremal deficient partition V = V1∪̇ . . . ∪̇Vm,
such that {Li}mi=1 is a partition of L. Then there exist an index i0 ∈ [m] such that we have
|K| ≥ k/10 for the set

K =







v ∈ Li0 : deg(v, Li0) + deg(v,
⋃

j 6=i0

(Lj ∪ Sj)) ≥ k + 1

2







. (7.12)

Proof. We partition
⋃

j S
j into sets S̃j , j ∈ [m] such that S̃j ⊆ Sj. As |L| ≥ |S|, there exists

an index i ∈ [m] such that |S̃i| ≤ |Li| ≤ k
2 . Without loss of generality, assume that k

2 − |S̃1| is

the maximum value among all the values k
2 − |S̃i| (i ∈ [m]); then i0 = 1 is the index asserted

by the lemma. We have that k
2 − |S̃1| is non-negative. For each vertex v ∈ L1 \K, we have

deg(v, S \
⋃

j 6=1

S̃j) ≥ deg(v, S \
⋃

j 6=1

Sj) ≥ k
2 .

Thus deg(v, S−) > k
2 − |S̃1|, where S− = {u ∈ S : deg(u,Li) < k

5m ,∀i = 1, . . . ,m}. We have

|S−| k
5m

> e(L1 \K,S−) ≥ |L1 \K|
(

k

2
− |S̃1|

)

. (7.13)

On the other hand, as
∑

j |Lj| = |L| ≥ |S| =
∑

j |S̃j | + |S−|, there exists an index i ∈ [m] such

that |Li| ≥ |S̃i| + |S−|
m

. From the maximality of k
2 − |S̃1| and from (7.13) we deduce that

k

2
− |S̃1| ≥ k

2
− |S̃i| ≥ |Li| − |S̃i| ≥ |S−|

m
>

5|L1 \K|
k

(

k

2
− |S̃1|

)

.

This implies that k > 5|L1 \K|, and the asserted bound on |K| follows from (7.1).

Lemma 7.8. Suppose that G admits a (β, σ)-extremal deficient partition V = V1∪̇ . . . ∪̇Vm.
Furthermore, suppose that the sets {Li}i∈[m] partition the set L.

Then there exists an index i0 ∈ [m] and matchings E i0 , and J i0 such that the following hold.

(i) E i0 is an Li0 − (L \ Li0)-matching, J i0 is an Li0 −⋃i 6=i0
Si-matching.

(ii) V (E i0) ∩ V (J i0) = ∅.
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(iii) |Li0 | + |E i0 | + |J i0 | ≥ k+1
2 .

(iv) |E i0 | + |J i0 | < γk.

Proof. By Lemma 7.3 we have that |Si| > (12 − γ)k. We first find for each i ∈ [m] two vertex-
disjoint matchings E i and Di, such that E i is an Li − (L \ Li)-matching, Di is an Li − (S \ Si)-
matching, and such that the matchings {Di}i∈[m] are pairwise vertex-disjoint.

For each i ∈ [m], take E i to be a maximum Li−(L\Li) matching. If |Li|+ |Si|+ |E i| > k+1,
we truncate E i so that |Li| + |Si| + |E i| = max{k + 1, |Li| + |Si|}. Let us assume that

|L1| + |S1| + |E1| ≥ |L2| + |S2| + |E2| ≥ . . . ≥ |Lm| + |Sm| + |Em| . (7.14)

Start with i = 1, and increase the index i gradually. Take Di to be a maximum (Li \ V (E i)) −
(S \ (Si ∪ ⋃j<i V (Dj))) matching and truncate it so that |Li| + |Si| + |E i| + |Di| = max{k +

1, |Li| + |Si| + |E i|}. Such a matching Di exists. Indeed, if |Li| + |Si| + |E i| ≥ k + 1, then set
Di = ∅. Otherwise, we find a matching Di of size di = k + 1 − |Li| − |Si| − |E i| as follows.
Set Bi = S ∩⋃j<i V (Dj). From the sizes of the matchings Dj (j < i) and the ordering given

by (7.14) we get |Bi| < mdi. Each vertex u ∈ Li has at least di neighbors outside Li∪Si∪V (E i).
Color arbitrary di edges emanating from each vertex u ∈ Li outside Li ∪ Si ∪ V (E i) by black,
and the remaining edges incident with u by grey. We have

eblack
(

Li \ V (E i), S \ (Si ∪Bi)
)

> di(
1
2 − 3γ)k −mdi

k

5m
>
dik

5
. (7.15)

Since the maximum degree in the graph Gblack[Li \ V (Ei), S \ (Si ∪ Bi)] is upper-bounded by
max{ k

5m , di} = k
5m , there is no vertex cover of Gblack[Li \ V (Ei), S \ (Si ∪Bi)] of size less than

(dik5 )/( k
5m ) ≥ di. Hence, by König’s Matching Theorem, there exists a matching Di of size di

with the desired properties. We set Xi = V (Di) \ Li.
Let us summarize the properties of the obtained structure. For each i ∈ [m] we have

|Li| + |Si| + |E i| + |Xi| ≥ k + 1, and (7.16)

Xi ∩
⋃

j 6=i

Xj = ∅ and Si ∩Xi = ∅ . (7.17)

There is an index i0 ∈ [m] such that sufficiently many vertices from Si0 ∪Xi0 are contained in
⋃

j 6=i0
Sj, giving the desired bridges from the clump Vi0 . Indeed,

n− |L| ≥
∣

∣

∣

∣

∣

⋃

i

(Si ∪Xi)

∣

∣

∣

∣

∣

(7.17)

≥
∑

i

|Si| +
∑

i

|Xi| −
∑

i

∣

∣

∣

∣

∣

∣

(Si ∪Xi) ∩
⋃

j 6=i

Sj

∣

∣

∣

∣

∣

∣

(7.16)

≥ m(k + 1) − |L| −
∑

i

∣

∣

∣

∣

∣

∣

(Si ∪Xi) ∩
⋃

j 6=i

Sj

∣

∣

∣

∣

∣

∣

−
∑

i

|E i| ,

which yields

∑

i



|Li| + |E i| +

∣

∣

∣

∣

∣

∣

(Si ∪Xi) ∩
⋃

j 6=i

Sj

∣

∣

∣

∣

∣

∣



 ≥ |L| +m(k + 1) − n ≥ m(k + 1) − n

2

(7.11)

≥ m(k + 1)

2
.
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By averaging, there exists an index i0 ∈ [m] such that

|Li0 | + |E i0 | +

∣

∣

∣

∣

∣

∣

(Si0 ∪Xi0) ∩
⋃

j 6=i0

Sj

∣

∣

∣

∣

∣

∣

≥ k + 1

2
. (7.18)

It remains to define J i0 . Let J1 = {e ∈ Di0 : e ∩ ⋃j 6=i0
Sj 6= ∅}. Set Q = Si0 ∩ ⋃j 6=i0

Sj.

Let J2 be any matching in G[Q,Li0 \ V (E i0 ∪ J1)] that covers Q. Since |Q| < γk, we can find
such a matching greedily. Set J i0 = J1 ∪ J2.

Properties (i)–(ii) of the lemma are clear from the construction. Property (iii) follows
from (7.18), and using that |J1| = |Xi0 ∩

⋃

j 6=i0
Sj | and |J2| = |Si0 ∩⋃j 6=i0

Sj|.
Last, (7.1) tells us that we can truncate E i0 and J i0 so that (iv) is satisfied without violat-

ing (iii). This truncation preserved properties (i)–(ii).

7.1 Proof of Lemma 7.1

Suppose that T and G satisfy the hypothesis of Lemma 7.1. By Lemma 7.4, we can assume
that T has discrepancy less than 2γk. In particular,

|T⊕| ≤
k

2
+ γk . (7.19)

Recall that if G is deficient then by Lemma 7.6 we have Ṽ = ∅. For each i ∈ [ℓ] we define
Xi = {v ∈ Vi : deg(v, Li) > k

5m}. If G is abundant, we set Λ ⊆ [ℓ] to be the set of indices i0
such that |Li0 | ≥ k+1

2 , and set E i0 = J i0 = ∅. If G is deficient, we apply Lemma 7.8 to obtain
sets Si, an index i0, and two matchings E i0 and J i0 such that

|Li0 | + |E i0 | + |J i0 | ≥ k+1
2 ≥ |T⊖| . (7.20)

We then set Λ = {i0}.
For each i0 ∈ Λ individually, we shall try to embed the tree T so that most of the vertices

of T are embedded in Vi0 . We show that if all the attempts fail, then there exists a set Q
satisfying the assertions of Lemma 4.1.

Fix i0 ∈ Λ. Let F i0 = V (E i0) ∪ V (J i0). By Lemma 7.8(iv), |F i0 ∩ Li0 | ≤ γk. Take a
maximum family P of vertex-disjoint (Li0 \ F i0) − (V \ (Li0 ∪ Si0

0 ∪ F i0)) − (Li0 \ F i0)-paths.

Claim 1. If |Li0 ∪ Si0
0 ∪ F i0 | + |P| ≥ k − 1 then T ⊆ G.

Proof. Consider a family of paths P ′ ⊆ P by truncating P so that |P ′| = min{|P|, 30γk}.
By (7.2), |Li0 ∪Si0

0 ∪F i0 |+ |P ′| ≥ k− 1. Observe that V (P ′) \Li0 are the middle vertices of P ′.
Fix a set A ⊆ Li0 of size |T⊖| − |J i0 | − |E i0 | and which contains (F i0 ∪ V (P ′)) ∩ Li0 . This is
possible by (7.20) and by

|(F i0 ∪ V (P ′)) ∩ Li0 |
L7.8(iv)

< 31γk < k
2 − 2γk

(7.19)

< |T⊖| − |J i0 | − |E i0 | .

