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a b s t r a c t

A graph is balanced if its clique-matrix contains no edge–vertex incidencematrix of an odd
chordless cycle as a submatrix. While a forbidden induced subgraph characterization of
balanced graphs is known, there is no such characterization byminimal forbidden induced
subgraphs. In thiswork,weprovideminimal forbidden induced subgraph characterizations
of balanced graphs restricted to graphs that belong to one of the following graph classes:
complements of bipartite graphs, line graphs of multigraphs, and complements of line
graphs of multigraphs. These characterizations lead to linear-time recognition algorithms
for balanced graphs within the same three graph classes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A {0, 1}-matrix is balanced [2] if it contains no edge–vertex incidence matrix of a chordless cycle with an odd number of
vertices as a submatrix. Balanced matrices have remarkable properties studied in polyhedral combinatorics. Most notably,
if A is a balanced matrix, then A is perfect and ideal, meaning, respectively, that the fractional set packing polytope P(A) =

{x ∈ Rn
| Ax ≤ 1, 0 ≤ x ≤ 1} and the fractional set covering polytope Q (A) = {x ∈ Rn

| Ax ≥ 1, 0 ≤ x ≤ 1} are integral
(i.e., all their extreme points have integer coordinates) [10].

A graph is perfect if and only if its clique-matrix is perfect [8]. Here, a clique is an inclusion-wise maximal set of pairwise
adjacent vertices and given an enumeration Q1, . . . ,Qk of all cliques and an enumeration v1, . . . , vn of all vertices of a graph
G, a clique-matrix of G is the k× n{0, 1}-matrix A = (aij) such that aij = 1 if and only if vj ∈ Qi. Some years ago, the minimal
forbidden induced subgraphs for the class of perfect graphs were identified [7], settling affirmatively a conjecture posed
more than 40 years before by Berge [1]. They are the chordless cycles of odd length at least 5, called odd holes, and their
complements, the odd antiholes.

Theorem 1 (Strong Perfect Graph Theorem [7]). A graph is perfect if and only if it has no odd holes and no odd antiholes.
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Fig. 1. The pyramids.

Fig. 2. An extended odd sun that is not minimal is shown on the left. Bold lines correspond to the edges of a proper induced extended odd sun, depicted
on the right.

In analogy to perfect graphs, balanced graphs can be defined as those graphs whose clique-matrix is balanced. Since
balanced matrices are perfect, balanced graphs form a subclass of the class of perfect graphs. The name ‘balanced graphs’
appears explicitly in [4], but these graphswere already considered in [2] (see Theorem5 therein).Moreover, fromProposition
7 in [2], it follows that balanced graphs also belong to another interesting class, the class of hereditary clique-Helly graphs;
i.e., the class of graphswhose induced subgraphs satisfy that the intersection of any nonempty family of pairwise intersecting
cliques is nonempty [24]. Prisner characterized hereditary clique-Helly graphs both by their clique-matrices and byminimal
forbidden induced subgraphs as follows.

Theorem 2 ([24]). A graph is hereditary clique-Helly if and only if its clique-matrix contains no edge–vertex incidence matrix of
a cycle on three vertices as a submatrix or, equivalently, if and only if it does not contain any of the graphs in Fig. 1 as an induced
subgraph.

Balanced graphs were characterized by means of forbidden induced subgraphs as follows. For a graph G and a nonempty
setW ⊆ V (G), letN(W ) =


w∈W N(w) be the set of vertices of G being adjacent to all vertices ofW , whereasN(∅) = V (G).

For each edge e = uv, let N(e) be a shorthand for N({u, v}). An unbalanced cycle of G is an odd cycle C such that, for each
edge e ∈ E(C) (i.e., joining two consecutive vertices of C), there exists a (possibly empty) complete subgraph We of G such
that We ⊆ N(e) \ V (C) and N(We) ∩ N(e) ∩ V (C) = ∅. Notice that it is possible for the sets We and We′ for different
edges e and e′ to have nonempty intersection. An extended odd sun is a graph G with an unbalanced cycle C such that
V (G) = V (C) ∪


e∈E(C) We and |We| ≤ |N(e) ∩ V (C)| for each edge e ∈ E(C). The extended odd suns with the smallest

number of vertices are C5 and the pyramids in Fig. 1. Moreover, every odd hole is an extended odd sun (by letting We = ∅

for each e). Notice that C3 is not an extended odd sun, since otherwise we would be forced to choose We = ∅ for each edge
e, but then N(We) ∩ N(e) ∩ V (C) = {v} where v is the only vertex non-incident to e (because N(We) = N(∅) = V (C) and
N(e) = {v}). The characterization of balancedness by forbidden induced subgraphs is as follows.

Theorem 3 ([2,5]). A graph is balanced if and only if it has no unbalanced cycle or, equivalently, if and only if it contains no
induced extended odd sun.

However, the above characterization is not by minimal forbidden induced subgraphs because some extended odd suns
contain some other extended odd suns as proper induced subgraphs, as Fig. 2 shows. In this work, we address the problem
of characterizing balanced graphs by minimal forbidden induced subgraphs.

Bipartite graphs, complements of bipartite graphs, line graphs of bipartite graphs, and complements of line graphs of
bipartite graphs arewell-known classes of perfect graphs. Their perfectness follows already from theworks of Kőnig [17,18].
Moreover, these four graph classes constitute four of the five basic perfect graph classes in the decomposition of perfect
graphs devised for the proof of the Strong Perfect Graph Theorem [7].

Bipartite graphs and line graphs of bipartite graphs are also balanced [3], but not necessarily their complements. This
is due to the fact that, contrary to perfect graphs, balanced graphs are not closed under complementation. For example,
the graphs in Fig. 1 are not balanced but have balanced complements. In this paper we present minimal forbidden induced
subgraph characterizations of balanced graphs restricted to complements of bipartite graphs, line graphs of multigraphs,
and complements of line graphs of multigraphs. It turns out that, for the first two studied classes, a member of these classes
is balanced if and only if it is perfect and hereditary clique-Helly.

In addition, we address the problem of recognizing balanced graphs efficiently within the same three graph classes. Let
G be a given graph with n vertices and m edges. In [6], it is shown that it can be decided whether or not G is perfect in
O(n9) time. It is easy to see that it can be decided whether or not G is balanced in O(m9

+ n) time by first computing a
clique-matrix of G and then testing this matrix for balancedness, as follows. As a graph is balanced if and only if each of its
connected components is balanced,we assume,without loss of generality, thatG is connected. To compute the clique-matrix
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Fig. 3. Some small graphs.

of G we can rely on the algorithm in [28] that enumerates the cliques of G, one after the other, in O(mn) time per clique.
If G is balanced, then it is also hereditary clique-Helly and, as a result, it has at most m cliques [24,29]. Consequently, we
can, in O(m2n) time, either compute a clique-matrix of G or detect that G is not hereditary clique-Helly and, in particular,
not balanced. Finally, we can decide whether G is balanced by testing its clique-matrix for balancedness in O(m9) time by
means of the recognition algorithm for balanced matrices in [31]. As a consequence of our structural characterizations, we
will show that the problem of recognizing balanced graphs is linear-time solvable within complements of bipartite graphs,
line graphs of multigraphs, and complements of line graphs of multigraphs.

The paper is organized as follows. The next subsection provides all basic definitions from graph theory used in
what follows. In Sections 2–4, we characterize balanced graphs within complements of bipartite graphs, line graphs of
multigraphs, and complements of line graphs ofmultigraphs, respectively, including characterizations byminimal forbidden
induced subgraphs. In each of these sections, we first provide the definition and crucial properties of the graph class
within which we study balanced graphs and then present our structural characterizations and discuss the recognition of
balancedness within this class.

1.1. Basic definitions

Graphs in this paper are finite, undirected,without loops, andwithoutmultiple edges.Wewill also dealwithmultigraphs,
introduced near the end of this subsection. The cardinality of any set S will be denoted by |S|.

Let G be a graph. We denote the vertex set of G by V (G), its edge set by E(G), and its complement by G. The neighborhood
of a vertex v in G is the set NG(v) consisting of all the vertices of G that are adjacent to v. The common neighborhood of
an edge e = vw is NG(e) = NG(v) ∩ NG(w) and, in general, the common neighborhood of a nonempty set W ⊆ V (G) is
NG(W ) =


w∈W NG(w), whereas NG(∅) = V (G). An isolated vertex is a vertex with no neighbors, a pendant vertex is a vertex

with precisely one neighbor, and a universal vertex is a vertex adjacent to every other vertex of the graph. The degree of v in
G is dG(v) = |NG(v)|. Two vertices v, w are false twins in G if they are nonadjacent and NG(v) = NG(w), while they are true
twins in G if they are false twins in G.

Let G be a graph. A subgraph of G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). Let H1 and H2 be two subgraphs
of G. We say that H1 and H2 touch if they share exactly one vertex of G. Moreover, if V (H1) ∩ V (H2) = {v}, we say that H1
and H2 touch at v. If W ⊆ V (G), the subgraph induced by W in G is denoted by G[W ] and G − W denotes G[V (G) \ W ]. If
W = {w}, we denote G−W simply by G− w. Let H be a graph. We say that G contains H if H is isomorphic to a subgraph of
G (either induced or not), and we say that G contains an induced H if H is isomorphic to an induced subgraph of G. A class G
of graphs is hereditary if, for each graph G of G, every induced subgraph of G also belongs to G. The class of balanced graphs
is hereditary because a clique-matrix of an induced subgraph of a graph G is a submatrix of some clique-matrix of G (cf. [5]).
We say that G is H-free to mean that G contains no induced H . If H is a collection of graphs, we say that G is H-free to mean
that G contains no induced H for any H ∈ H . Some special small graphs to be referred in what follows are depicted in Fig. 3.
We will call any of the graphs in Fig. 1 a pyramid.

A complete is a set of pairwise adjacent vertices. The complete graph on n vertices will be denoted by Kn. A complete on
three vertices is called a triangle. An inclusion-wise maximal complete is a clique. A stable set of a graph is a set of pairwise
nonadjacent vertices.

Paths and cycles are assumed to be simple; i.e., with no repeated vertices aside from the starting and ending vertices in
the case of cycles. An n-path (resp. n-cycle) is a path (resp. cycle) on n vertices. The cycles on three vertices are also called
triangles. The starting and ending vertices of a path are called the endpoints of the path. Let Z be a path or a cycle. By the
edges of Z we mean those edges joining two consecutive vertices of Z . The set of edges of Z will be denoted by E(Z) and
the length of Z is |E(Z)|. The distance between two vertices is the minimum length of a path joining them. A chord of Z is an
edge whose endpoints are nonconsecutive vertices of Z . The chordless n-cycle is denoted by Cn and the chordless n-path is
denoted by Pn. A chord of a cycle is short if its endpoints are at distance two within the cycle, and is long otherwise. A cycle
is odd (resp. even) if it has an odd (resp. even) number of vertices. A hole is a chordless cycle of length at least 4. An antihole
is the complement of a hole of length at least 5.

A graphG is connected if any pair of its vertices is linked by a path. A connected graphwithout cycles is a tree. A component
is an inclusion-wise maximal connected subgraph. For an edge e of G, we denote by G − e the graph that arises from G by
making the endpoints of e nonadjacent. We say that an edge e of a graph G is a bridge if G − e has more components than G.
If v and w are two nonadjacent vertices of G, then G+ vw denotes the graph that arises from G by making v and w adjacent.
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Fig. 4. Some special multigraphs.

Multigraphs are an extension of graphs obtained by allowing different edges to join the same pair of vertices. Multigraphs
are still finite, undirected, and without loops. Two edges joining the same pair of vertices are called parallel. We denote the
vertex set of a multigraph H by V (H) and its edge set by E(H). If H is a multigraph, the underlying graph of H is the graphH having the same vertices as H and two vertices of H are adjacent if there is at least one edge in H joining them. If v is a
vertex of a multigraph H , we denote by d̂H(v) the degree of v in the underlying graphH . A vertex of a multigraph is pendant
if it has exactly one neighbor; i.e., if it is a pendant vertex of the underlying graph. Notice that there may be many edges
joining a pendant vertex to its only neighbor.

We say that H ′ is a submultigraph of H if V (H) ⊆ V (H ′) and, for each pair of adjacent vertices u and v of H ′, there are at
least asmany edges inH joining them as there are inH ′. We say thatH ′ is contained in H or thatH contains H ′ if and only ifH ′

is isomorphic to a submultigraph of H ′. Two submultigraphs touch at vertex v if v is their only common vertex. A multigraph
is connected if its underlying graph is connected and a component of a multigraph is an inclusion-wise maximal connected
submultigraph.

