
HAL Id: hal-00411110
https://hal.science/hal-00411110

Submitted on 26 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boltzmann sampling of ordered structures
Olivier Roussel, Michèle Soria

To cite this version:
Olivier Roussel, Michèle Soria. Boltzmann sampling of ordered structures. LAGOS 2009 - 5th Latin-
American Algorithms, Graphs and Optimization Symposium, Nov 2009, Rio Grande do Sul, Brazil.
pp.305-310, �10.1016/j.endm.2009.11.050�. �hal-00411110�

https://hal.science/hal-00411110
https://hal.archives-ouvertes.fr

Boltzmann sampling of ordered structures

Olivier Roussel
∗

Michèle Soria
†

Abstract

Boltzmann models from statistical physics combined with methods

from analytic combinatorics give rise to efficient algorithms for the ran-

dom generation of combinatorials objects. This paper proposes an efficient

sampler which satisfies the Boltzmann model principle for ordered struc-

tures. This goal is achieved using a special operator, named box operator.

Under an abstract real-arithmetic computation model, our algorithm is of

linear complexity upon free generation ; and for many classical structures,

of linear complexity also provided a small tolerance is allowed on the size

of the object drawn. The resulting programs make it possible to generate

random objects of sizes up to 107 on a standard machine.

Introduction

In 2004, Duchon, Flajolet, Louchard and Schaeffer [4] proposed a new model,
called Boltzmann model, which leads to systematically construct samplers for
random generation of objects in combinatorial classes described by specification
systems. This framework has two main features: uniformity (two objects of
the same size will have equal chances of being drawn) and quasi-linear time
complexity.

Boltzmann samplers depend on a real parameter x and generate an object
a in a given combinatorial specifiable class A with a probability essentially
proportional to x|a| where |a| is the size of a. Hence they draw uniformely in
the class An of all the objects of size n in A. The size of the output is a random
variable, and parameter x can be efficiently tuned for a targetted mean value.
Moreover using rejection, one can obtain exact size or approximate size samplers.
Efficient generation of huge objects makes it possible to adress problem of testing
and benchmarking. This new approach differs from the “recursive method”
introduced by Nijenhuis and Wilf [8] bringing the possibility of relaxing the
constraint of an exact size for the output. This implies a significant gain in
complexity: no preprocessing phase is needed and expected time complexity is
linear in the size of the output.

Boltzmann samplers have been developped for a whole set of combinatorial
classes, labelled or unlabelled. Basically, they are classes defined from basic
elements by means of fundamental constructions such as cartesian products,
disjoint unions, sequences, sets and cycles, these operators being well known in
combinatorics.

∗
Mail: olivier.roussel@lip6.fr

†
Mail: michele.soria@lip6.fr

1

mailto:olivier.roussel@lip6.fr
mailto:michele.soria@lip6.fr

In this paper, we focus on a particular operator, introduced by Greene [7],
which allows to construct objects with internal order constraints. We extend
Boltzmann model to efficiently generate these objects. The main idea is to
slightly change the value of the x parameter along the execution of the algo-
rithm. This simple idea leads to Boltzmann samplers for objects such as al-
ternating permutations (which we could not handle before) and more generally
any variety of increasing tree [1]. This also leads to a new point of view for ran-
dom sampling of combinatiorial objects built upon Cycle, Set or Sequence, as
these constructions can be rephrased using ordered structures [7, 6]. Nonethe-
less, there is still some points to be adressed in order to make this method fully
effective: we have to evaluate the generating series of our objects in some arbi-
trary value, these generating functions may not exist in a closed form, and we
may have to solve differential equations.

As an example, we will focus on alternating permutations. All the proofs
are available in the appendix.

1 Boltzmann model for labelled structures

Definition A combinatorial class A is a denombrable (or finite) set, with a
size function size | · | : A 7→ N and such that there is only finitely many objects
of each size.

In the following, we will use these notations: if A is a class, then for any
object α ∈ A, |α| is its size. Furthermore An = {α ∈ A | |α| = n} and an =
Card(An).

There exists two kind of combinatorial objects: unlabelled and labelled ones.
Basically, a labelled object of size n could be seen as an unlabelled object of
the size, in which each atomic part is numbered by a number in {1, . . . , n}. In
other words, a labelled object of size n is simply an unlabelled one of the same
size paired with a permutation in Sn.

In all the following, we will only consider labelled objects.

Definition Let A be a (labelled) combinatorial class. We define the exponential

generating function defined by

A(z) =
∑

α∈A

1

|α|!
z|α| =

∑

n∈N

an
zn

n!

Now, in order to construct some objects, we need a set of rules. Precisely, we
will have some basics objects, called atoms, and a set on operators which allow
us to build big objects from littler ones. A few of these operators are presented
on figure 1 or more completely in [6].

Definition A Boltzmann sampler ΓC(x) for a (labelled) combinatorial class C
is a random generator such that the probability of drawing a given object γ ∈ C
of size n is exactly:

Px(γ) =
1

C(x)

x|γ|

|γ|!
=

1

C(x)

xn

n!

where C(x) is obviously the (exponential) generating function of C.