We apply Lemma 3.8, setting the parameters of the lemma as α = 60γ, A,Ba = (Li0 \A) ∪
Si0
0 , Bd = V (P ′) \ Li0 ,Q = P ′, E = E i0 ∪ J i0 ,M = ∅, I = [ℓ] \ {i0}, and Hκ = G[Lκ ∪ Sκ] (for

each κ ∈ I) to get T ⊆ G. To check Condition (vii) of Lemma 3.8, let us consider an arbitrary
vertex v ∈ A.

deg(v,Ba ∪Bd)
(7.1)

≥ |(Ba ∪Bd) ∩ Vi| − γk

≥ |Ba ∪Bd| − |Li0 \ Vi0 | − |Si0
0 \ Vi0 | − |P ′| − γk

≥ |Ba ∪Bd| −
√

βk −
√

βk − 30γk − γk ≥ |Ba ∪Bd| − 60γk ,

(7.21)
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where the last line follows from Lemma 7.3(iii) combined with the definition of Li0 , Si0
0 ,

and (7.1). Other conditions of Lemma 3.8 are easy to check.

It remains to consider the case that |Li0 ∪ Si0
0 ∪ F i0 | + |P| ≤ k − 2. From (7.2), we have

|P| < γk. Consider an arbitrary vertex u ∈ Li0 \ (F i0 ∪ V (P)). Since deg(u) ≥ k, there are at
least two edges ux1u and ux2u that emanate into V \(Li0∪Si0

0 ∪F i0). By the maximality of P all the
vertices x1u, x

2
u, u ∈ Li0\(F i0∪V (P)), are pairwise distinct. Set Ri0 =

⋃

u∈Li0\(F i0∪V (P)){x1u, x2u}
and R̃i0 = Ri0 ∩ Ṽ .

Claim 2. For an arbitrary set U ⊆ Ri0 there exists a U − (Li0 \ (F i0 ∪ V (P)) matching Fi0

with |Fi0 | ≥ |U |
2 .

Proof. For q = 1, 2, let Uq = {u ∈ Li0 \ (F i0 ∪ V (P) : xqu ∈ U}. There exists q ∈ [2] such that

|Uq| ≥ |U |
2 . The desired matching Fi0 is then {uxqu}u∈Uq .

Claim 3. If |R̃i0 | ≤ 2|Li0 | − 7mγk then T ⊆ G.

Proof. Observe that
∣

∣

∣

∣

∣

∣

Ri0 ∩
⋃

i∈[ℓ]
(Li ∪Xi)

∣

∣

∣

∣

∣

∣

≥ |Ri0 | − |R̃i0 | −

∣

∣

∣

∣

∣

∣

V \



Ṽ ∪
⋃

i∈[ℓ]
Xi





∣

∣

∣

∣

∣

∣

L7.3

≥ 2|Li0 \ (F i0 ∪ V (P))| − (2|Li0 | − 7mγk) −m
√

βk

≥ 2|Li0 | − 4γk − 2|Li0 | + 7mγk −m
√

βk ≥ 2γk .

By Claim 2, there exists an (Li0 \F i0)− (Ri0 ∩
⋃

i∈[ℓ](L
i∪Xi)) matching N of size γk. Fix a set

A ⊆ Li0 of size |T⊖|− |J i0 |− |E i0 | and which contains (F i0 ∪V (N ))∩Li0 . We apply Lemma 3.8
with parameters α = 60γ, A,Ba = (Li0 \ A) ∪ Si0

0 , Bd = Q = M = ∅, E = E i0 ∪ J i0 ∪ N , I =
[ℓ]\{i0}, and Hκ = G[Lκ∪Sκ] (for each κ ∈ I) and get that T ⊆ G. Condition (vi) of Lemma 3.8
follows from (7.2). Condition (vii) is checked analogously as in (7.21). Other conditions are
easy to verify.

Putting Claim 1 and Claim 3 together, we can assume that for each i ∈ Λ, we have

|R̃i| > 2|Li| − 7mγk . (7.22)

Suppose that there exists an index i0 ∈ Λ such that
∣

∣

∣

∣

∣

∣

R̃i0 ∩
⋃

i∈Λ\{i0}
R̃i

∣

∣

∣

∣

∣

∣

≥ 8γk . (7.23)

Claim 2 gives an (Li0 \ F i0) − (R̃i0 ∩ ⋃i∈Λ\{i0} R̃i) matching M1 of size 4γk. Further ap-

plications of Claim 2 for indices in i ∈ Λ \ {i0} and sets U = V (M1) ∩ R̃i0 ∩ R̃i yield a
(

V (M1) ∩ R̃i0 ∩
⋃

i∈Λ\{i0} R̃i

)

−
(

⋃

i∈Λ\{i0} L
i
)

matching M2 of size 2γk. From this matching

choose a matching M3 of size γk that is disjoint from F i0 . Extend the edges of M3 by edges

of M1. This leads to γk vertex-disjoint Li0−(R̃i0∩
⋃

i∈Λ\{i0} R̃i)−
(

⋃

i∈Λ\{i0} L
i
)

-paths, denoted

by M. Fix a set A ⊆ Li0 of size |T⊖| − |J i0 | − |E i0 | and which contains (F i0 ∪ V (M)) ∩ Li0 .
This is possible by (7.20) and by

|(F i0 ∪ V (M)) ∩ Li0 |
L7.8(iv)

< 2γk
(7.19)

< |T⊖| − |J i0 | − |E i0 | .
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We apply Lemma 3.8, setting the parameters of the lemma as α = 60γ, A,Ba = (Li0 \ A) ∪
Si0
0 , Bd = Q = ∅, E = E i0 ∪ J i0 ,M, I = [ℓ] \ {i0}, and Hκ = G[Lκ ∪ Sκ] (for each κ ∈ I) to get
T ⊆ G. Condition (vi) of Lemma 3.8 follows from (7.2). Condition (vii) is checked as in (7.21).
Consequently, T ⊆ G.

We assume in the rest that no index i0 satisfies (7.23). We have

∣

∣

∣

∣

∣

⋃

i∈Λ
R̃i

∣

∣

∣

∣

∣

≥
∑

i∈Λ
(|R̃i| − |R̃i ∩

⋃

j∈Λ\{i0}
R̃j|)

(7.22),¬(7.23)

≥ 2
∑

i∈Λ
|Li| − 15m2γk . (7.24)

Set Y =
⋃

i∈Λ R̃i.
We distinguish three cases:

(♣1) We have that |L ∩ Y | ≤ k
8 and e(Y, Ṽ \ Y ) < σk2/2.

Solution of (♣1): We show that the set Q = Ṽ \ Y satisfies the assertions of Lemma 4.1.

First, we prove the property of Lemma 4.1 (ii). By the hypothesis of (♣1), not many
vertices in Y are large. Thus the ratio of the large vertices in the graph G[

⋃

i∈Λ Vi ∪ Y ]
is substantially smaller than one half. Then there must be substantially more than half
of the large vertices in the complementary set Q, and the property follows. We make the
idea rigorous by the following calculations. For each i ∈ Λ set li = |Li|.

1

2
n ≤ |L| ≤ (ℓ− |Λ|)k2 +

∑

i∈Λ
li + |L ∩ Y | + |L ∩Q| + |L \ (Ṽ ∪

⋃

j∈[ℓ]
Lj)|

< (ℓ− |Λ|)k2 +
∑

i∈Λ
li + k

8 + |L ∩Q| + γn .

Thus,

|L ∩Q| > 1

2
n− (ℓ− |Λ|)k2 −

∑

i∈Λ
li − k

8 − γn

>
1

2

(

|Ṽ | − 2
∑

i∈Λ
li

)

+ |Λ|k2 − k
8 − 2γn

(7.24)
>

1

2
|Q| + |Λ|k2 − k

7 ≥ 1

2
|Q| +

5

14
k ,

(7.25)

which was needed to show the property of Lemma 4.1 (ii). Looking back at (7.25), we see
that |Q| ≥ 1

2 |Q| + 5
14k, and thus also the property of Lemma 4.1 (i) follows.

Finally, to infer the property of Lemma 4.1 (iii) we write

e(Q,V \Q) ≤ e(Y, Ṽ \ Y ) + e(Ṽ , V \ Ṽ ) < σk2/2 + βk2 ≤ σk2 .

The bound on the first summand follows from the hypothesis of (♣1), the bound on the
second summand follows from the (β, σ)-extremality.

(♣2) We have that |L ∩ Y | > k
8 and e(Y, Ṽ \ Y ) < σk2/2.

Solution of (♣2): We show that T ⊆ G. The hypothesis of (♣2) gives e(G[Y ]) ≥ 1
2 |L ∩

Y |k − e(Y, Ṽ \ Y ) ≥ k2

20 . The average degree in G[Y ] is 2e(G[Y ])
|Y | ≥ k2

10n ≥ qk
10 . There exists

a subgraph H∗ ⊆ G[Y ] with δ(H∗) ≥ qk
20 . By averaging, there exists an index i0 ∈ Λ such

that
|R̃i0 ∩ V (H∗)| > qk

20m . (7.26)
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Fix such an index i0. By (7.26) there exists an Li0 − V (H∗)-matching E of size 30γk. Fix
a set A ⊆ Li0 of size |T⊖| − |E| containing V (E) ∩ Li0 . Such a set exists by (7.1). By
Lemma 3.8 (with α = 60γ, A,Ba = Si0

0 , Bd = Q = M = ∅, E , and H∗, I = {∗}) we get
that T ⊆ G. To check Condition (vi), observe that, by (7.2) and the fact that we are
the deficient case, we have |Si0

0 | + |E| ≥ k
2 − γk + 30γk ≥ |T⊕|. Condition (vii) follows

from (7.1). Other conditions are straightforward.

(♣3) We have that e(Y, Ṽ \ Y ) ≥ σk2/2.
Solution of (♣3): We show that T ⊆ G. The average degree of the bipartite graph
G[Y, Ṽ \Y ] is at least qσk. Thus there exists a graph H∗ ⊆ G[Y, Ṽ \Y ] with δ(H∗) ≥ qσk

2 .

There must be an index i0 ∈ Λ such that |R̃i0 ∩ V (H∗)| > σqk
2m . Fix such an index i0, find

a matching E and set A as in (♣2). We apply Lemma 3.8 as in (♣2).

7.2 Proof of Lemma 7.2

In order to prove Lemma 7.2 we need the following auxiliary lemma.