The paths and cycles of amultigraph are the paths and cycles of its underlying graph. Amultitree is a connectedmultigraph
without cycles; i.e., a multigraph whose underlying graph is a tree. Somemultigraphs needed in what follows are displayed
in Fig. 4. Notice that we denote the multigraph consisting of two vertices and two parallel edges joining them by C2, despite
not being a cycle under our definition.

Let H1 and H2 be two vertex-disjoint graphs or multigraphs. The disjoint union of H1 and H2 has vertex set V (H1)∪ V (H2)
and two vertices u and v are adjacent in H if and only if they are adjacent in Hi for some i ∈ {1, 2} and there are exactly as
many edges joining u and v in H as there are in Hi. If t is a nonnegative integer and H is a multigraph, tH denotes the disjoint
union of t copies of H .

2. Balancedness of complements of bipartite graphs

A graph is bipartite if its vertex set can be partitioned into two stable sets X and Y . If so, {X, Y } is called a bipartition. If, in
addition, every vertex of X is adjacent to every vertex of Y , the graph is complete bipartite.

Recall that bipartite graphs are balanced, but that the class of balanced graphs is not self-complementary, and the
complements of bipartite graphs are not necessarily balanced. In this subsection, we characterize those complements of
bipartite graphs that are balanced by minimal forbidden induced subgraphs. In fact, we show that the complement of a
bipartite graph is balanced if and only if it is hereditary clique-Helly.

Theorem 4. Let G be the complement of a bipartite graph. Then, the following statements are equivalent:

(i) G is balanced.
(ii) A clique-matrix of G contains no edge–vertex incidence matrix of C3.
(iii) G is hereditary clique-Helly.
(iv) G contains no induced 1-pyramid, 2-pyramid, or 3-pyramid.

Proof. That (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) follows from the discussion in the introduction. In order to prove that (iv) ⇒ (i),
assume that G contains no induced 1-pyramid, 2-pyramid, or 3-pyramid, and we will prove that G is balanced. Since G
is the complement of a bipartite graph, its vertex set can be partitioned into red and blue vertices such that any two vertices
of the same color are adjacent. Suppose, for the purpose of contradiction, that G is not balanced. Let C = v1v2 . . . v2t+1v1
be an unbalanced cycle in G and let the We’s for each e ∈ E(C) be accordingly. Since the 3-sun is not the complement of a
bipartite graph, G is pyramid-free and, therefore, t > 1.

Since C is odd, there exist consecutive vertices vk and vk+1 in C having the same color. Either there is another vertex vℓ

in C \ {vk, vk+1} of this color, or all vertices in C \ {vk, vk+1} have the other color. In any case, C has three pairwise different
vertices vi, vi+1, and vj of the same color, say red. Thus, vi, vi+1, and vj induce a triangle and vj ∈ N(vivi+1) ∩ V (C) follows.

Next, we shall construct a blue triangle u1, u2, and u3 in G. By the definition of an unbalanced cycle, N(Wvivi+1) ∩

N(vivi+1)∩V (C) = ∅ and there exists some u1 ∈ Wvivi+1 such that u1 is nonadjacent to vj. Since vj is red, u1 is blue. If vi−1 is
nonadjacent to vi+1, we let u2 = vi−1; otherwise, vi+1 ∈ N(vi−1vi)∩V (C) andwe let u2 be any vertex ofWvi−1vi nonadjacent
to vi+1. In both cases, u2 is blue because it is nonadjacent to the red vertex vi+1. Similarly, if vi+2 is nonadjacent to vi, we define
u3 = vi+2. Otherwise, we let u3 be any vertex ofWvi+1vi+2 nonadjacent to vi. In both cases, u3 is blue because it is nonadjacent
to vi. By construction, u1, u2, and u3 are pairwise different becauseNG(u1)∩{vi, vi+1} = {vi, vi+1},NG(u2)∩{vi, vi+1} = {vi},
and NG(u3) ∩ {vi, vi+1} = {vi+1}. Since u1, u2, and u3 are blue, they induce a triangle in G. Therefore, {u1, vi, vi+1, vj, u2, u3}
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induces a 1-pyramid, 2-pyramid, or 3-pyramid in G, a contradiction. Hence, G is balanced, which concludes the proof of
(iv) ⇒ (i). �

As a consequence of the equivalence between (i) and (iii) of the above theorem, deciding if the complement of a
bipartite graph is balanced is equivalent to deciding whether it is hereditary clique-Helly. The currently best time bound
for recognizing hereditary clique-Helly graphs is O(m2) wherem is the number of edges of the input graph [20]. Notice that
if the input graph is the complement of a bipartite graph with n vertices and m edges, then m2

= Θ(n4), which means
that O(m2) is not a linear-time bound. We will show that there is a simple linear-time recognition algorithm for hereditary
clique-Helly graphs (or, equivalently, balanced graphs) when the input graph is known to be the complement of a bipartite
graph.

A component is nontrivial if it has at least two vertices, and is trivial otherwise. Consider the following consequence of
Theorem 4.

Corollary 5. Let G be the complement of a bipartite graph. Then, G is balanced if and only if one of the following conditions holds:
(i) G has only trivial components.
(ii) G has exactly one nontrivial component, which is {E, P4 ∪ P2, 3K2}-free.
(iii) G has exactly two nontrivial components, each of which is a complete bipartite graph.
Proof. Let G be the complement of a bipartite graph. If G has only trivial components, then G is a complete graph and,
in particular, G is balanced. If G has more than two nontrivial components, then G contains an induced 3-pyramid and,
consequently, G is not balanced. Notice that, because of Theorem 4, G is balanced if and only if G is {E, P4 ∪ P2, 3K2}-free.
Thus, if we assume that G has exactly one nontrivial component, then G is balanced if and only if (ii) holds. Consequently, it
only remains to prove the validity of the corollary in the case where G has exactly two nontrivial components.

Suppose that G has exactly two nontrivial components G1 and G2. We must prove that G is balanced if and only if G1 and
G2 are complete bipartite graphs. By Theorem 4, it is enough to prove that G is {E, P4 ∪ P2, 3K2}-free if and only if G1 and G2
are complete bipartite graphs. Clearly, if G1 and G2 are complete bipartite graphs, then G is {E, P4 ∪ P2, 3K2}-free because G
is the disjoint union of G1 and G2 and each of them is {E, P4, 2K2}-free. Conversely, assume that G is {E, P4 ∪ P2, 3K2}-free.
Since G1 and G2 are nontrivial and G is (P4 ∪ P2)-free, G1 and G2 are P4-free. Thus, for each i ∈ {1, 2}, each two nonadjacent
vertices of Gi must be on the same set of the bipartition of Gi; i.e., G1 and G2 are complete bipartite graphs. �

Let G be the complement of a bipartite graph H, n andm the number of vertices and edges of G. We will show that there
is a simple O(n2)-time algorithm that decides whether G is balanced or not. Notice that O(n2) is here a linear-time bound
because, G being the complement of a bipartite graph,m = Θ(n2). Since conditions (i) and (iii) of Corollary 5 can be clearly
verified in O(n2) time, it only remains to show that it can be decided in O(n2) time whether or not a connected bipartite
graph is {E, P4 ∪ P2, 3K2}-free.

For a connected bipartite graph H = (X, Y ; F) with bipartition {X, Y } and edge set F , its bipartite complement is the
bipartite graph H

bip
= (X, Y ; (X × Y ) \ F). For instance, P5

bip
= 2K2 ∪ K1. We will show that a recognition algorithm for

{E, P4 ∪ P2, 3K2}-free bipartite graphs follows from the study of E-free bipartite graphs in [22] using the following result.

Theorem 6 ([22]). Let H be a connected bipartite graph. Then, the following assertions are equivalent:
(i) H is {E, P7}-free.
(ii) H is P5

bip
-free.

(iii) Each component of H
bip

is 2K2-free.
We have the following immediate consequence.

Corollary 7. Let H be a connected bipartite graph. Then H is {E, P4 ∪ P2, 3K2}-free if and only if each component of H
bip

is
2K2-free.
Proof. In fact, if H is {E, P4 ∪ P2, 3K2}-free, then, in particular, H is {E, P7}-free (because P7 contains an induced P4 ∪ P2) and,
by Theorem 6, each component of H

bip
is 2K2-free.

Conversely, suppose that each component of H
bip

is 2K2-free. Then, by Theorem 6, H is P5
bip

-free. Since each of E, P4 ∪ P2,
and 3K2 contains an induced P5

bip
,H is {E, P4 ∪ P2, 3K2}-free. �

Bipartite 2K2-free graphs are known as chain graphs [30] or difference graphs [13] and it is well known that they can be
recognized in linear time (see, e.g., [14]). Therefore, as a consequence of Corollary 7, given a connected bipartite graph H
with n vertices, it can be decided whether H is {E, P4 ∪ K2, 3K2}-free in O(n2) time. Indeed, H

bip
can be clearly computed in

O(n2) time and, since bipartite chain graphs can be recognized in linear time,we can decidewhether each of the components
of H

bip
is 2K2-free also in O(n2) time.

Altogether, we have an O(n2)-time algorithm to decide the balancedness or not of any given complement of a bipartite
graph with n vertices. Recalling that an O(n2)-time algorithm is linear-time if its input is the complement of a bipartite
graph, we conclude the following.

Corollary 8. It can be decided in linear time whether or not the complement of a bipartite graph is balanced (or, equivalently,
hereditary clique-Helly).
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3. Balancedness of line graphs of multigraphs

For a graph ormultigraph R, its line graph L(R) is obtained by taking one vertex for each edge of R and joining two vertices
in L(R) if the corresponding edges of R share at least one endpoint. Conversely, a graph G is a line graph of a multigraph if
there is some multigraph R such that G = L(R); if R can be chosen to be a graph, G is simply said to be a line graph.

It is known that line graphs of bipartite graphs are balanced and which line graphs are perfect [27]. We prove structural
characterizations of those line graphs that are balanced, including a characterization by minimal forbidden induced
subgraphs, and show how these structural results naturally extend to line graphs of multigraphs.

In order to state our results we need to introduce some definitions. First, we note that the cliques in a line graph L(R)
correspond tomaximal sets of pairwise incident edges in R, called the L-cliques of R: that are the edge sets of triangles, called
triads, and the stars SR(v) consisting of all edges incident to a vertex v which are not contained in another star or a triad.

A t-bloom {v; v1, . . . , vt} in a graph is a set of t > 0 different pendant vertices v1, . . . , vt all being adjacent to vertex
v. By contracting two nonadjacent vertices u and v we replace them by a new vertex w with N(w) = N(u) ∪ N(v). Let G1
and G2 be two vertex-disjoint graphs and A = {a; a1, . . . , at} a t-bloom in G1, B = {b; b1, . . . , bt} a t-bloom in G2, then
G1 △AB G2 denotes the graph that arises from G1 ∪ G2 by adding the edge ab and contracting ai with bi for each i = 1, . . . , t .

The following result characterizes which line graphs are balanced, including a characterization by minimal forbidden
induced subgraphs.

Theorem 9. For a graph R and its line graph G = L(R), the following assertions are equivalent:

(i) G is balanced.
(ii) G is perfect and hereditary clique-Helly.
(iii) G has no odd holes and contains no induced 3-sun, 1-pyramid, or 3-pyramid.
(iv) R has no odd cycles of length at least 5 and contains no net, kite, or K4.
(v) Each component of R belongs to the graph class S which is the minimal graph class satisfying the following two conditions:

(a) All connected bipartite graphs belong to S.
(b) If G1,G2 ∈ S and the sets A and B are t-blooms of G1 and G2, respectively, then G1 △AB G2 belongs to S.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) follow from the discussion in the introduction. That (iii) ⇒ (iv) follows from the
definition of line graphs.

We prove that (iv) ⇒ (v) by induction on the number n of edges of R. Assume that R has no odd cycles of length at least
5 and contains no kite, net, or K4. If n = 1, (v) holds trivially. Let n > 1 and assume that (v) holds for graphs with less than
n edges. Let S be any component of R and assume that S is not bipartite. In order to prove that S belongs to S, we need to
show that S = S1 △AB S2 for some S1, S2 ∈ S and some blooms A and B. Since S is not bipartite and has no odd cycles of
length at least 5, there is some triangle T in S. Since S contains no net, kite, or K4, there is some vertex of T of degree 2 in S.
Let T = {a, b, c1} where dS(c1) = 2. Let c1, c2, . . . , ct be all the vertices of S with {a, b} ⊆ NS(ci). We have {a, b} = NS(ci) as
S contains no kite. Since S contains no K4, {c1, . . . , ct} is a stable set of S. Let S ′ be the graph that arises from S by removing
the edge ab and the vertices c1, . . . , ct . Since S has no odd cycles of length at least 5, there is no path joining a and b in S ′, but
S ′

+ ab is connected because S is connected. Consequently, S ′ consists of two components S ′

1 and S ′

2 such that a belongs to S ′

1
and b to S ′

2. Let S1 be the graph with a t-bloom A = {a; a1, . . . , at} obtained from S ′

1 by adding t pendant vertices to a, and
construct S2 with a t-bloom B analogously. Then S = S1 △AB S2 clearly follows. Moreover, S1 and S2 satisfy (iv) because they
are subgraphs of S. Therefore, as S1 and S2 are connected and have less edges than S, by induction hypothesis, S1, S2 ∈ S.
This completes the proof of (iv) ⇒ (v).