Lemma 7.9. Let F be a rooted forest with a partition V (F ) = O1 ∪ O2, such that O2 is
independent. Let W be the set of leaves of F and set P = {u ∈ O2 : |W ∩ Ch(u)| = 1}. Let H
be a graph and let A,B ⊆ V (H) be two disjoint sets such that for some f ≥ 0 we have |A| ≥ |O1|,
min{δ(A,A), δ(B,A)} > |O1| − f , δ(A,B) > |B| − f , |B| ≥ |O2 \W |, and δ(A) ≥ v(F ) − 1. If
|P | ≥ 2f , then there exists an embedding ϕ of F in H such that ϕ(O1) ⊆ A.

Proof. Choose a subset P ′ ⊆ P of size |P ′| = 2f . Consider the subtree F ′ = F −W ′, where
W ′ = W ∩ (O2∪N(P ′)). We embed greedily the tree F ′ in A∪B, so that V (F ′)∩O1 maps to A
and V (F ′) ∩O2 maps to B. Denote this embedding by ϕ′. Next we want to embed the leaves

W ′ ∩ O1 in A. Let A′ = A \ ϕ(V (F ′)). We have |A′| ≥ 2f = |ϕ′(P ′)|, δ(ϕ(P ′), A′) > f = |P ′|
2 ,

and δ(A′, ϕ(P ′)) > f = |P ′|
2 . By König’s matching theorem, there exists a matching M in

H[A′, ϕ′(P ′)] that covers ϕ′(P ′).
We extend ϕ′ to an embedding ϕ of F , by embedding W ′∩O1 according to the matching M ,

and by embedding W ∩O2 greedily (this is guaranteed by the minimum degree condition of the
set A).

A semi-independent partition (U1, U2) of a tree F is p-ideal if each of the vertex sets U1

and U2 contains at least p leaves of F . If disc(T ) ≥ 2γk, then Lemma 7.4 ensures that T ⊆ G.
Therefore, the proof of Lemma 7.2 follows from Lemma 7.10 and 7.11 below.

Lemma 7.10. If we are in the setting of Lemma 7.2 and disc(T ) < 2γk, then T has an 8γk-ideal
semi-independent partition, or T ⊆ G.

Lemma 7.11. If we are in the setting of Lemma 7.2, disc(T ) < 2γk, and T has an 8γk-ideal
semi-independent partition then T ⊆ G.

Proof of Lemma 7.10. We partition the set W of leaves of T into W⊕ = W ∩ T⊕ and W⊖ =
W ∩T⊖. Set w⊕ = |W⊕| and w⊖ = |W⊖|. We have that w⊕ +w⊖ ≥ 60γk. We distinguish three
cases based on the values of w⊕ and w⊖.
• We have w⊕ ≥ 8γk and w⊖ ≥ 8γk.
Then (T⊖, T⊕) is an 8γk-ideal semi-independent partition.

• We have w⊕ < 8γk.
Then we have w⊖ ≥ 52γk. We distinguish two subcases.
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• If |Par(W⊖)| ≤ 16γk, we consider the sets U1 = T⊖△(W⊖∪Par(W⊖)) and U2 = T⊕△(W⊖∪
Par(W⊖)). The partition (U1, U2) is semi-independent with |U2| − |U1| ≥ 72γk, a contra-
diction with the assumption disc(T ) < 2γk.

• If |Par(W⊖)| > 16γk, we choose an arbitrary subset P ′ ⊆ Par(W⊖) with |P ′| = 8γk and
set W ′

⊖ = N(P ′) ∩ W⊖. The partition (U1, U2), defined by U1 = T⊖△(W ′
⊖ ∪ P ′) and

U2 = T⊕△(W ′
⊖ ∪ P ′), is an 8γk-ideal semi-independent partition.

• We have w⊖ < 8γk.
We use Fact 3.1 (ii) to find a full-subtree T̃ ⊆ T rooted at a vertex r with p proper leaves,
where p ∈ [20γk, 40γk]. The choice of T̃ has the property that

min{|W⊕ ∩ V (T̃ )|, |W⊕ \ V (T̃ )|} ≥ 12γk . (7.27)

Set d = |V (T̃ ) ∩ T⊕| − |V (T̃ ) ∩ T⊖|. We distinguish six subcases.

(C1) r ∈ T⊕ and d ≤ gap(T )
2 , (C2) r ∈ T⊖ and d ≥ gap(T )

2 ,

(C3) r ∈ T⊕ and d ≥ gap(T )
2 + 1, (C4) r ∈ T⊖ and d ≤ gap(T )

2 − 1,

(C5) r ∈ T⊕ and d = gap(T )+1
2 , (C6) r ∈ T⊖ and d = gap(T )−1

2 .

In cases (C1)–(C4) we obtain a semi-independent partition by flipping either V (T̃ ) (in cases
(C1) and (C2)) or V (T̃ ) \ {r} (in cases (C3) and (C4)) in the original partition (T⊖, T⊕). In
these cases, the obtained partition is indeed 8γk-ideal by (7.27).

In the rest, we consider only the case (C5), the case (C6) being analogous. Notice that
gap(T ) has the same parity as v(T ) = k+ 1. Thus, the integrality of d gives that k is even. We
set O1 = T⊖△V (T̃ ) and O2 = T⊕△V (T̃ ). We have that |O1| = k+2

2 , and |O2| = k
2 .

Claim 7.10.1. We have Par(O1 ∩W ) ⊆ O2, or T has an 8γk-ideal semi-independent partition.

Proof. The existence of a vertex u ∈ O1 ∩ W whose parent lies in O1 would yield a semi-
independent partition (O1 \ {u}, O2 ∪ {u}), which would be by (7.27) 8γk-ideal.

Claim 7.10.2. If there exist two distinct leaves z1, z2 ∈ O1 with a common neighbor {x} =
Par({z1, z2}), then T has an 8γk-ideal semi-independent partition.

Proof. By Claim 7.10.1 we can assume that x ∈ O2. Set U1 = O1△{x, z1, z2} and U2 =
O2△{x, z1, z2}. Then |U1| = k

2 , |U2| = k
2+1, |U1∩W | = |O1∩W |−2, and |U2∩W | = |O2∩W |+2.

By (7.27), the partition (U1, U2) is 8γk-ideal semi-independent.

By the two claims above, we restrict ourselves to the case that Par(O1 ∩W ) ⊆ O2, and the
leaves in O1 have pairwise distinct parents.

Claim 7.10.3. For the set O∗
1 = {y ∈ O1 ∩W : deg(Par(y)) = 2}, we have |O∗

1| > 1.5γk.

Proof. Recall that every vertex in Par(O1 ∩W ) has exactly one leaf-child in O1. Set W∗ =
V (T̃ ) ∩W⊕ and T∗ = T̃ −W∗. By (7.27), we have |W∗| ≥ 12γk.

|V (T∗) ∩ T⊖| = |V (T̃ ) ∩ T⊖|
Fact 3.3
> |V (T̃ ) ∩ T⊕| − 2.5γk

= |V (T∗) ∩ T⊕| + |W∗| − 2.5γk ≥ |V (T∗) ∩ T⊕| + 9.5γk .

By Fact 3.2, the tree T∗ contains at least 9.5γk leaves from T⊖. These leaves are also leaves
of T̃ , with |O∗

1| exceptions caused by Par(O∗
1). Since w⊖ < 8γk, we must have |O∗

1 | > 1.5γk.

40



We show that T ⊆ G in two cases (♦1) and (♦2) separately, based on whether G is in the
abundant or deficient configuration.

(♦1) If G admits an abundant partition, then there exists an index i ∈ [ℓ] such that
|Li| ≥ k+1

2 . As k is even, |Li| ≥ k+2
2 . Choose L∗ ⊆ Li such that |L∗| = k+2

2 . Define Z = {u ∈
W ∩O1 : Par(u) ∈ O2}. Suppose that |(W ∩O1)\Z| > γk. Then consider the partition (U1, U2)
with U1 = O1 \ ((W ∩ O1) \ Z) and U2 = O2 ∪ ((W ∩ O1) \ Z). We have |U2| − |U1| > 2γk, a
contradiction to disc(T ) ≤ 2γk. Thus |(W ∩O1)\Z| ≤ γk. Let Z ′ ⊆ Z be the set of leaves in Z
with no sibling in Z. Observe that Fact 3.4 gives |Z \ Z ′| ≤ 2γk. We can now use Lemma 7.9
with A = L∗, B = Si

0∪ (Li \L∗), f = γk, and the partition (O1, O2) of T to get T ⊆ G. Indeed,
the above bounds imply that the set P (as defined in Lemma 7.9) is large.

(♦2) Suppose that G is in the deficient configuration. Consider the index i ∈ [m] and the
sets Sj, and K ⊆ Li given by Lemma 7.7. Let us discard from O∗

1 arbitrary vertices so that we
have |O∗

1| = 1.5γk (cf. Claim 7.10.3). We embed greedily the tree T− = T − (O∗
1 ∪ Par(O∗

1))
in G[Li ∪ Si

0] using Li to host O1 \ O∗
1 and Si

0 to host O2 \ Par(O∗
1), and so that the vertices

of Par(Par(O∗
1)) are always mapped to K. Such an embedding exists by (7.1) and (7.2), and

because |Par(Par(O∗
1))| ≤ |Par(O∗

1)| = |O∗
1 | ≤ 1.5γk, and |K| ≥ k

10 . It remains to extend the
embedding of T− first to Par(O∗

1) and then to O∗
1. For any vertex in Par(Par(O∗

1)) mapped
to a vertex in K, we embed its child from Par(O∗

1) greedily to Li ∪⋃j 6=i(L
j ∪ Sj). This way,

only vertices of (O1 \ O∗
1) ∪ Par(O∗

1) could be embedded in Li. As |(O1 \ O∗
1) ∪ Par(O∗

1)| =
|O1| = k

2 + 1 = ⌈k+1
2 ⌉, we can extend the embedding to Par(O∗

1) by (7.12). In the last step,
we extend the embedding to O∗

1. Consider an arbitrary vertex x ∈ Par(O∗
1). The vertex x was

embedded to Li, or to
⋃

j 6=i(L
j ∪ Sj). If x is mapped to

⋃

j L
j , we use the high degree of those

vertices to extend the embedding to the child of x. In the case x was mapped to v ∈ Sj for
some j 6= i, observe that only vertices from O∗

1 ∪ Par(O∗
1) could have been mapped to Lj. As

|O∗
1 ∪ Par(O∗

1)| = 2|O∗
1 | = 3γk, the definition of Sj tells us that deg(v, Lj) ≥ k

5m and we can
map the child of x to Lj .

Proof of Lemma 7.11. We assume that T has an 8γk-ideal semi-independent partition (U1, U2).
Let W2 be the leaves in U2, and let W ∗

1 be those leaves in U1 which have no leaf-sibling in U1.
By Fact 3.4, we have |W ∗

1 | ≥ 6γk.

First, we show how to resolve the situation in the abundant case. Let i be such that
|Li| ≥ k+1

2 . We first embed T − (W ∗
1 ∪W2) in G[Li ∪ Si

0], using Li to host U1 \W ∗
1 , and Si

0 to
host U2 \W2. Properties (7.1) and (7.2) tell us that such an embedding exists.

Next, we map W ∗
1 to the set L∗ ⊆ Li of unused vertices of Li. To this end, consider

an auxiliary bipartite graph H whose two colour classes are L∗ and Par(W ∗
1 ). A pair vx,

v ∈ L∗, x ∈ Par(W ∗
1 ) forms an edge in H if x was mapped to a vertex that is adjacent to v

in G. By the definition of Si
0, and by (7.1), we have δH(Par(W ∗

1 ), L∗) ≥ |L∗| − γk/2, and
δH(L∗,Par(W ∗

1 )) ≥ |Par(W ∗
1 )| − γk/2 = |W ∗

1 | − γk/2. We conclude that H has no vertex cover
of size less than min{|W ∗

1 |, |L∗|} = |W ∗
1 |. By König’s Theorem, there exists a matching covering

Par(W ∗
1 ) in H. This matching tells us how to embed W ∗

1 . In the last step, we embed W2. This
can be done greedily as Par(W2) were mapped to L.

It remains to resolve the situation in the deficient case. Consider the index i ∈ [m] and the
sets Sj , and K ⊆ Li given by Lemma 7.7. Set W ∗∗

1 = {x ∈W ∗
1 : deg(Par(x)) ≤ γ(k+ 1)}. The

degree sum formula for trees gives |W ∗∗
1 | ≥ |W ∗

1 |−2/γ > 5.9γk. Let T̃ ⊆ V (T ) be a full-subtree
rooted at a vertex r ∈ V (T ), such that v(T̃ ) ∈ [k/4, k/2]. The existence of T̃ is guaranteed by
Fact 3.1. Let W ∗∗∗

1 ⊆ W ∗∗
1 \ N(r) be a set of size 5.8γk. This is possible, as by the definition

of W ∗
1 we have |W ∗∗

1 ∩N(r)| ≤ 1. Observe that |W ∗∗∗
1 ∩V (T̃ )| ≥ 2.9γk or |W ∗∗∗

1 \V (T̃ )| ≥ 2.9γk.
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First assume the former case. Let X = {x ∈ Par(W ∗∗∗
1 ∩ V (T̃ )) : Par(x) ∈ U1}. Observe

that X ⊆ V (T̃ ) \ {r}. Thus
∑

x∈X
v(T (↓ x)) ≤ v(T̃ ) ≤ k

2
. (7.28)

We begin embedding greedily the tree T ′ = T −W2 −
⋃

x∈X T (↓ x) so that U1 is mapped to
Li, Par(X) is mapped to K, and U2 is mapped to Si

0. We can do so, as |Par(X)| ≤ |W ∗∗∗
1 | =

5.8γk ≤ |K| (c.f. Lemma 7.7). Such an embedding exists by (7.1) and (7.2).
For every x ∈ X, we sequentially assign an index jx ∈ [m] to denote where T (↓ x) will be

embedded, according to the following rule. Let X ′ ⊆ X be the set of those y’s for which the
index jy has been assigned in previous rounds. Let vx ∈ K be the image of Par(x). If there
exists any index j 6= i such that

(i) deg(vx, (L
j ∪ Sj)) > |{y ∈ X ′ : jy = j}|, and

(ii)
∑

y∈X′ : jy=j v(T (↓ y)) ≤ k/(5m) − 2γk ,

then choose such an index j and fix jx = j. If no such index j 6= i exists, than set jx = i.
The assignment finished, for every x ∈ X with jx 6= i we map x to N(vx) ∩ (Ljx ∪ Sjx).

This is possible thanks to Condition (i). Having mapped all X6=i = {y ∈ X : jy 6= i}, we

embed {Ch(x), x ∈ X6=i} in Ljx ∪Sjx
0 (see Figure 7.2). Even if x is mapped to Sjx, the at most

γ(k+ 1) children of x (cf. definition of W ∗∗
1 ) can be embedded thanks to Condition (ii) and the

definition of Sj. Having embedded all the vertices
⋃

x∈X 6=i
Ch(x), we continue as follows. For

each x ∈ X6=i we embed the rest of T (↓ x) greedily in Ljx ∪Sjx
0 , which is possible by (7.28). We

are finished with embedding T in the case that jx 6= i for all x ∈ X. Thus, assume that

jx = i for some x ∈ X . (7.29)

Suppose that
∑

y∈X : jy=j v(T (↓ y)) > k/(5m)− 2γk for some j 6= i. Set D = {T (↓ y) : jy =

j}.

Claim 7.11.4. We have |U1 ∩ V (D)| ≥ 500γk.

Proof. First, consider the case that the total order of small components of D, defined as with
at most 10 vertices, is at least |V (D)|/2. In each such component, there is at least one vertex

of W ∗∗∗
1 ⊆ U1. Hence |U1 ∩ V (D)| ≥ 1

10 · |V (D)|
2 ≥ k

200m > 500γk.
Next, consider the case that the total order of large components of D (those having more

than 10 vertices) is more than |V (D)|/2. Let D1 be those large components D ∈ D with
|U2 ∩V (D)| < 10|U1 ∩V (D)|, and let D2 be those large components D ∈ D with |U2 ∩V (D)| ≥
10|U1 ∩ V (D)|. Consider the tree T ′′ = T −D2, and its colour classes T ′′

⊕ and T ′′
⊖. Let R be the

roots of the trees in D2. We have |R| ≤ |V (D2)|/10. Set the partition V (T ) = U ′
1∪̇U ′

2, where
U ′
2 = T ′′

⊕ ∪ (U2 ∩ V (D2)) \R and U ′
1 = V (T ) \U ′

2 = T ′′
⊖ ∪ (U1 ∩ V (D2)) ∪R. Observe that U ′

2 is
an independent set. As disc(T ) < 2γk, we have

2γk > |U ′
2| − |U ′

1| ≥ |U2 ∩ V (D2)| − |U1 ∩ V (D2)| − 2|R| ≥ ( 9
11 − 1

5)|V (D2)| .

We conclude that |V (D2)| < 4γk. In particular, we have |V (D1)| ≥ |V (D)|/4. Then

|U1 ∩ V (D)| ≥ |U1 ∩ V (D1)| ≥ 1
11 ·

|V (D)|
4 > 500γk ,

as needed.
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Recall that we have embedded the entire tree T except the set M =
⋃

x∈X\X 6=i
V (T (↓ x)).

Let Q ⊆ U2∩M be a set of size max{400γk, |U2∩M |}. To finish the embedding of T , we embed
greedily the vertices of Q ∪ (U1 ∩M) in Li and the vertices of (U2 ∩M) \ Q in Si

0. Prior to
this embedding, by Claim 7.11.4, at least 500γk vertices of U1 had been embedded outside of
Li. Thus, the minimum-degree conditions (7.1) guarantee that such a greedy embedding indeed
exists.

Thus, it remains to consider that
∑

y∈X : jy=j v(T (↓ y)) ≤ k/(5m) − 2γk for all j 6= i. At

the same time, we had not been able to satisfy Condition (i) for any j 6= i for the vertex x
from (7.29). Then deg(vx,

⋃

j 6=i(L
j ∪ Sj)) ≤ |{y ∈ X : jy 6= i}|.

At least
(k + 1)/2 − |Li| ≥ |U1| − |Li| (7.30)

vertices of U1 were embedded outside Li. Indeed, at least deg(vx,
⋃

j 6=i(L
j ∪Sj)) vertices x ∈ X

were assigned some jx 6= i. Each corresponding tree T (↓ x) contains at least one child of x,
belonging to W ∗∗∗

1 ⊆ U1, which was thus embedded outside Li. Using (7.12), we get (7.30).
It remains to embed the trees {T (↓ x) : x ∈ X \ X6=i}. We first embed all the trees

T (↓ x) \ (W ∗∗∗
1 ∪W2), x ∈ X \X6=i. The extension to W ∗∗∗

1 ∪W2 will be done at the very end.

Set WX = W ∗∗∗
1 ∩

(

⋃

x∈X\X 6=i
V (T (↓ x))

)

and WY = W ∗∗∗
1 ∩

(

⋃

x∈X 6=i
V (T (↓ x))

)

.

Claim 7.11.5. We have |WX ∪WY | ≥ 1.9γk.

Proof. Let W̃ be all vertices in W ∗∗∗
1 ∩ V (T̃ ) ⊆ U1 whose parent lies in U2. For y ∈ W̃ , the

independence of U2 implies that Par(Par(y)) ∈ U1. Thus by the definition of X, we have that
Par(y) ∈ X and thus y ∈W ∗∗∗

1 ∩
(
⋃

x∈X V (T (↓ x))
)

= WX ∪WY . Hence, W̃ ⊆WX ∪WY .
The semi-independent partition

(

U1 \ ((W ∗∗∗
1 ∩ V (T̃ )) \ W̃ ) , U2 ∪ ((W ∗∗∗

1 ∩ V (T̃ )) \ W̃ )
)

has gap

(

|U2| + |W ∗∗∗
1 ∩ V (T̃ )| − |W̃ |

)

−
(

|U1| + |W̃ | − |W ∗∗∗
1 ∩ V (T̃ )|

)

≥
(

|W ∗∗∗
1 ∩ V (T̃ )| − |W̃ |

)

−
(

|W̃ | − |W ∗∗∗
1 ∩ V (T̃ )|

)

≥ 2 · 2.9γk − 2|W̃ | .