Let us now turn to the proof of (v) ⇒ (i). Assume that every component of R belongs to S. We will prove that G = L(R) is
balanced by induction on the number n of edges of R.Without loss of generalitywe can assume that Rhas no isolated vertices.
If n = 1, then G = K1 is balanced. Let n > 1 and assume that (i) holds when R has less than n edges. If R is disconnected, each
component S of R has less than n edges and, by induction hypothesis, each L(S) is balanced, hence G = L(R) is balanced, as
desired. If R is connected, suppose, for the purpose of contradiction, thatG is not balanced; i.e., there exist L-cliques E1, . . . , Er
and pairwise different edges e1, . . . , er of R such that Ei ∩ {e1, . . . , er} = {ei, ei+1} (from this point on, all subindices should
be understood modulo r) for some odd r ≥ 3.

Hence, R is not bipartite and, since R ∈ S by hypothesis, R = R1 △AB R2 for R1, R2 ∈ S and t-blooms A = {a; a1, . . . , at}
in R1 and B = {b; b1, . . . , bt} in R2. Since R1 and R2 have less edges than R then, by induction hypothesis, L(R1) and L(R2) are
both balanced. If SR(a) is an L-clique of R, we will identify SR(a) with SR1(a) and say that SR(a) is an L-clique of R1. Similarly,
if SR(b) is an L-clique of R, we identify SR(b) with SR2(b) and will say that SR(b) is an L-clique of R2. With this convention, the
L-cliques of R are the L-cliques of R1 and R2, plus the triads Tk = {ab, ack, bck} for each k = 1, . . . , t , where ck is the vertex
that results from contracting ak with bk. If r = 3, Theorem 2 implies that G contains an induced pyramid, which means that
R contains net, kite, or K4. Hence, by definition of△, either R1 or R2 would contain net, kite or K4, a contradiction to L(R1) and
L(R2) balanced. Hence, we have r ≥ 5 and suppose that at least one of E1, . . . , Er is an L-clique of R1. Since L(R1) is balanced,
not all of E1, . . . , Er are L-cliques of R1. Therefore, there exists some i ∈ {1, . . . , r} such that Ei is an L-clique of R1, but Ei+1
is not. Since Ei ∩ Ei+1 ≠ ∅, necessarily, Ei = SR(a). Similarly, there is some j ∈ {1, . . . , r} such that Ej is an L-clique of R1 and
Ej−1 is not, and necessarily Ej = SR(a). Hence, every block of consecutive L-cliques of R1 in the circular ordering E1E2 . . . ErE1
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starts and ends with SR(a). Since E1, . . . , Er are r pairwise different L-cliques of R, SR(a) is the only L-clique of R1 that may
belong to E1, . . . , Er . Similarly, SR(b) is the only L-clique of R2 that may belong to E1, . . . , Er .

Since r ≥ 5 and among E1, . . . , Er there are at most one L-clique of R1 and at most one L-clique of R2, there are two
consecutive elements in the circular ordering E1E2 . . . EkE1 that are triads Tk for some values of k. Without loss of generality,
E1 = T1 and E2 = T2. Therefore, e2 ∈ E1 ∩ E2 = {ab}. But then e = ab belongs to each of E1, . . . , Er , a contradiction. This
contradiction arose from assuming that Gwas not balanced. So, G satisfies (i), as desired. �

Theorem 9 implies another characterization of balanced graphs within line graphs that leads to a linear-time recognition
algorithm for balanced line graphs.

Corollary 10. Consider a graph R and its line graph G = L(R). Let U be the set of vertices of R of degree 2 that belong to some
triangle of R and let E ′ be the set of edges of Rwhose both endpoints are the two neighbors of some vertex of U. Then, G is balanced
if and only if R − U is a bipartite graph and every edge of R − U that belongs to E ′ is a bridge of R − U.

Proof. Suppose that G is balanced. By Theorem 9(iv), R contains no kite, net, or K4. Thus, every triangle of R has at least one
vertex of degree 2 and, therefore, R − U has no triangles. Since, in addition, R has no odd cycles of length at least 5, R − U is
bipartite. Moreover, any edge of R−U in E ′ is a bridge. Suppose that, on the contrary, ab belongs to some cycle C of R−U . As
R − U is bipartite, C = abv1 . . . v2ka for some k ≥ 1. Since ab ∈ E ′ there exists some vertex c ∈ R such that NR(c) = {a, b}.
But then C ′

= acbv1 . . . v2ka is a cycle of R of length 2k + 3 with k ≥ 1, a contradiction since R has no odd cycles of length
at least 5.

Conversely, assume that R−U is bipartite and every edge of R−U that belongs to E ′ is a bridge of R−U .Wewill prove that
statement (iv) of Theorem9holds. R has no kite, net, or K4 (otherwise, R−U would contain a triangle in contradiction to R−U
bipartite). It only remains to prove that R has no odd cycles of length at least 5. Suppose, for the purpose of contradiction, that
R has a cycle C = v1v2 . . . vrv1 of odd length at least 5. Let w1, w2, . . . , ws be the sequence of vertices that arises from the
sequence v1, v2, . . . , vr by removing all the vertices that belong toU . Notice that, if vi ∈ U , then vi−1 and vi+1 have degree at
least 3 in R and, therefore, vi−1 and vi+1 do not belong to U and vi−1vi+1 is an edge of R− U . Therefore, C ′

= w1w2 . . . wsw1
is a cycle of R−U . Since C is an odd cycle and R−U is bipartite, C ′

≠ C . So, necessarily, there is at least one vertex of C that
belongs to U . Without loss of generality assume that v2 ∈ U . By construction, w1 = v1, w2 = v3, v1v3 ∈ E ′, and v1v3 is an
edge of the cycle C ′ in R−U . Therefore, v1v3 is an edge of R−U that belongs to E ′ but is not a bridge of R−U , a contradiction.
Hence, Theorem 9(iv) holds and, consequently, G is balanced. �

From Corollary 10, we deduce the following.

Corollary 11. It can be decided in linear time whether a given line graph G is balanced.

Proof. Let n andm be the number of vertices and edges of G. A graph Rwithout isolated vertices such that L(R) = G can be
computed in O(m + n) time [19,25]. Additionally, the neighborhoods of the vertices of R can be easily sorted, consistently
with some fixed total ordering of V (R), in O(n) time (see, e.g., [16, p. 115]). Notice that O(n) time means linear time of R
because R has n edges and no isolated vertices. We now show that U and E ′ defined as in Corollary 10 can also be computed
in O(n) time. Let H be an auxiliary multigraph whose vertex set is V (R) and having each of its edges labeled with a vertex
of R defined as follows: two vertices v and w of H are joined by one (and exactly one) edge labeled with x if and only
if NR(x) = {v, w}. Clearly, H can be computed in O(n) time and, as we did with R, we can sort the neighborhoods of H
(ignoring the edge labels), consistently with the total ordering of V (R) used for the neighborhoods of R, also in O(n) time.
Now, as both NR(v) and NH(v) are sorted consistently for each v ∈ V (R), we can find, in overall O(n) time, the set D of all
triples (v, w, x) that satisfy both that w ∈ NR(v) ∩ NH(v) and that there is an edge joining v and w labeled with x. Then, U
consists of all vertices x such that there is some triple (v, w, x) ∈ D and E ′ consists of all edges vw such that there is some
triple (v, w, x) ∈ D. This shows that indeed U and E ′ can be computed in O(n) time. Finally, we can also decide in O(n) time
whether R − U is bipartite and whether the edges of R − U that belong to E ′ are bridges of R − U , because the bridges of a
graph can be determined by depth-first search in linear time [26]. �

Note. The sets U and E ′ can also be computed in O(m + n) time by enumerating all triangles of R using the approach
sketched in [16, p. 115], which leads to an alternative linear-time algorithm to decide the balancedness of G. Nevertheless,
our procedure has the advantage that it takes only linear time of R to decide the balancedness of L(R) if R is given as input.

We will now briefly comment on how the above results for line graphs naturally extend to line graphs of multigraphs.
Since two vertices of the line graph L(H) of a multigraph H are adjacent if the corresponding edges in H have at least one
endpoint in common, two parallel edges of a multigraph H are true twins in L(H). This means that the line graph of the
multigraph H arises from the line graph of its underlying graph H by adding true twins. As adding a true twin to a graph
only duplicates one columnof its clique-matrix, its balancedness is not affected. Therefore, L(H) is balanced if and only if L(H)
is balanced. Moreover, adding true twins does neither affect perfectness [21] nor being hereditary clique-Helly (the latter
easily follows from Theorem 2 because no pyramid has true twins). Therefore, L(H) is perfect and hereditary clique-Helly if
and only if L(H) is so. As a consequence, Theorem 9 extends to line graphs of multigraphs as follows.

Theorem 12. Let G be the line graph of a multigraph H. Then, the following assertions are equivalent:
(i) G is balanced.
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Fig. 5. Multigraphs familiesA1, A2 , andA3 . Light lines represent single edges, whereas bold lines represent one ormore parallel edges. Parameter p varies
over all positive integers and a1, a2, . . . , ap are pairwise false twins.

(ii) G is perfect and hereditary clique-Helly.
(iii) G has no odd holes and contains no induced 3-sun, 1-pyramid, or 3-pyramid.
(iv) H has no odd cycles of length at least 5 and contains no net, kite, or K4.
(v) Each component of the underlying graph of H belongs to the class S (as defined in the statement of Theorem 9).

Finally, also the linear-time recognition algorithm for balanced graphs within line graphs can be extended to line graphs
of multigraphs. For that we need to introduce the following notion. A representative graph R(G) of G is a graph that arises
from G by successively removing one vertex of some pair of true twins, as long as this is possible. It is easy to see that R(G)
is unique up to isomorphisms. In [16], an algorithm is proposed that, given a graph G, computes R(G) in linear time.

Corollary 13. Given the line graph G of a multigraph, it can be decided in linear time whether G is balanced.

Proof. As G = L(H) arises from L(H) by adding true twins, R(G) is also the representative graph of L(H). Thus, R(G)
is an induced subgraph of L(H) and, in particular, R(G) is a line graph. In addition, as adding true twins does not affect
balancedness,G is balanced if and only ifR(G) is balanced.We conclude that the algorithm for computing the representative
graph in [16] reduces the problem of deciding the balancedness of the line graphs of multigraphs G to that of deciding the
balancedness of the line graphs R(G), which, as we have seen, is linear-time solvable. �

4. Balancedness of complements of line graphs of multigraphs

We say that a multigraph H is L-balanced if the complement of its line graph is balanced. In this subsection, we will
characterize those complements of line graphs of multigraphs that are balanced by determining which multigraphs are
L-balanced. As pairwise adjacent vertices in L(H) correspond to pairwise non-incident edges, i.e.matchings, in H , the clique-
matrix of L(H) equals the maximal matching/edge-incidence matrix of H , which we call thematching-matrix. Consequently,
H is L-balanced if and only if its matching-matrix is balanced.

4.1. Families of L-balanced multigraphs

The main result of this subsection is Theorem 17 which establishes that certain multigraph families are L-balanced.
The proof of this theorem splits into two parts. The first part will follow from a sufficient condition for L-balancedness
(Lemma 15). For this purpose, we introduce three multigraph families A1, A2, and A3. In Fig. 5, a generic member of each
of these families is shown, where light lines represent single edges, bold lines one or more parallel edges, p is any positive
integer, and a1, . . . , ap are pairwise false twins. A graph G is called trivially perfect [11] if and only if G is {P4, C4}-free. Our
next lemma shows that the multigraph families A1, A2, and A3 arise naturally when characterizing those multigraphs H
such that L(H) is trivially perfect.

Lemma 14. For a graph G being the complement of the line graph of a multigraph H, the following assertions are equivalent:

(i) G is trivially perfect.
(ii) H contains no P5, 2P3, P3 ∪ C2, or 2C2.
(iii) Some component of H is contained in some member of A1, A2, or A3, and each of the remaining components of H has at

most one edge.

Proof. The equivalence between (i) and (ii) follows immediately from the definitions of trivially perfect graphs and line
graphs ofmultigraphs. It is also clear, by simple inspection, that each of themembers of the familiesA1, A2, andA3 contains
no P5, 2P3, P3 ∪ C2, or 2C2. Therefore, the same holds also for any submultigraph of them, which proves that (iii) implies (ii).
To complete the proof, we prove that (ii) implies (iii). Recall that d̂H(v) denotes the degree of v in the underlying graph H
and that a vertex v of H is pendant if and only if d̂H(v) = 1.