Since disc(T ) < 2γk, we get |W̃ | ≥ 1.9γk.

Set N =
⋃

x∈X 6=i
V (T (↓ x)). By Claim 7.11.5, we have that |WY | ≥ 0.75γk, or |WX | ≥

0.75γk. Hence,

|U1 \ (WX ∪N)| ≤ k + 1

2
− 0.75γk

(7.1)

≤ |Li| − γk

2
. (7.31)

For a fixed x ∈ X \X6=i, we proceed embedding T (↓ x)\WX greedily in G[Li∪Si
0], using Li

to host (U1 ∩ V (T (↓ x))) \WX , and Si
0 to host (U2 ∩ V (T (↓ x))) \W2. By (7.31), (7.1), and

the definition of Si
0, we have deg(vx, L

i) ≥ |Li| − γk/2 and δ(Si
0, L

i) ≥ |Li| − γk/2 is sufficient
to accommodate the vertices from U1 \ (WX ∪ N) in Li. As for the vertices that need to be
mapped to Si

0, recall that the fact that (U1, U2) is 8γk-ideal yields |W2| ≥ 8γk. Together with
the fact that we are considering the deficient case, we get that at most

|U2 \W2| ≤ (
k

2
+ γk) − 8γk ≤ |Si

0| − 7γk

vertices are mapped to Si
0. Hence, the minimum degree of vertices of Li to Si

0 is sufficient for
a greedy embedding.
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(a) In case x is mapped to Lj we can embed the
tree T (↓ x) greedily in G[Lj , S

j
0 ].

(b) In case x is mapped to v ∈ Sj (but not nec-
essarily in S

j
0) we first embed all its children to

Lj . To this end we make use of Condition (ii).
The rest of the embedding goes in G[Lj , S

j
0 ].

Figure 7: Embedding the tree T (↓ x) in Lemma 7.11. The placement of x is denoted by a black
dot. The embedding the proceeds following the arrows.

The next stage is to embed the vertices of WX . Let L∗ ⊆ Li be the set of unused vertices.
We consider a bipartite graph H whose two colour classes are L∗ and Par(WX). A pair vx,
v ∈ L∗, x ∈ Par(WX) forms an edge in H if x was mapped to a vertex that is adjacent to v
in G. By the definition of Si

0, and by (7.1), we have δH(Par(WX), L∗) ≥ |L∗| − γk/2, and
δH(L∗,Par(WX) ≥ |Par(WX)| − γk/2 = |WX | − γk/2. We conclude that H has no vertex cover
of size less than min{|WX |, |L∗|}. As we did not embed any vertex from WX yet, and by (7.30)
we mapped to Li at most |U1| − (|U1| − |Li|)− |WX | = |Li| − |WX | vertices, we get |L∗| ≥ |WX |
and thus the minimum vertex cover has size at least |WX |. By König’s Theorem, there exists a
matching covering Par(WX) in H. This matching tells us how to embed WX . In the last step,
we embed W2. This can be done greedily as Par(W2) were mapped to L.

The case |W ∗∗∗
1 \ V (T̃ )| ≥ 2.9γk is treated similarly, the difference being that this time we

start with X = {x ∈ Par(W ∗∗∗
1 \ V (T̃ )) : Par(x) ∈ U1}.
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[1] M. Ajtai, J. Komlós, and E. Szemerédi. On a conjecture of Loebl. In Graph theory,
combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ.,
pages 1135–1146. Wiley, New York, 1995.

44



[2] O. Barr and R. Johansson. Another Note on the Loebl–Komlós–Sós Conjecture. Research
reports no. 22, (1997), Ume̊a University, Sweden.
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A Proofs of some auxiliary facts

Proofs of several auxiliary statements were omitted in the main body of the paper. Here we
give these proofs.

A.1 Proof of Lemma 3.8

For the proof we need the following two statements. The first one is a simple corollary of Hall’s
Matching Theorem.

Lemma A.1. Let K = (W1,W2;J) be a bipartite graph such that δ(K) ≥ |W1|
2 and |W1| ≤ |W2|.

Then K contains a matching covering W1.
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Let ℓ be the number of leaves of T . Recall that ℓ < αk. Fact 3.2 gives that disc(F ) < αk.
In particular the lower bounds given in Properties (v) and (vi) of the lemma, combined with
the upper bound in Property (iv) yield |A|, |B| ≥ 4k

10 .
We write r = |Bd|, and Q = {P1, . . . , Pr}. Root T at an arbitrary vertex v ∈ T⊖. An

c-induced path a1 . . . ac+1 ⊆ T is a path whose internal vertices have degree two in T . Take a
maximum family F of vertex-disjoint 7-induced paths in T . We show that |V (F)| ≥ k − 19ℓ.

Let D3 = {u ∈ V (T ) : degT (u) ≥ 3} and Di = {u ∈ V (T ) : degT (u) = i} for i = 1, 2. By
Fact 5.4, we have |D3| < ℓ (and |D2| ≥ k − 2ℓ). From

2k =
∑

u∈V (T )

deg(u) = |D1| + 2|D2| +
∑

u∈D3

deg(u) ≥ 2k − 3ℓ+
∑

u∈D3

deg(u) ,

we deduce that there are at most 3ℓ + 1 maximal (w. r. t. inclusion) paths formed by vertices
of degree 2 or 1 not containing the root v. On each such maximal path, at most 7 vertices are
not covered by F . Thus the total number of vertices uncovered by F is at most 7(3ℓ + 1) +
|D3|+ |{v}| ≤ 26ℓ. The order �v naturally extends to an order on the paths of F . For a family
F ′ ⊆ F we write T (↓ F ′) to denote all the vertices of V (F ′), and all vertices that are below
some vertex of V (F ′), i.e.,

T (↓ F ′) =
⋃

u∈V (F ′)

V (T (↓ u)) .

There is a family R ⊆ F satisfying the three properties below.

(P1) |R| ≤ |E| + |M|.

(P2) |T (↓ R)| < 34αk, and 4(|E| + |M|) ≤ min{|T⊕ ∩ T (↓ R)|, |T⊖ ∩ T (↓ R)|}.

(P3) R is a �v-antichain.

We describe a procedure how to obtain such a family R. By an inductive construction, we
first find an auxiliary family R′, starting with R′ = ∅. While |R′| < |E| + |M| we take
a �v-minimal path in F which is not included in R′ and add it to R′. From the bound
|V (T ) \ V (F)| ≤ 26ℓ, in each step we have that |T (↓ R′)| < 8|R′| + 26αk, and obviously
4|R′| ≤ min{|T⊕ ∩ T (↓ R′)|, |T⊖ ∩ T (↓ R′)|}. Let R be the �v-maximal elements of R′. Hence
|T (↓ R)| = |T (↓ R′)|. The properties (P1), (P2), and (P3) are satisfied.

Set d = 5αk. Take a family X = {X1, . . . ,Xd} of d 5-induced vertex-disjoint T⊕ − T⊖ −
T⊕ − T⊖ − T⊕ paths that avoid {v} ∪ T (↓ R). For each path R ∈ R we write aR to denote
its �v-maximum vertex in T⊖, and set bR = Ch(aR), cR = Ch(bR), and dR = Ch(cR). We set
U = A ∩ (V (E) ∪ V (M)) and Q = A ∩ V (Q).

We now describe the embedding ψ of T . We do not have to embed those leaves whose parents
are embedded in A until the very end. Indeed, such a partial embedding easily extends to an
embedding of T using Property (ii) of the lemma. We map the root v to an arbitrary vertex in
A \ (U ∪Q). We continue embedding T greedily, mapping vertices from T⊖ to A \ (U ∪Q) and
internal vertices of T⊕ to Ba. However, there are two exceptions in the greedy procedure:

(S1) If we are about to map a vertex bR (for some R ∈ R), we skip its embedding, as well as
the embedding of T (↓ bR).

(S2) If we are about to map a vertex x2 which was part of some path x1x2x3x4x5 ∈ X , we
skip its embedding, as well as the embedding of the vertices x3 and x4. We continue with
mapping x5 to Ba.
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Observe that we are able to finish the greedy part of the embedding since the two “skipping
rules” guarantee that both in A and in B at least d > αk vertices of T remain unembedded.

In the next step, we build missing connections in the graph H caused by the skipping rules.
We construct an auxiliary bipartite graph K1 = (Oa, Ob;E1). We arbitrarily pair up 2(d − r)
vertices of A \ (U ∪ Q) unused by ψ into pairs µ1 = {a11, a21}, . . . , µd−r = {a1d−r, a

2
d−r}. The

remaining r pairs are formed by endvertices of the paths in Q. We set µi+d−r = A ∩ V (Pi).
Vertices of the color class Ob are formed by the pairs µi (i ∈ [d]). Vertices of the color class Oa

are formed by the paths in X . A path x1x2x3x4x5 ∈ X is adjacent in K1 to a pair µi if and
only if there exists a perfect matching in the graph H[{ψ(x1), ψ(x5)}, µi]. Since |Oa| = |Ob|
and δ(K1) ≥ |Oa| − 2αk ≥ |Oa|

2 , there exists, by Lemma A.1, a perfect matching M1 in K1.
The matching M1 tells us where to map the vertices x2 and x4 of each path x1x2x3x4x5 ∈ X .
We extend ψ accordingly on the vertices

⋃

x1x2x3x4x5∈X {x2, x4}. If a path x1x2x3x4x5 ∈ X was
matched with µi+d−r (for some i ∈ [r]) in K1, we map x3 to the middle vertex of the path Pi.
We write X ′ for those paths x1x2x3x4x5 ∈ X whose vertex x3 was not yet mapped. It holds
|X ′| ≥ 4αk.

Let ξ : R → U be an arbitrary injective mapping. We construct another bipartite graph
K2 = (Ja, Jb;E2). Vertices of the color class Ja are elements of R∪X ′ and vertices of the color
class Jb are vertices of Ba unused by ψ.

Claim A.1.1. We have |Ja| ≤ |Jb|.

Proof. Let W be the set of leaves of T⊕ \ V (R). Remember that the set W is mapped only at
the very end of the embedding procedure. Further, for any path x1 . . . x5 ∈ X \ X ′, the vertex
x3 ∈ T⊕ has been mapped to Bd, which is disjoint from Ba. Next for each path x1 . . . x5 ∈ X ′,
the vertex x3 ∈ T⊕ has not been embedded, yet. Each path in R has at most one vertex in T⊕
that has already been embedded. Therefore we have

|Jb| ≥ |B| −
(

|T⊕| − |W | − |X \X ′| − |X ′| − (|T⊕ ∩ V (↓ R)| − |R|)
)

≥ |B| − |T⊕| + |W | + |X| + 3(|E| + |M|)
≥ |W | + |X| + 2|R| − 1 ≥ |Ja| + |W | + |R| − 1 ≥ |Ja| ,

where the last inequality follows from the fact that if R = ∅ then W 6= ∅ by FactFact 3.2.

A path R ∈ R is adjacent in K1 with a vertex b ∈ Jb if and only if bψ(aR) ∈ E(H)
and bξ(R) ∈ E(H). A path x1x2x3x4x5 ∈ X ′ is adjacent to a vertex b ∈ Jb if and only if

bψ(x2) ∈ E(H) and bψ(x4) ∈ E(H). Indeed, δ(K1) ≥ |Ja| − 2γk > |Ja|
2 , and |Ja| ≤ |Jb|. By

Lemma A.1, there exists a matching M2 in K2 covering Ja. Such a matching tells us where to
map unembedded vertices x3 (in the case of a path x1x2x3x4x5 ∈ X ′) and vertices bR (in the
case of a path R ∈ R). For a path R ∈ R we finish embedding the part of the tree T (↓ cR),
extending the mapping ψ. If ψ(cR) ∈ V (E) we just use the corresponding connecting edge
of E to map dR to Hκ (for some κ ∈ I) and continue embedding T (↓ dR) greedily in Hκ. If
ψ(cR) ∈ V (M) we map dR to the middle vertex of the corresponding connecting path M and
embed the rest of T (↓ dR) greedily in Hκ (for some κ ∈ I).

A.2 Omitted proofs from Section 5

Proof of Fact 5.9 (i). Let X̃ ⊆ X be the set of vertices that are not typical w. r. t.
⋃ℓ

i=1Wi,

i.e., for every v ∈ X̃ we have deg(v,
⋃ℓ

i=1Wi) <
∑ℓ

i=1(d(X,Yi)− ε)|Wi|. Thus e(X̃,
⋃ℓ

i=1Wi) <

|X̃ | ·∑ℓ
i=1(d(X,Yi)− ε)|Wi|. Hence, there is an index i ∈ [ℓ] such that d(X̃,Wi) < d(X,Yi)− ε.

As Wi is significant and (X,Yi) is ε-regular, we get that |X̃ | ≤ ε|X|.
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Proof of Lemma 5.12. Without loss of generality assume that |P ′| ≥ ∆. Let us fix an arbitrary
set SP ⊆ P with |SP | = ∆ and another set SQ ⊆ Q with |SQ| = ∆. The sets SP and SQ are
significant. Choose a vertex v ∈ P ′ which is typical w. r. t. SQ. There are at least |P ′| − εs ≥ 1
such vertices. Set φ(r) = v.

We inductively extend the embedding φ, so that every vertex of t that is mapped to SP is
typical w. r. t. SQ, and so that every vertex that is mapped to SQ is typical w. r. t. SP . We
illustrate the inductive step by describing how to embed the neighborhood of a vertex u that
was already mapped to P . The case that φ(u) ∈ Q is analogous. Let N ⊆ N(u) be the yet
unembedded neighbors of u. The vertex φ(u) has at least (d−2ε)∆ ≥ εs+v(t) neighbors in SQ.
At least |N | of them are typical w. r. t. SP and are not yet used by φ. We map N to these
vertices.

For the moreover part, we only need to observe that if |P ′| ≥ ∆, there is at least one vertex
in P ′ which is typical w. r. t. SQ. We map the root r to this vertex. The second condition of
the moreover part is analogous.

For the proof of Lemma 5.13, we need to embed the shrubs of a given tree in an efficient way.
To this end, we try to fill the clusters of a regular pair in a balanced way. The following definition
of packedness formalizes this. Let X,Y,Z be three disjoint sets of vertices of a graph G. We
say that U ⊆ X ∪ Y is (λ, τ)-packed with respect to the head set Z and the embedding sets X
and Y ,2 if

min{|X ∩ U |, |Y ∩ U |} ≥ min{degH(Z,X),degH(Z, Y )} − λ, or (A.1)

||X ∩ U | − |Y ∩ U || ≤ τ (A.2)

Proof of Lemma 5.13. Assume that H has N clusters. Let X̃ ⊆ X ′ be the set of vertices that
are typical w. r. t. all but at most

√
εN sets C ∩ V X , C ∈ V (M), w. r. t. all but at most

√
εN

clusters Z ∈ Z, and w. r. t. the cluster Y . Let Ỹ ⊆ Y ′ be the set of vertices that are typical
w. r. t. all but at most

√
εN sets C ∩ V Y , C ∈ V (M) and w. r. t. the cluster X. Let Z̃ ⊆ ⋃Z

be the set of vertices (viewed as vertices of individual clusters of Z) that are typical w. r. t. all
but at most

√
εN sets C ∩V Z , C ∈ V (M) and w. r. t. the cluster X. Observe that by Fact 5.9,

|X ′ \ X̃| ≤ 3
√
εs, |Y ′ \ Ỹ | ≤ 2

√
εs, and for every Z ∈ Z,

|Z \ Z̃| ≤ 2
√
εs . (A.3)

Let QX be the set of vertices (viewed as vertices of individual clusters of V (H)) typical w. r. t.
X̃. We define analogously QY . For each v ∈ X̃ ∪ Ỹ , let

Mv = {CD ∈M : v is typical w. r. t. both C ∩ V X and D ∩ V X} if v ∈ X̃ ,

Mv = {CD ∈M : v is typical w. r. t. both C ∩ V Y and D ∩ V Y } if v ∈ Ỹ .

For each cluster C ∈ V (M) we have by Fact 5.9,

|C \QX |, |C \QY | ≤ εs , and (A.4)

|Mv| ≥ |M | − 2
√
εN . (A.5)

The embedding of F is divided into w steps, where w = |WX ∪WY |. We label the vertices
of WX ∪WY as x1, . . . , xw, indexing from an arbitrary fixed root R ∈ WX ∪WY downwards,
i.e., in such way that j1 ≤ j2 whenever xj1 �R xj2 . We denote by ϕ the partial embedding

2the embedding sets will be typically clear, and then we only specify the head set
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of F . For a set U ⊆ V (F ), ϕ(U) refers to the image of the already embedded part of U at that
moment.3 In step i ≥ 1, we embed the tree

Fi = F
[

{xi} ∪
⋃

ℓ∈[ci]
V (tℓi)

]

,

where t1i , . . . , t
ci
i are the components t ∈ DX ∪ DY such that Ch(xi) ∩ V (t) 6= ∅. Set V ℓ

i =
⋃

j<i V (Fj) ∪
⋃

j<ℓ V (tji ), and U ℓ
i = ϕ(V ℓ

i ). We call the embedding ϕ equable at step i and

substep ℓ, if for each CD ∈ M , we have ||U ℓ
i ∩ V Z ∩ C| − |U ℓ

i ∩ V Z ∩ D|| ≤ τ . During the
embedding procedure, we use an auxiliary set Z ′ ⊆ Z of “active” clusters in Z.

For i = 1, set Ni = X̃ ∪ Ỹ and Z ′ = Z. For i > 1, let pi = Par(xi) and set Ni =
NH(ϕ(pi))∩ (X̃ ∪ Ỹ ). During the embedding process we will keep the following three properties
in every step i ∈ [w], and every substep j ∈ [ci].

(I1) For each CD ∈ M , the set U j
i ∩ V X ∩ (C ∪D) is (8εs

d
, τ)-packed w. r. t. the head set X

and the set U j
i ∩ V Y ∩ (C ∪D) is (8εs

d
, τ)-packed w. r. t. the head set Y .

(I2) |Ni ∩X| ≥ |WX | and |Ni ∩ Y | ≥ |WY |.

(I3) ϕ(WX) ⊆ X̃, ϕ(WY ) ⊆ Ỹ , ϕ(DY ) ⊆ V Y , ϕ(D1) ⊆ V X \ V (MX), ϕ(D2) ⊆ V X ∩ V (MX),
ϕ(D3 \ NF (WX)) ⊆ V Z , and ϕ(D3 ∩ NF (WX)) ⊆ ⋃Z.

(I4) Either the embedding ϕ is equable and Z ′ = Z, or for every CD ∈ M and every Z ∈ Z ′

we have

min{degH(Z,C ∩ V Z),degH(Z,D ∩ V Z)} ≤ min{|(C ∩ ϕ(D3)|, |(D ∩ ϕ(D3)|} +
8εs

d
,

and degH(X,
⋃Z ′) ≥ |(V (D3) ∩ NF (WX)) \ V j

i | + |U j
i ∩⋃Z ′| + ξn

2 .

For i = 1 and j = 1, (I1), (I3), and (I4) hold trivially. Further, max{|WX |, |WY |} ≤ 12k
τ

≪
εs ≤ min{|X̃ |, |Ỹ |} by Definition 5.2 (vi), yielding (I2).

We now proceed with a general step. We first give two claims which we then make use of
for the embedding itself.

Claim A.1.2.

(a) Suppose that DY 6= ∅. Then for every v ∈ Ỹ , there is an edge CD ∈Mv such that

deg(v, (C ∪D) ∩ V Y ) ≥ |ϕ(DY ) ∩ (C ∪D)| + 2τ +
ξs

2
.

(b) Suppose that D1 6= ∅. Then for every v ∈ X̃, there is an edge CD ∈Mv \MX such that

deg(v, (C ∪D) ∩ V X ∩QX) ≥ |ϕ(D1) ∩ (C ∪D)| + 2τ +
ξs

2
.