Suppose thatH satisfies (ii) and let S be any component ofH . First assume that S is amultitree and let P = v1v2 . . . vt be a
longest path in S. Since S contains no P5, necessarily t ≤ 4, v1 and vt are pendant vertices, and each neighbor of v2, . . . , vt−1
outside P is a pendant vertex. If t ≤ 3, S is contained in some member of A3, as desired. So, let t = 4. Since S contains no
2P3, P3 ∪ C2, or 2C2, we can assume, by symmetry, that there is a single edge joining v1 to v2 and d̂S(v2) = 2. We conclude
that S is contained in somemember of A3, as desired. So, from now on, let S be not a multitree and let ℓ be the length of the
longest cycle of S. Since S contains no P5, ℓ = 3 or ℓ = 4.
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Fig. 6. Multigraph families B1, B2, . . . , B16 . Light lines represent single edges, whereas bold lines represent one or more parallel edges. Parameter p
varies over the positive integers, and a1, a2, . . . , ap are pairwise false twins.

If ℓ = 3, there is a triangle T = v1v2v3v1 in S. Since S contains no P5 or bipartite claw, at most one vertex of T has some
neighbor v ∈ V (S) \ V (T ) and each of these neighbors v is a pendant vertex. Without loss of generality, we assume that
d̂S(v1) = d̂S(v2) = 2. If d̂S(v3) > 3 or v3 is joined to some pendant vertex through two or more parallel edges, then there is
a single edge joining v1 to v2 (because S contains no P3 ∪ C2 or 2C2) and S is contained in some member of A3. If d̂S(v3) ≤ 3
and there are no two parallel edges joining v3 to a pendant neighbor, then S is contained in some member of A1.

Finally, suppose that ℓ = 4 and let C be a 4-cycle of S. Since C contains no P5 or 2C2, V (S) = V (C) and S has no two
non-incident pairs of parallel edges. Therefore, S is some member of A1 or A2.

We conclude that H satisfies (iii), which completes the proof. �

We say that two edges e1 and e2 of a multigraph H are matching-separable if there is some maximal matching of H that
contains e1 but not e2, and vice versa. Notice that any twoparallel edges arematching-separable. It is easy to see that, for each
member of A1, A2, and A3, any twomatching-separable edges are incident. Indeed, in each of the multigraphs represented
in Fig. 5, the edges in bold are pairwise incident and each light edge is not matching-separable from any edge that is non-
incident to it. Let H be a multigraph. A submultigraph F of H is a fragment of H if there is an embedding of F in some of the
multigraphs represented in Fig. 5 such that the edges of F corresponding, under the embedding, to light edges in Fig. 5 are
incident in H to edges of F only. The following is easy to verify by inspection.

Remark 1. If F is a fragment of H , then any pair of edges of F that are matching-separable in H are incident.

In Fig. 6, we introduce multigraph families B1, B2, . . . , B16 by presenting a generic member of each family: light lines
represent single edges, bold lines one or more parallel edges, p is any positive integer, and a1, . . . , ap are pairwise false
twins. Notice, for instance, that for each member of B2, B3, and B4, its edge set can be partitioned into the edge sets of two
fragments. Our next result shows that this condition is sufficient for L-balancedness. Note that a {0, 1}-matrix is balanced
if and only if each of its submatrices is bicolorable [2], i.e., their columns can be partitioned into red and blue columns such
that every row with two or more 1’s contains a 1 of each color. If H is a multigraph, A is a submatrix of a matching-matrix
of H , and M and E are the sets of maximal matchings and edges of H corresponding to the rows and columns of A, then we
say that a partition {E1, E2} of E is a bicoloring of A if for eachM ∈ M either |M ∩ E | ≤ 1 orM intersects both E1 and E2.

Lemma 15. If the edge set of a multigraph H can be partitioned into the edge sets of two fragments of H, then H is L-balanced.

Proof. Let F1 and F2 be two fragments of H such that {E(F1), E(F2)} is a partition of E(H). Suppose, for the purpose of
contradiction, that L(H) is not balanced. Then, any matching-matrix of H has some submatrix A that is an edge–vertex
incidence matrix of an odd chordless cycle. Let M and E be the sets of maximal matchings and edges of H corresponding to
the rows and columns of the submatrix A, respectively.

We show that {E(F1) ∩ E, E(F2) ∩ E} is a bicoloring of A. Since A has no dominated rows, the edges in E are pairwise
matching-separable in H . Hence, by Remark 1, E(Fi) ∩ E consists of pairwise incident edges, for each i = 1, 2. So, if
M is any maximal matching of H,M ∩ E consists of at most one element of E(F1) and at most one element of E(F2).
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Fig. 7. Vertex labeling of the multigraph H for the proof of Theorem 17. Light lines represent single edges, whereas bold lines represent one or more
parallel edges. Parameter p varies over the positive integers, and a1, a2, . . . , ap are pairwise false twins.

Since E(H) = E(F1) ∪ E(F2) and, by construction, |M ∩ E | = 2 for each M ∈ M, it follows that, for each maximal matching
M ∈ M,M∩E consists of one element of E(F1)∩E and one element of E(F2)∩E . Hence, {E(F1)∩E, E(F2)∩E} is a bicoloring
of A, a contradiction to the choice of A. This proves that H is L-balanced. �

Let H be a multigraph. If v is any vertex of H, SH(v)will denote the set of edges incident to v. If u, v, w are three pairwise
adjacent vertices of H , we denote by TH(u, v, w) the set of all edges of H joining any two of the vertices u, v, and w.

We will make repeated use of the following lemma.

Lemma 16. Let H be a not L-balanced multigraph. Then, a matching-matrix of H contains the edge–vertex incidence matrix of
an odd chordless cycle as submatrix A. If E is the set of edges of H corresponding to the columns of A and X a set of pairwise
incident edges of H, there must be some maximal matching M of H with |M ∩ E | = 2 and M ∩ E ∩ X = ∅.

Proof. Let M be the set of maximal matchings of H corresponding to the rows of the submatrix A. Since A is an edge–vertex
incidence matrix of an odd chordless cycle, |M ∩ E | = 2 for each M ∈ M. Since X consists of pairwise incident edges of
X, |M ∩ E ∩ X | ≤ 1 for every matching M of X . As |M ∩ E | = 2 for each M ∈ M, it follows that |(M ∩ E) \ X | ≥ 1 for each
M ∈ M. Since A is not bicolorable, {X ∩ E, E \ X} is not a bicoloring of A and, necessarily, there is some M ∈ M such that
|M ∩ X ∩ E | = 0. �

Theorem 17. The families B1, B2, . . . , B16 are L-balanced.

Proof. It follows, by direct application of Lemma 15, that the families B2, B3, B4, B9, B10, B11, B12, and B16 are
L-balanced; i.e., each of its members is L-balanced. In order to finish the proof, we shall verify the L-balancedness for each of
the remaining families B1, B5, B6, B7, B8, B13, B14, and B15 displayed in Fig. 6. For that, we verify the assertion for each
familyBi in a separate claim and suppose, for the purpose of contradiction, the following: consider a not L-balancedH ∈ Bi,
label its vertices as in Fig. 7 and let A and E be as in Lemma 16.

Claim 1 (The Family B1 is L-balanced). We have b1b6 ∈ E : By Lemma 16 applied to X = TH(b1, b2, b3), there is some maximal
matching M of H such that |M ∩ E | = 2 but M ∩ E ∩ X = ∅. Necessarily, b1b6 ∈ M ∩ E . By Lemma 16 applied to X = SH(b1),
there is some maximal matching M of H such that |M ∩ E | = 2 but M ∩ E ∩ X = ∅. Necessarily, M ∩ E consists of one
edge joining b2 to b3 and one edge joining b4 to b5 and, by the maximality of M, b1b6 ∈ M. From b1b6 ∈ E , we conclude that
b1b6 ∈ M ∩ E ∩ X, which contradicts M ∩ E ∩ X = ∅. Hence, any member of B1 is L-balanced. �

Claim 2 (The Family B5 is L-balanced). By Lemma 16 applied to X = SH(b2), there is a maximal matching M of H such that
|M ∩ E | = 2 but M ∩ E ∩ X = ∅. So, necessarily, M ∩ E contains at least one of b1b5 and b3b7. Symmetrically, M ∩ E contains
at least one of b2b6 and b4b8. So, we assume, without loss of generality, that b1b5, b2b6 ∈ E .

We show that b1b5, b2b6 ∈ E implies b3b7, b4b8 ∈ E . By Lemma 16 applied to X = SH(b1), there is some maximal matching
M of H such that |M ∩ E | = 2 but M ∩ E ∩ X = ∅. As b1b5 ∈ E ∩ X, it follows that b1b5 ∉ M. Thus, by maximality, M contains
an edge joining b1 to either b2 or b4. Then, as M ∩ E consists of two non-incident edges and is disjoint from SH(b1), necessarily
b3b7 ∈ M ∩ E and, in particular, b3b7 ∈ E . Symmetrically, b4b8 ∈ E .

Let R = (SH(b2) ∪ {b4b8}) ∩ E and B = E \ R. We show that the partition {R, B} of E is a bicoloring of A. Let M be the set
of maximal matchings of H corresponding to the rows of A and let M ∈ M. As A is an edge–vertex incidence matrix of an odd
chordless cycle, |M ∩ E | = 2. Suppose, for the purpose of contradiction, that M ∩ R = ∅. This means that M ∩ E is disjoint from
SH(b2) ∪ {b4b8}. So, since |M ∩ E | = 2,M ∩ E consists of one edge incident to b1 and one edge incident to b3 but none of them
incident to b2 and, by maximality, b2b6 ∈ M. Consequently, b2b6 ∈ M ∩ R, a contradiction.
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Suppose now that M ∩ B = ∅. This means that M ∩ E consists of two edges contained in SH(b2) ∪ {b4b8}. Since M is a
matching, M ∩ E consists of b4b8 and one edge incident to b2. Then, the maximality of M implies M ∩ {b1b5, b3b7} ≠ ∅ and
(M ∩ B) ∩ {b1b5, b3b7} ≠ ∅, a contradiction.

So, we have proved that for each M ∈ M,M ∩ R ≠ ∅ and M ∩ B ≠ ∅, which verifies that {R, B} is a bicoloring of A,
contradicting the choice of A. Hence, any member of B5 is L-balanced. �

Claim 3 (The Family B6 is L-balanced). We have b4b5 ∈ E : Otherwise, by Lemma 16 applied to X = SH(b3), there is some
maximal matching M of H such that |M ∩ E | = 2 but M ∩ E ∩ X = ∅. Necessarily, M ∩ E consists of the edge b5b6 and an edge
joining b1 to b2. In particular, b5b6 ∈ E . Similarly, by Lemma 16 applied to X = SH(b6), there is some maximal matching M of
H with |M ∩ E | = 2 and M ∩ E ∩ X = ∅. So, M ∩ E consists of b3b4 and an edge joining b1 to b2. Hence, the maximality of M
implies that b5b6 ∈ M and from b5b6 ∈ E follows b5b6 ∈ M ∩ E ∩ X, contradicting M ∩ E ∩ X = ∅.

Moreover, no edge joining b3 to b6 belongs to E : Otherwise, if there is some edge e ∈ E joining b3 to b6, let M be the set of
maximal matchings of H corresponding to the rows of A. As A is an edge–vertex incidence matrix of an odd chordless cycle, there
are two different maximal matchings M,M ′

∈ M such that |M ∩ E | = |M ′
∩ E | = 2 and e ∈ M,M ′. Since every maximal

matching of H containing e also contains b4b5, we conclude that M∩E = M ′
∩E = {e, b4b5}. This means that rows and columns

of A corresponding to M,M ′ and e, b4b5 determine a 2 × 2 submatrix of A full of 1’s, which contradicts the choice of A.
We also have b5b6 ∈ E : Otherwise, if b5b6 ∉ E , by Lemma 16 applied to X = SH(b4), there is somemaximal matching M of H

such that |M ∩E | = 2 and M ∩E ∩X = ∅. As b5b6 ∉ E,M ∩E consists of b1b6 and an edge joining b2 to b3 and the maximality
of M implies that b4b5 ∈ M. Thus, since b4b5 ∈ E , it follows that b4b5 ∈ M ∩ E ∩ X, which contradicts M ∩ E ∩ X = ∅.

We further have b3b4, b1b6 ∈ E . By Lemma 16 applied to X = SH(b5), there is some maximal matching M of H such that
|M ∩ E | = 2 and M ∩ E ∩ X = ∅. Similar argumentations as above show b3b4 ∈ M ∩ E . If b1b6 ∉ M ∩ E , then M ∩ E consists
of b3b4 and an edge joining b1b2 and, by maximality, b5b6 ∈ M. But then b5b6 ∈ E implies b5b6 ∈ M ∩ E ∩ X, a contradiction.
Hence, b1b6 ∈ M ∩ E and, in particular b3b4, b1b6 ∈ E , indeed follows.

Let R = (SH(b3) ∪ {b4b5}) ∩ E and B = E \ R. Analogously to the proof for B5, one can show that the partition {R, B} of E is
a bicoloring of A, which contradicts the choice of A. Hence, any member of B6 is L-balanced. �

Claim 4 (The Family B7 is L-balanced). By Lemma 16 applied to X = SH(b2), there is some maximal matching M such that
|M ∩ E | = 2 and M ∩ E ∩ X = ∅. Since M ∩ E is a matching of size 2 disjoint from X, at least one of b1b6 and b5b6 belongs
to M ∩ E and, in particular, to E . By symmetry, assume that b1b6 ∈ E . We next show that this implies b5b6 ∈ E and, moreover,
b2b3 ∈ E or b3b4 ∈ E . By Lemma 16 applied to X = SH(b1), there is some maximal matching M of H such that |M ∩E | = 2 and
M∩E ∩X = ∅. We have b5b6 ∈ M∩E : Otherwise M∩E consists either of b2b3 and one edge joining b4 to b5, or of b3b4 and one
edge joining b2 to b5. In either case, the maximality of M implies that b1b6 ∈ M and, from b1b6 ∈ E follows b1b6 ∈ M ∩ E ∩ X,
which contradicts M∩E ∩X = ∅. As M∩E is a matching of size 2, disjoint from X, and containing b5b6, necessarily b2b3 ∈ M∩E
or b3b4 ∈ M ∩ E . This verifies b5b6 ∈ E and we may assume further b2b3, b5b6 ∈ E .

Reasoning as in the previous paragraph, b2b3 ∈ E implies b3b4 ∈ E . We conclude that E1 = {b1b6, b2b3, b3b4, b5b6} is
contained in E . Let R = (SH(b2) ∪ {b5b6}) ∩ E, B = E \ R, and M be a maximal matching of H corresponding to a row of A.
By construction, |M ∩ E | = 2. If |M ∩ E1| = 2, necessarily M has an edge in R and an edge in B. Notice that if |M ∩ E1| ≠ 2,
necessarily M ∩ E1 = ∅ and, since M ∩ E is a matching of size 2, M also has one edge in R and one edge in B. This shows that
{R, B} is a bicoloring of A, which contradicts the choice of A. Hence, any member of B7 is L-balanced. �

Claim 5 (The Family B8 is L-balanced). By Lemma 16 applied to X = SH(b3), there is some maximal matching M of H such that
|M ∩E | = 2 andM ∩E ∩X = ∅. By symmetry, assumeM ∩E = {b1b2, b4b5} and, in particular, b1b2, b4b5 ∈ E . No edge joining
b3 to b6 belongs to E : Otherwise, if there is some edge e ∈ E joining b3 to b6, then there are two different maximal matchings M
and M ′ of H such that e ∈ M,M ′ and |M ∩ E | = |M ′

∩ E | = 2 because A is an edge–vertex incidence matrix of an odd chordless
cycle. But {e, b1b2, b4b5} and {e, b1b4, b2b5} are the only maximal matchings of H containing e and |{e, b1b2, b4b5} ∩ E | = 3,
a contradiction.

We now show that this implies b1b6 ∈ E or b5b6 ∈ E . By Lemma 16 applied to X = SH(b2), there is some maximal matching
M of H such that |M ∩ E | = 2 and M ∩ E ∩ X = ∅. Necessarily, M ∩ E consists of one edge incident to b4 and one edge incident
to b6 and, since no edge joining b3 to b6 belongs to E , it follows that M ∩ E contains b1b6 or b5b6. In particular, b1b6 ∈ E or
b5b6 ∈ E . By symmetry, assume b1b6 ∈ E .

We further have b5b6 ∈ E : By Lemma16 applied to X = SH(b1), there is somemaximalmatching M of H such that |M∩E | = 2
and M ∩ E ∩ X = ∅. If b5b6 ∉ E , in particular, b5b6 ∉ M ∩ E . As no edge joining b3 to b6 belongs to E,M ∩ E consists either of
the edge b2b5 and an edge joining b3 to b4, or of the edge b4b5 and an edge joining b2 to b3. In either case, the maximality of M
implies that b1b6 ∈ M and, since b1b6 ∈ E , it follows that b1b6 ∈ M ∩ E ∩ X, contradicting M ∩ E ∩ X = ∅.

As b1b2, b4b5 ∈ E implies b1b6, b5b6 ∈ E , by symmetry, b1b2, b5b6 ∈ E shows b1b4 ∈ E . Similarly, from b1b6, b4b5 ∈ E
follows b2b5 ∈ E . We infer SH(b1) ∪ SH(b5) ⊆ E . Let R = SH(b1) and B = E \ R. Any maximal matching M of H contains one
edge incident to b1, one edge incident to b3, and one edge incident to b5. As SH(b1) = R and SH(b5) ⊆ B,M contains one edge
from R and at least one edge from B. Thus, {R, B} is a bicoloring of A, contradicting the choice of A. Hence, any member of B8 is
L-balanced. �

Claim 6 (The Family B13 is L-balanced). By Lemma 16 applied to X = SH(b1), there is some maximal matching M of H such
that |M ∩ E | = 2 but M ∩ E ∩ X = ∅. Necessarily b3b5 ∈ M ∩ E and, in particular, b3b5 ∈ E .
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By Lemma 16 applied to X = SH(b3), there is some maximal matching of M such that |M ∩ E | = 2 but M ∩ E ∩ X = ∅.
Necessarily, some edge joining b2 to b4 belongs toM∩E and, by themaximality of M, b3b5 ∈ M. Hence, as b3b5 ∈ E , we conclude
that b3b5 ∈ M ∩ E ∩ X, which contradicts M ∩ E ∩ X = ∅. Hence, any member of B13 is L-balanced. �

Claim 7 (The Family B14 is L-Balanced). By Lemma 16 applied to X = SH(b1), there is some maximal matching M of H such
that |M ∩ E | = 2 but M ∩ E ∩ X = ∅. Necessarily, b2b3 ∈ M ∩ E or b2b4 ∈ M ∩ E . By symmetry, assume b2b3 ∈ M ∩ E . Then,
the maximality of M implies b1b4 ∈ M and b1b4 ∉ E (otherwise, b1b4 would belong to M ∩ E ∩ X).

By Lemma 16 applied to X = SH(b3), there is some maximal matching M such that |M ∩ E | = 2 but M ∩ E ∩ X = ∅. From
b1b4 ∉ E follows b1b3 ∈ M ∩ E . By maximality, b2b4 ∈ M and b2b4 ∉ E (otherwise, b2b4 ∈ M ∩ E ∩ X.)

By Lemma 16 applied to X = TH(b1, b2, b3), there is somemaximalmatching M of H such that |M∩E | = 2 but M∩E∩X = ∅.
Necessarily, M ∩ E contains an edge incident to b4 and, in particular, b1b4 ∈ E or b2b4 ∈ E , which contradicts the conclusion of
the preceding two paragraphs.

Hence, any member of B14 is L-balanced. �

Claim 8 (The Family B15 is L-Balanced). By Lemma 16 applied to R = SH(b1), there is some maximal matching M of H such
that |M ∩ E | = 2 but M ∩ E ∩ X = ∅. Necessarily b3b4 ∈ M ∩ E and, in particular, b3b4 ∈ E .

By Lemma 16 applied to X = SH(b3), there is some maximal matching M of H such that |M ∩ E | = 2 but M ∩ E ∩ X = ∅.
Necessarily, M ∩ E consists one edge incident to b1 and one edge incident to b2, but none of them incident to b3. Hence, by
the maximality of M, b3b4 ∈ M and, as we proved that b3b4 ∈ E , we conclude that b3b4 ∈ M ∩ E ∩ X, which contradicts
M ∩ E ∩ X = ∅. Hence, any member of B15 is L-balanced. �

Hence, any member of each of the families B1, . . . , B16 is L-balanced. �

4.2. Characterizing balanced complements of line graphs

In this subsection, we characterize those complements of line graphs of multigraphs that are balanced, including a
characterization by minimal forbidden induced subgraphs.

Theorem 18. Let G be the complement of the line graph of a multigraph H. Then, the following assertions are equivalent:

(i) G is balanced.
(ii) A clique-matrix of G has no edge–vertex incidence matrix of C3, C5, or C7 as a submatrix.
(iii) G contains no induced 3-sun, 2-pyramid, 3-pyramid, C5, C7,U7, or V7.
(iv) H contains no bipartite claw, P5 ∪ P3, P5 ∪ C2, 3P3, 2P3 ∪ C2, P3 ∪ 2C2, 3C2, C5, C7, 6-pan, braid, 1-braid, or 2-braid.
(v) One of the following conditions holds:

(a) Each component of H has at most one edge.
(b) H has exactly one component with more than one edge, which is contained in a member of B1, B2, . . . , or B16.
(c) H has exactly two components with more than one edge each, each of which is contained in a member of A1, A2, or A3.

Proof. The implication (i) ⇒ (ii) follows by definition. The implication (ii) ⇒ (iii) follows from the fact that a clique-matrix
of each of 3-sun, 2-pyramid, 3-pyramid, C5, C7,U7, and V7 has an edge–vertex incidencematrix of C3, C5, or C7 as a submatrix.
The implication (iii) ⇒ (iv) follows by definition of the line graph of a multigraph.

The implication (v) ⇒ (i) can be proved as follows. If (v).(a) holds, then G = L(H) is a clique and, in particular, G is
balanced. So, assume that (v).(b) or (v).(c) holds. Without loss of generality, H has no isolated vertices. Moreover, we can
also assume thatH has no componentwith only one edge because removing these components fromH amounts to removing
the universal vertices from L(H), which does not affect the balancedness of L(H) (because each universal vertex corresponds
to a column full of 1’s in the clique-matrix). Therefore, we can assume that H is contained in a member of B1, B2, . . . , or B16

or H has two components, each of which is contained in a member of A1, A2, or A3. If the former holds, L(H) is balanced by
Theorem 17, if the latter holds, L(H) is balanced by Lemma 15. This concludes the proof of (v) ⇒ (i).

The rest of the proof is devoted to showing that (iv) ⇒ (v). In order to do so, assume that H satisfies (iv). Suppose first
that H has two or more components with two or more edges each. Since H contains no 3P3, 2P3 ∪ C2, P3 ∪ 2C2, or 3C2,H
has exactly two components S1 and S2 with at least two edges each. In particular, S2 contains P3 or C2, which means that S1
contains no P5, 2P3, P3 ∪ C2, or 2C2 and, by Lemma 14, S1 is contained in some member of A1, A2, or A3. By symmetry, S2
is also contained in some member of A1, A2, or A3. This proves that if H has at least two components with two or more
edges each, (c) holds. If each component of H has at most one edge, (a) holds. Therefore, we assume that H has exactly
one component S having at least two edges. We will prove that S is contained in some member of B1, B2, . . . , B16 and,
consequently, (b) holds, concluding the proof of the theorem.

We split the proof into four main cases. In the first case S is a multitree. In the other cases, we assume that S is not a
multitree and we let ℓ be the length of the longest cycle in S. Since S contains no C5, C7, or P5 ∪ P3, necessarily ℓ = 3, 4, or 6.

Along this proof, we adopt the following convention: Given any two adjacent vertices u and v of S, we will say that uv is
a simple edge if there is exactly one edge joining u to v; otherwise, we say that uv is a multiple edge. Recall that we say that
a vertex v of S is pendant if and only if d̂(v) = 1 (where d̂S(v) denotes the degree of v in the underlying graphS).



F. Bonomo et al. / Discrete Applied Mathematics 161 (2013) 1925–1942 1937

Case 1. S is a multitree. Let P = v1v2 . . . vt be a path of S of maximum length. By maximality of P and since S contains no
bipartite claw, the endpoints of P are pendant vertices and the neighbors of v2, . . . , vt−1 outside P are pendant vertices.
Moreover, 2 ≤ t ≤ 7 because S contains no P5 ∪ P3.

1.a t ≤ 4. Then, S is contained in some member of B15.
1.b t = 5. If d̂S(v3) ≤ 3 and any edge joining v3 to a pendant neighbor is simple, then S is contained in somemember ofB15.

If d̂S(v3) > 3 or there is a multiple edge joining v3 to a pendant neighbor, then either d̂S(v2) = 2 and v1v2 is simple, or
d̂S(v4) = 2 and v4v5 is simple (otherwise S would contain 3P3, 2P3 ∪ C2, P3 ∪ 2C2, or 3C2). In either case, S is contained
in some member of B16.