(c) Suppose that D2 6= ∅. Then for every v ∈ X̃, there is an edge CD ∈MX ∩Mv such that

deg(v,C ∩ V X ∩QX) ≥ |ϕ(D2) ∩ C| +
ξs

2
and |D ∩ V X | ≥ |ϕ(D2) ∩D| +

ξs

2
. (A.6)

3In particular, one may have |ϕ(U)| < |U |.
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(d) Suppose that D3 6= ∅. Then for every v ∈ X̃, there is a cluster Z ∈ Z ′ such that

deg(v, Z ∩ Z̃) ≥ |ϕ(D3) ∩ Z| +
ξs

4
. (A.7)

Proof. (a) Using the typicality of v, we get

∑

CD∈Mv

deg(v, (C ∪D) ∩ V Y )
(A.5)

≥ degH(Y, V Y ) − 2
√
εNs− εn

(iii)

≥ v(DY ) +
3ξn

4
,

which implies the statement.
The proof of (b) is analogous, using (A.4) and (iv).
(c) By (A.5) and by the typicality of v, we have

∑

C∈V (MX∩Mv)∩NH(X)

deg(v,C ∩ V X) ≥
∑

CD∈MX

deg(v, (C ∪D) ∩ V X) − 2
√
εNs

≥ degH(X,V X ∩
⋃

V (MX)) − εn− 2
√
εNs

(v)

≥ v(D2) − c2k + ξn− 3
√
εNs .

As D2 is c-balanced, we get v(D2) ≥ c2k +
∑

CD∈MX∩Mv
max{|ϕ(D2) ∩ C|, |ϕ(D2) ∩ D|}. So,

there is an edge CD ∈MX ∩Mv such that

|D ∩ V X |
(i)

≥ deg(v,C ∩ V X) ≥ max{|ϕ(D2) ∩ C|, |ϕ(D2) ∩D|} + ξs− 3
√
εs .

Together with (A.4), we get (A.6).
(d) The vertex v is typical w. r. t. all but at most

√
εN clusters Z ∈ Z ′.

First assume that ϕ is equable and Z ′ = Z. We have

deg(v, Z̃ ∩
⋃

Z ′)
Z′ = Z

≥ deg(v,
⋃

Z) −
∣

∣

∣

⋃

Z \ Z̃
∣

∣

∣

(A.3)

≥ degH(X,
⋃

Z) − εn− (1 + 2)
√
εNs

(vi)

≥ |V (D3) ∩ NF (WX)| + ξn− 4
√
εn .

As by (I3) only V (D3) ∩ NF (WX) is mapped to
⋃Z =

⋃Z ′, there exists a cluster Z ∈ Z ′

satisfying (A.7).
If ϕ is not equable, we get

deg(v, Z̃ ∩
⋃

Z ′) ≥ deg(v,
⋃

Z ′) −
∣

∣

∣

⋃

Z \ Z̃
∣

∣

∣
≥ degH(X,

⋃

Z ′) − εn− (1 + 2)
√
εNs

(I4)

≥ |V (D3) ∩ NF (WX) \ V j
i | + |U j

i ∩
⋃

Z ′| + ξn/2 − 4
√
εn .

As by (I3) only V (D3) ∩ NF (WX) is mapped to
⋃Z ′, there exists a cluster Z ∈ Z ′ satisfy-

ing (A.7).

Claim A.1.3. Suppose that D3 6= ∅. Then for every vertex v ∈ Z̃, there is an edge CD ∈ Mv

such that

deg(v, (C ∪D) ∩ V Z) ≥ |ϕ(D3) ∩ (C ∪D)| + 2τ + 2εs +
ξs

2
. (A.8)

Proof. Suppose that v lies in a cluster Z. Using the typicality of v, we get

∑

CD∈Mv

deg(v, (C ∪D) ∩ V Z)
(A.5)

≥ degH(Z, V Z) − 4
√
εNs− εn

(vii)

≥ v(D3) +
3ξn

4
.
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Assume that we are in step i ≥ 1 and that we want to embed the forest Fi. By (I2), we can
map xi to an unused vertex in Ni (in Ni ∩X if xi ∈ WX , and in Ni ∩ Y if xi ∈ WY ). Observe
that ϕ(xi) has at least (d − ε)s − ds/2 − 3

√
εs ≥ εs ≥ |WX ∪WY | neighbors in X̃ or in Ỹ

(depending whether ϕ(xi) ∈ Ỹ or ϕ(xi) ∈ X̃). This ensures that (I2) still holds. Assume that
we are in substep j ∈ [ci], i.e., we have already embedded the components t1i , . . . , t

j−1
i and that

we want to embed the component tji .

(1) If tji ∈ DY , pick an edge CD ∈ Mϕ(xi) as in Claim A.1.2 (a). We use Lemma 5.12 to

embed tji (where the root of tji is the neighbor of xi) with the following setting.

P ′ = NH(ϕ(xi)) ∩ C ∩ V Y \ U j
i P = C ∩ V Y \ U j

i ⊆ C ,

Q′ = NH(ϕ(xi)) ∩D ∩ V Y \ U j
i Q = D ∩ V Y \ U j

i ⊆ D ,

and ∆ = 4εs
d

. We have that

max{|P ′|, |Q′|} ≥ 1

2
deg(ϕ(xi), (C ∪D) ∩ V Y \ U j

i ) ≥ 1

2
(2τ + ξs

2 ) ≥ 4εs
d
,

which verifies one of the assumption of Lemma 5.12. We use Lemma 5.12 differently in
cases

min{|ϕ(DY ) ∩ C|, |ϕ(DY ) ∩D|} < min{degH(X,C ∩ V Y ),degH(X,D ∩ V Y )} − 8εs
d

and
(A.9)

min{|ϕ(DY ) ∩ C|, |ϕ(DY ) ∩D|} ≥ min{degH(X,C ∩ V Y ),degH(X,D ∩ V Y )} − 8εs
d

(A.10)

Suppose first that we do not have (A.9). Thus in particular, the packedness of U j
i ∩V X ∩

(C ∪D) in (I1) has the form of (A.2). Then

min{|P ′|, |Q′|} = min{deg(ϕ(xi), C ∩ V Y \ U j
i ),deg(ϕ(xi),D ∩ V Y \ U j

i )}
(I3)

≥ min{deg(ϕ(xi), C ∩ V Y ),deg(ϕ(xi),D ∩ V Y )} − max{|ϕ(DY ) ∩ C|, |ϕ(DY ) ∩D|}
(I1)

≥ min{degH(X,C ∩ V Y ),degH(X,D ∩ V Y )} − εs

− min{|ϕ(DY ) ∩C|, |ϕ(DY ) ∩D|} − τ
(A.9)

≥ 8εs
d

− εs− τ ≥ 4εs
d
,

which allows us to use the “moreover” part of Lemma 5.12. We can then choose in this
case to which set P ′ or Q′ we map the root of tji . We thus can ensure that

∣

∣|ϕ(DY )∩C|−
|ϕ(DY ) ∩D|

∣

∣ ≤ τ still holds after embedding tji , yielding (I1).

Suppose now that (A.9) holds. Then

min{|P |, |Q|} = min{|C ∩ V Y \ U j
i |, |D ∩ V Y \ U j

i |}
≥ max{deg(ϕ(xi), C ∩ V Y ),deg(ϕ(xi),D ∩ V Y )} − max{|ϕ(DY ) ∩ C|, |ϕ(DY ) ∩D|}

≥ deg(ϕ(xi), (C ∪D) ∩ V Y ) − |ϕ(DY ) ∩ (C ∪D)|
− min{deg(ϕ(xi), C ∩ V Y ),deg(ϕ(xi),D ∩ V Y )} + min{|ϕ(DY ) ∩ C|, |ϕ(DY ) ∩D|}

(A.9)

≥ 2τ + ξs
2 − 8εs

d
− εs ≥ 4εs

d
,

which indeed allows us to embed tji using Lemma 5.12 in this case. After the embedding

of tji in this case, (I1) holds trivially.
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In both cases, (I2) holds, as DY contains only end-shrubs. The tree tji was embedded in
(C∪D)∩V Y , ensuring (I3). (I4) is immaterial in this step as nothing was done regarding
V Z or D3.

(2) If tji ∈ D1, pick an edge CD ∈Mϕ(xi) \MX as in Claim A.1.2 (b). The embedding is done
analogously to the case (1), setting

P ′ = NH(ϕ(xi)) ∩ C ∩ V X ∩QX \ U j
i P = C ∩ V X ∩QX \ U j

i ⊆ C ,

Q′ = NH(ϕ(xi)) ∩D ∩ V X ∩QX \ U j
i Q = D ∩ V X ∩QX \ U j

i ⊆ D .

As ϕ(V (tji )) ⊆ QX , every vertex in V (tji ) ∩ NF (WX) is mapped to a vertex that has at
least (d − ε)|X̃ | ≥ |WX | neighbours in X̃, ensuring (I2). Conditions (I1) and (I3) are
maintained as in case (1). Again, (I4) is maintained automatically.

(3) If tji ∈ D2, we pick an edge CD ∈Mϕ(xi) ∩MX as in Claim (c). We use Lemma 5.12 with
the following setting.

P ′ = NH(ϕ(xi)) ∩ C ∩ V X ∩QX \ U j
i ⊆ C ∩ V X ∩QX \ U j

i ⊆ C ,

Q′ = ∅ ⊆ D ∩ V X \ U j
i ⊆ D ,

and ∆ = 4εs
d

. The requirements on max{|P ′|, |Q′|}, and min{|P |, |Q|} are fulfilled by (A.6).

We get an embedding of tji in (C ∪ D) ∩ V X (ensuring (I3)) such that every vertex at

even distance to the root of tji is mapped to QX . Therefore its image sends at least
(d− ε)|X̃ | ≥ |WX | edges to X̃ (ensuring (I2)). The condition (I1) trivially holds by the
property of MX .

(4) Suppose that tji ∈ D3.

First we consider the case, when there is a cluster Z ∈ Z such that

(*) deg(ϕ(xi), Z ∩ Z̃) ≥ |U j
i ∩ Z| + ξs

4 , and

(**) there is an edge CD ∈M such that deg(Z,C ∩V Z) ≥ |U j
i ∩C∩V Z |+ τ +εs+ 3εs+τ

d−2ε ,

and deg(Z,D ∩ V Z) ≥ |U j
i ∩D ∩ V Z | + τ + εs+ 3εs+τ

d−2ε .