1.c t = 6. If d̂S(v2) = d̂S(v5) = 2 and v1v2 and v5v6 are simple, then S is contained in some member of B16. If, say,
d̂S(v2) > 2 or v1v2 is multiple, then d̂S(v3) = 2 follows since S contains no P5 ∪P3 and no P5 ∪C2. In addition, d̂S(v5) = 2
and v5v6 is simple, because S contains no braid, 1-braid, or 2-braid. Thus, S is also contained in some member of B16.

1.d t = 7. Since S contains no P5 ∪ P3 and no P5 ∪C2, d̂S(v2) = d̂S(v4) = d̂S(v6) = 2 and the edges v1v2 and v6v7 are simple.
Therefore, S is contained in some member of B16.

Case 2. S has a longest cycle of length ℓ = 3. In each subcase, we assume that the previous subcases do not hold.

2.a There is some triangle T such that all its vertices have some neighbor outside T . Let T = v1v2v3v1 be such a triangle in S.
By hypothesis, S has neither a 4-cycle nor a bipartite claw. Therefore, for each i = 1, 2, 3, each vertex v ∈ NS(vi) \ V (T )
is a pendant vertex of S. Since S contains no 3P3, 2P3 ∪ C2, P3 ∪ 2C2, or 3C2, there are at most two vertices of T having
more than one pendant neighbor or joined to a pendant neighbor by a multiple edge. Therefore, S is contained in some
member of B15.

2.b There is a triangle T touching a 5-path P at an endpoint of P . Let T = v1v2v3v1 touch P = v1w1w2w3w4 at v1. As S contains
no P5 ∪ P3 or P5 ∪ C2 and ℓ = 3, d̂S(v2) = d̂S(v3) = 2,NS(w1) ⊆ {v1, w2, w3},NS(w3) ⊆ {w1, w2, w4},NS(w4) ⊆

{w2, w3}, each v ∈ NS(v1)\{v2, v3, w1, w2} is a pendant vertex, each v ∈ NS(w2)\{v1, w1, w3, w4} is a pendant vertex,
and the edges v2v3 and w3w4 are simple. If w1 and w3 are nonadjacent, then S is contained in some member of B16. If
w1 and w3 are adjacent, then w2 is nonadjacent to v1 and to w4 because S has no 4-cycles, and d̂S(w2) = 2 because S
contains no P5 ∪ P3. Therefore, S is contained in some member of B10.

2.c There are two touching triangles, say T = v1v2v3v1 and T ′
= v1w1w2v1. By symmetry and since 2.a does not hold, we can

assume that d̂S(v2) = 2 and d̂S(w1) = 2. As S has no 4-cycles and no bipartite claw, each v ∈ NS(v1)\{v2, v3, w1, w2} is a
pendant vertex. Since S has no 4-cycles and 2.b does not hold, each v ∈ NS(v3)\V (T ) is a pendant vertex. Symmetrically,
each v ∈ NS(w2) \ V (T ′) is also a pendant vertex.

If each of v1 and w2 is adjacent to some pendant neighbor, then v2v3 is simple and d̂S(v3) = 2 (because S contains
no P5 ∪ C2 or P5 ∪ P3), thus S is contained in some member of B16.

So, if v1 is adjacent to some pendant neighbor, we can assume that d̂S(v3) = d̂S(w2) = 2 and, since S contains no
P3 ∪ 2C2 or 3C2, one of the following conditions hold:
(1) v1 is adjacent to exactly one pendant neighbor and the edge joining v1 to its pendant neighbor is simple, thus S is

contained in B1.
(2) At least one of v2v3 and w1w2 is simple, which implies that S is contained in a member of B16.
Otherwise, v1 is not adjacent to any pendant neighbor. If w2 is adjacent to at least two pendant neighbors or there is a
multiple edge joining w2 to a pendant neighbor, then v2v3 is simple and d̂S(v3) = 2 (because S contains no 1-braid or
2-braid), thus, as a result, S is contained in somemember ofB16. Finally, ifw2 is adjacent to atmost one pendant neighbor
and any edge joiningw2 to a pendant vertex is simple and, symmetrically, v3 is adjacent to atmost one pendant neighbor
and any edge joining v3 to a pendant vertex is simple, then S is contained in some member of B2.

2.d There is an edge touching two different triangles. Since S has no 4-cycles and 2.c does not hold, any pair of different triangles
of T in S are vertex-disjoint. Let v1w1 be an edge touching the two triangles T = v1v2v3v1 and T ′

= w1w2w3w1 in S.
Since S has no 4-cycle and 2.b does not hold, d̂S(w2) = d̂S(w3) = d̂S(v2) = d̂S(v3) = 2. Since S contains no bipartite
claw and 2.c does not hold, each v ∈ NS(v1) \ {v2, v3, w1} is a pendant vertex and also each v ∈ NS(w1) \ {w2, w3, v1}

is a pendant vertex. If none of the edges v2v3 and w2w3 is multiple, S is contained in some member of B16. If v2v3 is
multiple, thenw2w3 is simple (since S contains no 2-braid) and d̂S(v1) = 3 (since S contains no P5∪C2), andwe conclude
that S is contained in a member of B10.

2.e There is a triangle T touching a 4-path P at an endpoint of P . Let T = v1v2v3v1 touch P = v1w1w2w3 at v1. Since 2.a does
not hold, we can assume that d̂S(v2) = 2. As 2.c does not hold, v1 and w2 are nonadjacent. Since S has no 4-cycles, v1
and w3 are nonadjacent. As 2.d does not hold, w1 and w3 are nonadjacent. Since S has no 4-cycles and no 5-cycles, v3 is
nonadjacent tow1, w2, andw3. So, two vertices of V (T )∪V (P) are adjacent only if they are adjacent in T or in P . Since 2.b
does not hold,w3 is a pendant vertex. As S contains no P3∪P5 and ℓ = 3, there is atmost one vertex v ∈ NS(v3)\{v1, v2}

and, if so, v is a pendant vertex and vv3 is simple. Since S has no 4-cycles, 2.c does not hold, and S contains no bipartite
claw, each v ∈ NS(v1) \ {v2, v3, w1} is a pendant vertex. As 2.d does not hold and S contains no bipartite claw, each
v ∈ NS(w1) \ {v1, w2} is a pendant vertex. Since 2.b does not hold, each vertex v ∈ NS(w2) \ {w1, w3} is a pendant
vertex.
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If w2 has a pendant neighbor different from w3 or w2w3 is multiple, then d̂S(w1) = d̂S(v3) = 2 and v2v3 is simple
(otherwise S contains P5 ∪ P3, P5 ∪ C2, braid, 1-braid, or 2-braid) and, therefore, S is contained in some member of B16.
Hence, we can assume that d̂S(w2) = 2 and w2w3 is simple.

If d̂S(v3) = 3 or v2v3 is multiple, then d̂S(v1) = 3 (because S contains no P5 ∪ P3 or P5 ∪ C2) and S is contained in
some member of B10. Otherwise, S is contained in some member of B16.

2.f None of the previous subcases holds. Let T = v1v2v3v1 be a triangle of S. Suppose, for the purpose of contradiction, that
v1 has two non-pendant neighbors different from v2 and v3. Let w1, w2 ∈ NG(v1) \ {v2, v3} such that w1 and w2 are
non-pendant. Since w1 is non-pendant, there exists some vertex w3 ∈ NG(w1) \ {v1}. As S has no 4-cycles and 2.c does
not hold, w3 ∉ V (T )∪{w1, w2}. Similarly, there is a vertex w4 ∈ NG(w2) \ {v1} and w4 ∉ V (T )∪{w1, w2, w3}. But then
S contains a bipartite claw, a contradiction.

Hence, each vertex of T is adjacent to at most one non-pendant vertex not in V (T ). Since S has no 4-cycles, 2.c and
2.e do not hold, and ℓ = 3, if w is a non-pendant neighbor of vi for some i ∈ {1, 2, 3}, then each v ∈ NS(w) \ {vi} is a
pendant vertex.

Suppose that v1 has some non-pendant neighbor w1 outside T that is adjacent to two pendant neighbors or there is
a multiple edge joining w1 to a pendant neighbor. Since S contains no P5 ∪ P3, P5 ∪ C2, 3P3, 2P3 ∪ C2, P3 ∪ 2C2, or 3C2, if
d̂S(v1) ≥ 4, then d̂S(v2) = d̂S(v3) = 2 and one of the following holds:
(1) d̂S(v1) = 4 and the edge joining v1 to a pendant vertex is simple and, consequently, S is contained in somemember

of B13.
(2) v2v3 is simple and S is contained in some member of B16.
So,we assume that d̂S(v1) = 3. Since 2.a does not hold,we can assume that d̂S(v3) = 2. Since S contains no P5∪P3, P5∪C2,
braid, 1-braid, or 2-braid, d̂S(v2) ≤ 3 and if there is v ∈ NS(v2)\{v1, v3}, then v is pendant and v2v is simple.We conclude
that S is contained in some member of B10.

It only remains to consider the case in which each non-pendant vertex w ∈ NS(vi) \ V (T ) for some i ∈ {1, 2, 3}
satisfies that d̂S(w) = 2 and that, for each w′

∈ NS(w) \ {vi}, ww′ is simple. Since 2.a does not hold, S is contained in
some member of B16.

Case 3. S has a longest cycle of length ℓ = 4. In each subcase, we assume that the previous subcases do not hold.

3.a There are two touching 4-cycles in S, say C = v1v2v3v4v1 and C ′
= v1w1w2w3v1. Since S contains no P3 ∪ P5, V (S) =

V (C)∪V (C ′). Since S contains no P5∪C2, the edges v2v3, v3v4, w1w2, andw2w3 are simple. If v2v4 is multiple, then there
is no edge v1v3, and if w1w3 is multiple, then there is no edge v1w2. We conclude that S is contained in some member
of B2, B3, or B4.

3.b There is a triangle T touching a 4-cycle in S. Let C = v1v2v3v4v1 touch T = v1w1w2v1. Since S has no 5-cycle and contains
no bipartite claw, necessarily NS(v2) ⊆ {v1, v3, v4},NS(v4) ⊆ {v1, v2, v3}, and NS(v3) ∩ {w1, w2} = ∅. This also means
that NS(w1) ∩ V (C) = NS(w2) ∩ V (C) = {v1}. Since S contains no P5 ∪ P3 and 3.a does not hold, d̂S(w1) ≤ 3 and we can
assume that d̂S(w2) = 2.

Let us consider the case when d̂S(w1) = 3 or w1w2 is multiple. Since S contains no P5 ∪ P3 or P5 ∪ C2,NS(v1) ⊆

V (C) ∪ V (T ),NS(v3) ⊆ V (C), and, if there is some w3 ∈ NS(w1) \ {v1, w2}, then w3 is a pendant vertex of S and w1w3
is simple. In addition, v2v3 and v3v4 are simple because S contains no 1-braid or 2-braid. If v2v4 is not a multiple edge
of S, then S is contained in some member of B3. Otherwise, v1v3 is not an edge of S (because S contains no 1-braid or
2-braid) and S is contained in some member of B2. So, from now on, we assume that d̂S(w1) = d̂S(w2) = 2 and w1w2
is simple.

Suppose that v2 and v4 are adjacent. Since S contains no bipartite claw, each v ∈ NS(v1) \ (V (T )∪V (C)) is a pendant
vertex of S. So, ifNS(v3) ⊆ V (C), then S is contained in somemember ofB12. Therefore,we can assume that there is some
w3 ∈ NS(v3)\V (C). Since S contains no bipartite claw, P5∪P3, or P5∪C2, v1v3 is not an edge of S, |NS(v3)\V (C)| = 1, w3
is a pendant vertex of S, and v3w3 is simple. We conclude that S is contained in some member of B11.

It only remains to consider the case when v2 and v4 are nonadjacent. Due to the first remarks of this subcase,
NS(v2) = NS(v4) = {v1, v3}. Notice that each v ∈ NS(v1) \ (V (T ) ∪ V (C)) satisfies NS(v) ⊆ {v1, v3} because S
contains no bipartite claw. If each v ∈ NS(v3) \ {v1} satisfies that NS(v) ⊆ {v1, v3}, then S is contained in some
member of B16. So, we can assume that there is some w3 ∈ NS(v3) \ {v1} and some w4 ∈ NS(w3) \ {v1, v3}. By
construction, w3, w4 ∉ V (C) ∪ V (T ). Then, NS(w3) = {v3, w4} and w3w4 is simple since S contains no bipartite claw,
braid or 1-braid. In addition, NS(w4) ⊆ {v3, w3} because S contains no P3 ∪ P5. Since S contains no bipartite claw, each
v ∈ NS(v3) \ {v1, v2, v4, w3, w4} satisfies NS(v) ⊆ {v1, v3}. Thus, S is contained in some member of B16.