Then we embed tji in Z ∪ C ∪D as follows. We map the root r of tji to an unused vertex
v ∈ Z ∩ Z̃ that is typical w.r.t. C ∩ V Z and typical w.r.t. D ∩ V Z . By Fact 5.9 there are
at least ξs

4 − 2εs > 0 such vertices. By (**), the vertex v satisfies

deg(v, (C ∩ V Z) \ U j
i ) ≥ τ +

3εs+ τ

d− 2ε
, and

deg(v, (D ∩ V Z) \ U j
i ) ≥ τ +

3εs+ τ

d− 2ε
.

(A.11)

Let K ⊆ C ∪D be the set of vertices that are typical (where typicality refers to C or D,
respectively) w.r.t. (Z ∩ Z̃) \ U j

i . Note that the set (Z ∩ Z̃) \ U j
i is significant by (*). By

Fact 5.9,
|C \K|, |D \K| ≤ εs . (A.12)

Let teven be the set of vertices in V (tji ) \ {r} of even distance from r, and let todd be

the ones of odd distance. If |todd| < |teven| and |(C ∩ V Z) \ U j
i | ≤ |(D ∩ V Z) \ U j

i |, or

|todd| ≥ |teven| and |(C ∩ V Z) \ U j
i | > |(D ∩ V Z) \ U j

i |, set XL5.12 = D, and YL5.12 = C.
Otherwise set XL5.12 = C, and YL5.12 = D.
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Figure 8: The components T r and T r′ . Vertices of WX are shown in gray.

Consider the set T r of components of tji − NF (WX) that are incident to r. By Defi-

nition 5.2(ix), V (tji ) ∩ NF (WX) has one or two elements. If r is the only element in

V (tji )∩NF (WX) then T r contains all the components of tji \ {r}. We embed the elements
t ∈ T r one after the other using Lemma 5.12. At each application of Lemma 5.12 we
use P = (XL5.12 ∩K ∩ V Z) \ ϕ(D3), P ′ = P ∩ N(v), Q = (YL5.12 ∩K ∩ V Z) \ ϕ(D3),
and Q′ = Q ∩ N(v). By (A.11) and (A.12) we have min{|P ′|, |Q′|} ≥ 3εs+τ

d−2ε − εs ≥ εs+τ
d−2εs .

By the “moreover” part of Lemma 5.12 we can ensure that the root of t (i.e. the unique
vertex in V (t) ∩ NF (r)) is mapped to the set P ′.

If r is the only element in V (tji )∩NF (WX), then we are done with embedding tji . Otherwise,

let r′ be the second vertex in V (tji )∩NF (WX). The predecessor of r′ is mapped on a vertex

u ∈ K. Since u is typical w.r.t. the set (Z ∩ Z̃) \ U j
i , we have

deg(u, (Z ∩ Z̃) \ U j
i ) ≥ (d− ε)|(Z ∩ Z̃) \ U j

i |
(*)

≥ (d− ε)
ξs

4
> 3εs . (A.13)

We can thus map the vertex r′ to an unused vertex v′ ∈ (Z ∩ Z̃) ∩ N(u) that is typical
w.r.t. C ∩ V Z and typical w.r.t. D ∩ V Z .

Consider the set T r′ of components of tji − {r′} that are incident to r′ and does not
contain r. See Figure 8. We embed the elements t ∈ T r′ one after the other using
Lemma 5.12. At each application of Lemma 5.12 we use P = (XL5.12 ∩K ∩V Z) \ϕ(D3),
P ′ = P ∩ N(v), Q = (YL5.12 ∩K ∩ V Z) \ ϕ(D3), and Q′ = Q ∩ N(v). By (**), the vertex
v′ satisfies

deg(v′, (C ∩ V Z) \ ϕ(D3)) ≥ 3εs + τ

d− 2ε
, and

deg(v′, (D ∩ V Z) \ D3)) ≥
3εs + τ

d− 2ε
.

By (A.12), we have that min{|P ′|, |Q′|} ≥ 3εs+τ
d−2ε − εs ≥ εs+τ

d−2εs . We can thus use the
“moreover” part of Lemma 5.12 to ensure that the root of t (i.e. the unique vertex in
V (t) ∩ NF (r′)) is mapped to the set P ′.

As we embedded V (tji )∩N(WX) in Z and the rest of tji in (C ∪D)∩V Z , properties (I1),
(I2), and (I3) trivially hold. As for (I4), we did not alter the set Z ′ and the set ϕ(D3)
may have only increased. Also observe that by (I3) we have that |V (tji ) ∩ NF (WX)| ≥
|ϕ(tji ) ∩

⋃Z ′|. Therefore, it is enough to show that if ϕ was equable at the substep j, it

is still equable at substep j + 1 (i.e. after we embedded tji ). This was guaranteed by the
choice of XL5.12 and YL5.12, so that to minimise the difference between |ϕ(D3)∩(C∩V Z)|
and |ϕ(D3) ∩ (D ∩ V Z)| together with the fact that v(tji ) ≤ τ .

Now consider the case when there is no cluster Z ∈ Z that satisfies (*) and (**). If ϕ is
equable and Z ′ = Z then we redefine Z ′ to be the set of clusters in Z with respect to
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which the vertex ϕ(xi) is typical and for which (*) holds. We want to check (I4) for this
new set Z ′.

As ϕ(xi) ∈ X̃ by (I2), we have that ϕ(xi) is typical to all but at most
√
εN clusters of

Z. Therefore,

degH(X,
⋃

Z ′) ≥ degH(X,
⋃

Z) −√
εn−

(

|U j
i ∩

⋃

(Z \ Z ′)| +
ξn

4

)

≥ |V (D3) ∩ NF (WX)| − |U j
i ∩

⋃

(Z \ Z ′)| + ξn−√
εn− ξn

4
(I3)

≥ |(V (D3) ∩ NF (WX)) \ V j
i | + |U j

i ∩
⋃

Z ′| +
ξn

2
.

By the definition of Z ′, (**) does not hold for any cluster Z ∈ Z ′. Then, as ϕ is equable,
we have

min{deg(Z,C ∩ V Z),deg(Z,D ∩ V Z)}

≤ max{|U j
i ∩ C ∩ V Z |, |U j

i ∩D ∩ V Z |} + τ + εs+
3εs + τ

d− 2ε

≤ min{|U j
i ∩ C ∩ V Z |, |U j

i ∩D ∩ V Z |} + 2τ + εs+
3εs + τ

d− 2ε
(I3)

≤ min{|ϕ(D3) ∩C|, |ϕ(D3) ∩D|} +
8εs

d
,

showing that the newly created set Z ′ satisfies (I4).

So we may assume that the second condition of (I4) is satisfied. Let Z ∈ Z ′ be a cluster
as in Claim A.1.2 (d) and map the root of tji to a vertex v ∈ Z ∩ Z̃. Then pick an edge
CD ∈Mv as in Claim A.1.3. Let K ⊆ C ∪D be the set of vertices that are typical (where
typicality refers to C or D, respectively) w.r.t. (Z ∩ Z̃) \ U j

i .

Without loss of generality, assume that |N(v,K ∩D∩V Z \U j
i )| ≤ |N(v,K ∩C∩V Z \U j

i )|.
Let XL5.12 = C and YL5.12 = D. Consider the set T r of components of tji −NF (WX) that
are incident to r. We embed the elements t ∈ T r one after the other using Lemma 5.12
with the following setting,

P = (XL5.12 ∩K ∩ V Z) \ ϕ(D3) , P ′ = P ∩ N(v) ,

Q = (YL5.12 ∩K ∩ V Z) \ ϕ(D3) , Q′ = Q ∩ N(v) .

By (A.8) we have |(P ′ ∪ Q′)| ≥ ξs
4 − 2εs. As by assumption we have |P ′| ≥ |Q′|, we get

|P ′| ≥ ξs
8 − εs ≥ εs+τ

d−2ε .
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From (A.8) we derive

|Q| ≥ |D̃ ∩ V Z | − |(D ∩ V Z) ∩ U j
i | = |D̃ ∩ V Z | − |((C ∪D) ∩ V Z) ∩ U j

i | + |(C ∩ V Z) ∩ U j
i |

≥ |D̃ ∩ V Z | −
(

deg(v, (C ∪D) ∩ V Z) − 2τ − 2εs− ξs

2

)

+ |(C ∩ V Z) ∩ U j
i |

= |D̃ ∩ V Z | − max
{

deg(v,C ∩ V Z),deg(v,D ∩ V Z)
}

+ 2τ + 2εs +
ξs

2

− min
{

deg(v,C ∩ V Z),deg(v,D ∩ V Z)
}

+ min
{

|(C ∩ V Z) ∩ U j
i |, |(D ∩ V Z) ∩ U j

i |
}

≥ 2τ + εs +
ξs

2
−
(

min
{

deg(Z,C ∩ V Z),deg(Z,D ∩ V Z)
}

+ εs
)

+ min
{

|(C ∩ V Z) ∩ U j
i |, |(D ∩ V Z) ∩ U j

i |
}

(I4)

≥ 2τ + εs+
ξs

2
− εs ≥ εs+ τ

d− 2ε
.

If r is the only element in V (tji )∩NF (WX), then we are done with embedding tji . Otherwise,

let r′ be the second vertex in V (tji )∩NF (WX). The predecessor of r′ is mapped on a vertex

u ∈ K that is typical w.r.t. the set (Z ∩ Z̃) \ U j
i and hence satisfies (A.13). We can thus

mapped the vertex r′ to an unused vertex v′ ∈ (Z ∩ Z̃)∩N(u) that is typical w.r.t. C∩V Z

and typical w.r.t. D ∩ V Z . Let XL5.12 = C and YL5.12 = D. Consider the set T r′

of components of tji − {r′} that are incident to r′ and does not contain r. We embed
the elements t ∈ T r′ one after the other using Lemma 5.12 similarly as we did for the
elements of T r. At each application of Lemma 5.12 we use P = (XL5.12∩K∩V Z)\ϕ(D3),
P ′ = P ∩ N(v′), Q = (YL5.12 ∩K ∩ V Z) \ ϕ(D3), and Q′ = Q ∩ N(v′).

Observe that the embedding ϕ satisfies (I1)–(I4).
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