3.c S contains K2,3. Equivalently, suppose that there are two vertices v1, v3 ∈ V (S) such that NS(v1) ∩ NS(v3) consists of at
least three vertices. Let v2 be a vertex of NS(v1) ∩ NS(v3) of maximum degree inS and let v4 and v5 be any two other
vertices of NS(v1)∩NS(v3). Since ℓ = 4 and S contains no bipartite claw, {v2, v4, v5} is a stable set, d̂S(v4) = d̂S(v5) = 2,
and each v ∈ NS(v2) \ {v1, v3} is a pendant vertex.

Suppose that each vertex v ∈ (NS(v1)∪NS(v3))\{v1, v2, v3} is such that NS(v) ⊆ {v1, v3}. If v2 is adjacent to at most
one pendant vertex and any edge joining v2 to a pendant vertex is simple, then S is contained in somemember ofB15. So,
assume, on the contrary, that v2 is adjacent to at least two pendant vertices or v2 is joined to a pendant vertex through
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a multiple edge. Then, NS(v1) ⊆ {v2, v3, v4, v5} and NS(v3) ⊆ {v1, v2, v4, v5} (because S contains no P5 ∪ P3 or P5 ∪ C2),
each of the edges v1v4, v1v5, v3v4, v3v5 is simple (because S contains no 1-braid and no 2-braid) and, consequently,
S is contained in some member of B14. So, we can suppose that there is some vertex w1 ∈ NS(v1) \ {v2, v3} such that
NS(w1) ⊈ {v1, v3} and letw2 ∈ NS(w1)\{v1, v3}. Since S contains no P3∪P5, d̂S(v2) = 2. Notice that, by construction,w1

is nonadjacent to v3; otherwise, w1 ∈ NS(v1) ∩ NS(v3) and d̂S(w1) > 2 = d̂S(v2), contradicting the choice of v2. Since S
contains no braid or 1-braid, d̂S(w1) = 2 andw1w2 is simple. Notice thatw2 is a pendant vertex because S has no 5-cycle,
contains no P5 ∪ P3, and 3.b does not hold. Since S contains no bipartite claw, w1 is the only vertex v ∈ NS(v1) \ {v2, v3}

such that NS(v) is not contained in {v1, v3}. By symmetry, there is at most one vertex w3 ∈ NS(v3) \ {v1, v2} such that
NS(w3) ⊈ {v1, v3} and, if so, d̂S(w3) = 2, the only vertex w4 ∈ NS(w3) \ {v3} is pendant, and w3w4 is simple. Since, by
construction, all vertices v ∈ (NS(v1)∪NS(v3)) \ {v1, v3, w1, w3} are such that NS(v) ⊆ {v1, v3}, S is contained in some
member of B16.

3.d There is a 4-cycle C = v1v2v3v4v1 such that each vertex vi of C has a neighbor wi ∉ V (C). Since S has no 5-cycle and 3.c
does not hold, NS(vi) ∩ NS(vj) ⊆ V (C) for all i and all j. In particular, w1, w2, w3, and w4 are pairwise different. Since S
contains no P5 ∪ P3 or P5 ∪ C2, wi is the only vertex in NS(vi) \ V (C) and viwi is simple for each i = 1, 2, 3, 4. Moreover,
w1, w2, w3, and w4 are pendant vertices as S has no 6-cycle and no bipartite claw. Finally, since S contains no bipartite
claw, C is chordless and we conclude that S is a member of B5.

3.e There is a 4-cycle C touching a 4-path P at an endpoint of P . Let C = v1v2v3v4v1 touch P = v1w1w2w3 in v1. Since
ℓ = 4, S contains no P5 ∪ P3 or P5 ∪ C2, and 3.a does not hold, NS(w3) ⊆ {w1, w2} and w2w3 is simple. Similarly, and
since 3.b does not hold, NS(w2) = {w1, w3}. As S has no 5-cycles and 3.c does not hold, NS(w1) ∩ V (C) = {v1}. Since
ℓ = 4 and S contains no P5 ∪ P3, each v ∈ NS(w1) \ {v1, w2, w3} is a pendant vertex of S,NS(v1) ⊆ V (C) ∪ {w1}, and
NS(v2),NS(v3),NS(v4) ⊆ V (C). Notice also that v2v3 and v3v4 are simple because S contains no P5 ∪ C2. Therefore, if
v2v4 is not a multiple edge of S, then S is contained in some member of B9. If, on the contrary, v2v4 is multiple, then v1
and v3 are nonadjacent (because S contains no P5 ∪ C2) and S is contained in some member of B10.

3.f There is a 4-cycle C = v1v2v3v4v1 such that three of its vertices have a neighbor outside C , say, vi has a neighbor wi ∉ V (C)
for each i = 1, 2, 3. Then,NS(v1)\V (C),NS(v2)\V (C), andNS(v3)\V (C) are pairwise disjoint and eachw ∈ NS(vi)\V (C),
for each i ∈ {1, 2, 3}, is a pendant vertex because 3.c does not hold and S has no 5-cycles or 6-cycle and contains no
P5 ∪ P3. Since 3.d does not hold and S contains no bipartite claw, NS(v4) = {v1, v3}. Finally, w2 is the only pendant
neighbor of v2 and v2w2 is simple because S contains no P5 ∪ P3 or P5 ∪ C2. We conclude that S is contained in some
member of B15.

3.g There is a 4-cycle C = v1v2v3v4v1 where v1 is adjacent to a non-pendant vertex w1 ∉ V (C). Let w2 be any vertex
of NS(w1) \ {v1}. Then, w2 ∉ V (C) because S contains no 5-cycle and 3.c does not hold. As S has no 5-cycle or
6-cycle and 3.b does not hold, NS(w2) ∩ V (C) = ∅. Therefore, w2 is a pendant vertex as 3.e does not hold. Notice
that NS(v2),NS(v4) ⊆ V (C) because S contains no bipartite claw. Since w2 is an arbitrary vertex of NS(w1) \ {v1}, each
w ∈ NS(w1) \ {v1} is a pendant vertex. Since w1 is an arbitrary non-pendant vertex in NS(v1) \ V (C), for every non-
pendant vertex w′

1 in NS(v1) \ V (C), each w ∈ NS(w
′

1) \ {v1} is a pendant vertex. Thus, since S contains no P3 ∪ P5, w1
is the only non-pendant vertex in NS(v1) \ V (C); i.e., each v ∈ NS(v1) \ {v2, v3, v4, w1} is a pendant vertex.

Suppose first that d̂S(w1) > 2 orw1w2 is multiple. Since S contains no P5∪P3 or P5∪C2, v1 has no pendant neighbors
andNS(v3) ⊆ V (C). Moreover, v2v3 and v3v4 are simple because S contains no 1-braid or 2-braid. If v2v4 is not amultiple
edge, then S is contained in some member of B9, but if v2v4 is a multiple edge, then v1v3 is not an edge of S (because S
contains no 1-braid or 2-braid) and S is contained in some member of B10. So, from now on, let d̂S(w1) = 2 and w1w2
be simple.

Suppose that v2 and v4 are adjacent. If v3 is adjacent to some v ∈ V (S) \ V (C), then v is the only such vertex, v is
pendant, and v3v is simple (because S contains no P5 ∪ P3 or P5 ∪ C2) and v1 is not adjacent to v3 (because S contains no
bipartite claw), so S is contained in some member of B11. Otherwise, S is contained in some member of B12. So, from
now, we assume that v2 and v4 are nonadjacent.

If v3 also has some non-pendant neighbor w3 ∈ V (S) \ V (C), the same argumentation as for w1 implies that each
v ∈ NS(v3) \ V (C) different from w3 is pendant and we can assume that d̂S(w3) = 2 and, if w4 is the only vertex of
NS(w3)\{v3}, thenw3w4 is simple. Thus, S is contained in somemember ofB16, even if v3 has no non-pendant neighbor.

3.h None of the previous subcases holds. Since ℓ = 4, there exists some 4-cycle C = v1v2v3v4v1 in S. Since 3.g does not hold,
each v ∈ NS(vi) \V (C) is pendant, for each i = 1, 2, 3, 4. Since 3.f does not hold, there are at most two vertices of C that
are adjacent to pendant vertices. If there are less than two vertices of V (C) adjacent to pendant vertices, S is contained
in some member of B13. Therefore, we assume that there are two vertices of V (C) adjacent to pendant vertices, say v1
and vj where j = 2 or j = 3.

If each of the vertices v1 and vj is adjacent to two pendant vertices or joined to some pendant vertex through a
multiple edge, then j = 3 and v2 is nonadjacent to v4 (since S contains no braid, 1-braid, or 2-braid). We conclude that
S is contained in some member of B16.

Finally, if vj is adjacent to only one pendant vertex through a simple edge, then S is contained in some member of
B13.

Case 4. S has a longest cycle C of length ℓ = 6, say C = v1v2v3v4v5v6v1. Since S is connected and contains no 6-pan, the
vertices of C are the only vertices of S. As S contains no 5-cycle, C has no short chords.
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Suppose first that C has two multiple chords, say v1v4 and v2v5 are multiple edges. Since S contains no 2-braid, there is
no edge v3v6 in S and each of v2v3, v3v4, v5v6, and v6v1 is simple. This means that S is a member of B7. So, from now on, we
can assume that C has at most one multiple chord.

Since C has at most one multiple edge, S would belong to B8 if no edge of C was multiple. Therefore, assume from now
on that v1v2 is multiple. As S contains no 2-braid, none of v3v4 and v5v6 is multiple and at most one of v1v6, v2v3, v5v6
is multiple. In turn, if C has no multiple chords, then S is a member of B7 or B8. So, from now on, let C have exactly one
multiple chord.

Since S contains no 2-braid, S is amember ofB6 if v3v6 is the onlymultiple chord of C because v4v5 cannot bemultiple, v1
cannot be adjacent to v4, and v2 cannot be adjacent to v5. By symmetry, assume that the only chord of C is v1v4. Recall that the
only possible multiple edges of C are v1v6, v2v3, and v4v5 and that at most one of them is multiple. If v1v6 is multiple, then S
is a member of B8. If v4v5 is multiple, then there is no edge v3v6 in S (because S contains no 2-braid) and, consequently, S is
a member ofB7. If v2v3 is multiple, then v2v5 and v3v6 are not edges of S (because S contains no 2-braid) and, consequently,
S is a member of B6. Finally, if none of v4v5, v1v6, and v2v3 is multiple, then S is a member of B8.

Hence, any component S of H is contained in some member of B1, . . . , B16. Consequently, (v).(b) holds, which completes
the proof. �

4.3. Recognizing balanced complements of line graphs

Wewill derive, from the above theorem, the existence of a linear-time recognition algorithm for balanced graphs within
complements of line graphs of multigraphs.

Given a graph G, we define a pruned graph of G as any maximal induced subgraph of G having no three pairwise false
twins and no universal vertices. Let V1, V2, . . . , Vq be the equivalence classes of the relation ‘‘is a false twin of’’ on the set of
vertices of G. We say that the equivalence class Vi is universal if some vertex of Vi is a universal vertex of G. Clearly, if Vi is
universal, then |Vi| = 1. The pruned graphs of G are those subgraphs of G induced by some set V ′

1 ∪ V ′

2 ∪ . . . ∪ V ′
q such that

V ′

i ⊆ Vi and |V ′

i | = βi, for each i = 1, 2, . . . , q, where

βi =


min(|Vi|, 2) if Vi is not universal
0 otherwise.

Since any two vertices that belong to the same Vi are nonadjacent and have the same neighbors, the pruned graphs of G are
unique up to isomorphisms and we denote any of them by P (G).

Lemma 19. A pruned subgraph of a graph G can be computed in linear time.

Proof. In order to compute P (G), we first construct the modular decomposition tree of G. We omit the details of this data
structure but refer the reader to [9,12,23], where linear-time algorithms to build such a decomposition tree are given. Two
vertices u and v ofG are false twins if and only if the leaves of themodular decomposition tree representing themare children
of the same parallel node. This means that we can find a subset of vertices inducing a pruned graph of G by marking for
exclusion all universal vertices of G and performing a breadth-first search on the modular decomposition tree of G and also
marking for exclusion the third, fourth, fifth, and so on, leaf children of each parallel node. Since themodular decomposition
tree can be computed in linear time, P (G) can also be computed in linear time. �

The following fact about P (G) is crucial for our purposes.

Corollary 20. Let G be the complement of the line graph of a multigraph. Then, G is balanced if and only if P (G) is balanced.

Proof. If G is balanced, then clearly P (G) is also balanced (because P (G) is an induced subgraph of G). In order to prove
the converse, we assume that G is not balanced and we will prove that P (G) is not balanced. Let W be a subset of vertices
inducing aminimal induced subgraph ofG that is not balanced. By Theorem18, the subgraph ofG induced byW is isomorphic
to 3-sun, 2-pyramid, 3-pyramid, C5, C7,U7, or V7. In particular, there are no three pairwise false twins of G in W and there
is no universal vertex of G in W . Therefore, if the equivalence classes V1, V2, . . . , Vq and βi are as defined earlier and
Wi = W ∩ Vi, then |Wi| ≤ βi for each i = 1, 2, . . . , q. So, it is possible to find V ′

1, V
′

2, . . . , V
′
q such that Wi ⊆ V ′

i ⊆ Vi

and |V ′

i | = βi for each i = 1, 2, . . . , q. Then, G′
= G[V ′

1 ∪V ′

2 ∪ · · · ∪V ′
q] is a pruned graph of G and G′ is not balanced because

W ⊆ V (G′) and G′
[W ] = G[W ] is not balanced. �

Let G be the complement of the line graph of a multigraph and let k be a fixed integer. According to Corollary 20, if
P (G) has at most k vertices, we can decide whether G is balanced in linear time by computing P (G) in linear time and then
deciding whether P (G) is balanced in constant time. (Indeed, the obvious O(n7)-time algorithm that follows from assertion
(iii) of Theorem 18 becomes constant-time when n = O(1).) In what follows, we will fix k = 40 and the remainder of this
subsection is devoted to proving that we can decide in linear time whether P (G) is balanced even if P (G) has more than 40
vertices.

If G is the line graph of amultigraph, we denote by L−1(G) anymultigraphH without isolated vertices such that L(H) = G
and whose underlying graphH satisfies L(H) = R(G), where R(G) is the representative graph of G as defined near the end
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Fig. 8. Multigraph family B ′

16 . Light lines represent single edges, whereas bold lines represent one or more parallel edges. Parameter p varies over the
positive integers, and a1, a2, . . . , ap are pairwise false twins.

of Section 3. Given a graph G, a multigraph L−1(G) can be computed in linear time of G (see [15, pp. 67–68]). We say that two
incident edges e1 and e2 of a multigraph H are twins if they are incident to the same edges of E(H). We say that a multigraph
H is reduced if each pair of twin edges are parallel. By definition,H = L−1(G) is reduced. In Fig. 8we introduce themultigraph
family B ′

16.

Corollary 21. Let G be the complement of the line graph of a multigraph and suppose that P (G) has more than 40 vertices. If
H = L−1(P (G)), then the following conditions are equivalent:
(i) G is balanced.
(ii) H is a connected submultigraph of some member of B15 or B ′

16.
(iii) H is connected, has exactly two vertices v1 and v2 that are incident to at least six edges each, and, for each i = 1, 2, there

is at most one neighbor wi of vi such that there is some xi ∈ NH(wi) \ {v1, v2} and, if so, each of the following holds:
NH(wi) ⊆ {xi, v1, v2}, there is exactly one edge ei joining wi to xi, and ei is the only edge incident to xi. Moreover, if w1 and
w2 exist and are different, then NG(wi) = {vi, xi} for each i = 1, 2.

Proof. Suppose that G is balanced and let H = L−1(P (G)). As H has no isolated vertices and P (G) has no universal vertices,
each component of H has at least two edges. Since G is balanced, P (G) is balanced; i.e., H is L-balanced. So, by Theorem 18,
either H is a connected submultigraph of some member of B1, B2, . . . , B16 or H has two components, each of which is
contained in a member of A1, A2, or A3. But, as P (G) has more than 40 vertices, H has more than 40 edges. Since, by
construction, P (G) has no three pairwise true twins, H has no three pairwise parallel edges. Since, in addition, H is reduced,
H is necessarily a connected submultigraph of B15 or B ′

16. Conversely, if H is a submultigraph of some member of B15 or
B ′

16, then P (G) is balanced by Theorem 18 and, then, G is also balanced by Corollary 20. This concludes the proof of the
equivalence between (i) and (ii).

Since clearly (iii) implies (ii), it only remains to show that (ii) implies (iii). So, assume thatH is a connected submultigraph
of some member of B15 or B ′

16. Since H = L−1(P (G)),H has no three pairwise parallel edges. Therefore, H has at most two
vertices incident to at least six edges. Moreover, since H has at least 40 edges, H has exactly two vertices incident to at least
six edges each, and (iii) clearly holds. �

The next result implies that ifP (G) hasmore than 40 vertices, thenwe can either detect thatG is not balanced or compute
L−1(P (G)) efficiently.

Corollary 22. Let G be the complement of the line graph of a multigraph. Let nP and mP be the number of vertices and edges of
P (G) and suppose that nP > 40. If

mP ≥
2
9
(nP − 3)(nP − 36) (∗)

does not hold, then G is not balanced. On the other hand, if (∗) holds, then H = L−1(P (G)) can be computed from G in linear
time.

Proof. Suppose first that G is balanced and let H = L−1(P (G)). Then, H has nP edges and satisfies condition (iii) of
Corollary 21. Let A be the set of vertices a of H such that NH(a) ⊆ {v1, v2}. Since P (G) has no three pairwise true twins, H
has no three pairwise parallel edges. Moreover, as H is reduced, there are at most two edges joining vi to pendant vertices
in A, for each i = 1, 2. Let Ei be the set of edges joining vi to non-pendant vertices in A, for each i = 1, 2. Since H is a
submultigraph of a member of B15 or B ′

16 and H is reduced, |E1| + |E2| ≥ nP − 12. Without loss of generality, assume that
|E1| ≥ |E2|. Then, 1

2 (nP − 12) ≤ |E1| ≤
2
3nP because each non-pendant vertex of A is joined to v1 by at most two edges and

joined to v2 by at least one edge. So, since each edge of E2 is incident to at most two edges of E1 and P (G) = L(H),

mP ≥ |E2|(|E1| − 2) ≥ (nP − 12 − |E1|)(|E1| − 2) ≥
2
9
(nP − 3)(nP − 36).

This proves that if (∗) does not hold, then G is not balanced.
Suppose now that (∗) holds. We have seen that P (G) can be computed in O(m+ n) time, where n andm are the number

of vertices and edges of G. The complement of P (G) can obviously be computed in O(n2
P ) time. In addition, H = L−1(P (G))

can be computed from P (G) in linear time of P (G), which is again O(n2
P ). Notice that since mP ≤ m and we are assuming

that (∗) holds, O(n2
P ) is O(m). We conclude that H can be computed from G in O(m + n) time, as desired. �
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Let G be the complement of the line graph of a multigraph. We know that if P (G) has at most 40 vertices, we can decide
whether G is balanced in linear time. So, suppose that P (G) has more than 40 vertices and let nP and mP be the number
of vertices and edges of P (G). If (∗) does not hold, we know that G is not balanced. Otherwise, we can decide whether G is
balanced in linear time by first computing H = L−1(P (G)) and then checking the validity of condition (iii) of Corollary 21.
We conclude:

Corollary 23. Given a graph G that is the complement of the line graph of a multigraph, it can be decided whether G is balanced
in linear time.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable corrections and suggestions that improved
the presentation of this paper.

The first author was partially supported by ANPCyT PICT 2007-00518 and 2007-00533, and UBACyT Grants
20020100100980 and 20020090300094 (Argentina). The second author was partially supported by FONDECyT Grant
1110797 and the Millennium Science Institute ‘‘Complex Engineering Systems’’ (Chile), and ANPCyT PICT 2007-00518,
UBACyTGrant 20020100100980, and CONICET PIP 112-200901-00178 (Argentina). The third authorwas partially supported
by ANPCyT PICT 2007-00518, UBACyT Grant 20020100100980, and CONICET PIP 112-200901-00178 (Argentina).

References

[1] C. Berge, Färbung von Graphen, deren sämtliche beziehungsweise, deren ungerade Kreise starr sind (Zusammenfassung),Wiss. Z. Martin-Luther-Univ.
Halle-Wittenberg, Math.-Naturwiss. Reihe 10 (1961) 114–115.

[2] C. Berge, Balanced matrices, Math. Program. 2 (1972) 19–31.
[3] C. Berge, Minimax relations for the partial q-colorings of a graph, Discrete Math. 74 (1989) 3–14.
[4] C. Berge, V. Chvátal, Introduction, in: Topics on Perfect Graphs, in: North-Holland Mathematics Studies, vol. 88, Noth-Holland, 1984, pp. vii–xiv.
[5] F. Bonomo, G. Durán, M.C. Lin, J.L. Szwarcfiter, On balanced graphs, Math. Program. 105 (2006) 233–250.
[6] M. Chudnovsky, G.P. Cornuéjols, X. Liu, P.D. Seymour, K. Vušković, Recognizing Berge graphs, Combinatorica 25 (2005) 143–186.
[7] M. Chudnovsky, N. Robertson, P.D. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51–229.
[8] V. Chvátal, On certain polytopes associated with graphs, J. Combin. Theory Ser. B 18 (1975) 138–154.
[9] A. Cournier, M. Habib, A new linear algorithm for modular decomposition, in: S. Tison (Ed.), Proc. 19th International Colloquium on Trees in Algebra

and Programming, CAAP’94, Edinburgh, U.K., April 1994, in: Lect. Notes Comput. Sci., vol. 787, Springer, 1994, pp. 68–84.
[10] D.R. Fulkerson, A.J. Hoffman, R. Oppenheim, On balanced matrices, in: M. Balinski (Ed.), Pivoting and Extensions: In Honor of A.W. Tucker,

in: Mathematical Programming Study, vol. 1, North-Holland, Amsterdam, 1974, pp. 120–133.
[11] M.C. Golumbic, Trivially perfect graphs, Discrete Math. 24 (1978) 105–107.
[12] M. Habib, F. de Montgolfier, C. Paul, A simple linear-time modular decomposition algorithm, Technical Report RR-LIRMM-03007, LIRMM, Université

de Montpellier 2, Montepellier, France, 2003.
[13] P.L. Hammer, Difference graphs, Discrete Appl. Math. 28 (1990) 35–44.
[14] P. Heggernes, D. Kratsch, Linear-time certifying recognition algorithms and forbidden induced subgraphs, Nord. J. Comput. 14 (2007) 87–108.
[15] A. King, Claw-free graphs and two conjectures on omega, delta, and chi, Ph.D. Thesis, School of Computer Science,McGill University, Montreal, Canada,

2009.
[16] T. Kloks, D. Kratsch, H.Müller, Dominoes, in: E.W.Mayr, G. Schmidt, G. Tinhofer (Eds.), Proc. 20th InternationalWorkshop onGraph-Theoretic Concepts

in Computer Science, WG’94, Herrshing, Germany, June 1994, in: Lect. Notes Comput. Sci., vol. 903, Springer, 1995, pp. 106–120.
[17] D. Kőnig, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453–465.
[18] D. Kőnig, Graphok és Matrixok, Mat. Fiz. Lapok 38 (1931) 116–119.
[19] P.G.H. Lehot, An optimal algorithm to detect a line graph and output its root graph, J. ACM 21 (1974) 569–575.
[20] M.C. Lin, J.L. Szwarcfiter, Faster recognition of clique-Helly and hereditary clique-Helly graphs, Inform. Process. Lett. 3 (2007) 40–43.
[21] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253–267.
[22] V.V. Lozin, E-free bipartite graphs, Diskretn. Anal. Issled. Oper. Ser. 1 7 (2000) 49–66 (in Russian).
[23] R.M. McConnell, J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999) 189–241.
[24] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216–220.
[25] N.D. Roussopoulos, A max{m, n} algorithm for determining the graph H from its line graph G, Inform. Process. Lett. 2 (1973) 108–112.
[26] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146–160.
[27] L.E. Trotter, Line perfect graphs, Math. Program. 12 (1977) 255–259.
[28] S. Tsukiyama, M. Idle, H. Ariyoshi, Y. Shirakawa, A new algorithm for generating all the maximal independent sets, SIAM J. Comput. 6 (1977) 505–517.
[29] W.D. Wallis, G.H. Zhang, On maximal clique irreducible graphs, J. Combin. Math. Combin. Comput. 8 (1990) 187–193.
[30] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Algebr. Discrete Methods 3 (1982) 351–358.
[31] G. Zambelli, A polynomial recognition algorithm for balanced matrices, J. Combin. Theory Ser. B 95 (2005) 49–67.


	On minimal forbidden subgraph characterizations of balanced graphs
	Introduction
	Basic definitions

	Balancedness of complements of bipartite graphs
	Balancedness of line graphs of multigraphs
	Balancedness of complements of line graphs of multigraphs
	Families of  L -balanced multigraphs
	Characterizing balanced complements of line graphs
	Recognizing balanced complements of line graphs

	Acknowledgments
	References