2

A Description A(z) ΓA(x)

ε Empty class 1 return ε

Z Atomic class z return ➀

B × C Cartesian product B(z)× C(z) return (ΓB(x),ΓC(x))

B + C Disjoint union B(z) + C(z)
if Bernouilli

(
B(x)

B(x)+C(x)

)

then return ΓB(x)
else return ΓC(x)

Seq(B) Sequence 1
1−B(z)

l := Geom(B(x))
return (ΓB(x), . . . ,ΓB(x))︸ ︷︷ ︸

l times

Set(B) Set eB(z)

l := Poisson(B(x))
return {ΓB(x), . . . ,ΓB(x)}︸ ︷︷ ︸

l times

Cyc(B) Cycle log
(

1
1−B(z)

) l := Logarithmic(B(x))
return 〈ΓB(x), . . . ,ΓB(x)〉︸ ︷︷ ︸

l times

Figure 1: Some classical constructors, their generating function and sampler

Let’s notice that this sampler depends on a (real) parameter x, which can
be tuned to aim a given expected size for the output of the algorithm. To be
precise, if we denote by N the size of the output, one can solve the équation

Ex(N) = xC′(x)
C(x) in order to fix the value of x.

We could also compute then Vx(N) = x2 C′′(x)
C(x) + xC′(x)

C(x)

(
1− xC′(x)

C(x)

)
.

Boltzmann model is a very useful tool to efficiently generate combinatorial
structures [4, 5]. In particular, it is possible to automatically build a sampler
according to the specification of a combinatorial class, following recursively the
rules described in figure 1 or in [4].

2 Extension to ordered structures

We introduce the central object of this paper: the box operator, for which we
extend the Bolzmann formalism.

The main idea of this paper consist of changing the value of the x parameter
of the sampler ΓA during the recursive calls. Indeed, one can notice that, in the
classical Boltzmann sampler (see figure 1), this value is fixed at the beginning
and stays constant during the execution of the algorithm. Here, we will change
this value during the execution according to a given probability density.

Definition The box product of two labelled classes B and C, noted by B� × C,
is the subset of B × C such that the least label is in the left composant of the
pair, on the B part.

Furthermore, we need to ensure that B0 = 0, i.e. the class B has no empty
objects.

We have to highlight the fact that this operator is a binary one, and not an
unary one! Indeed, the real operation is not ·�, but rather ·� × ·.

3

Proposition 2.1. The generating function of A = B� × C is

A(z) =

∫ z

0

B′(t)C(t)dt

2.1 Boltzmann sampler for the box operator

As said before, we want to change the value of the parameter x of the sampler
according to a given probability law.

Proposition 2.2. If 0 < x < ρA, then δA
x (t) = xB′(tx)C(tx)

A(x) is a probability

density over [0, 1].

Now, we can almost explicitely present our algorithm for generating A =
B� × C following Boltzmann’s ideas. We will need just one last notion: the
derivative class.

Definition The derivative class of a given combinatorial class B, written B′, is
the set of objects of B in which an atom has been substituted by a hole, by a
reservation. In other words, one atom (of size 1 by definition) has been replaced
by a distingued atom, written ⊙, whose size is 0.

We will explain later how to compute this differentiated class.

Algorithm 1 Boltzmann sampler ΓA for A = B� × C

Input: One real number x
Output: An object of A
Require: 0 < x < ρA

1: Draw U in [0, 1] according to the probability density δA
x

2: Randomly draw an object b′ from the class B′ using ΓB′(Ux)
3: Randomly draw an object c from the class C using ΓC(Ux)
4: Let a = (b′, c) correctly labelled
5: return The object a, with the reservation ⊙ replaced by an atom Z

One should notice that the shape of this algorithm really looks like the one
for the simple cartesian product B × C. Particularly, both of the two recursive
calls for B′ and C are independant and both with the same modified value for
the parameter.

Theorem 2.3. The algorithm described above for the combinatorial class A =
B� × C is a correct Boltzmann sampler.

The proof just consists in checking that we can get all the desired objects,
only these ones, and each one with the correct probability.

Nonetheless, we still have several points to adress before being able to really
implement this algorithm: we have to define the differentiated class B′, and
explain how to draw according to the probability density δx.

2.2 Theoretical complexity

The free generation of objects (with no constraint on the size) works according
to the following algorihm:

4

1. First, draw a random number according to δx

2. Then generate two sub-objects

3. Eventually re-label the final object

At this point, we first investigate the complexity of this algorithm related to
the size of the generated object. Let us assume that the first step is in O(1). We
will see later that this assumption is indeed correct, even if the hidden constant
can be quite big. Moreover, we will suppose that the third step is also in O(1).

Then, according to the algorithm, to get an object of size n, we have to get
two sub-objects of sizes k and n − k. From this, we check that the complexity
of our algorithm is O(n): it’s the same complexity as for the previously known
Boltzmann samplers.

In a majority of real-world usage of random sampling, we just care about the
shape, the form of the squeleton of the huge objects we get. The exact position
of the label is not as important as the structure of the objects we get.

In addition to this complexity of the free generator, one can estimate the
complexity for approximate-size generator. First, let us remind that approximate-
size generation means that we want to get an object of size in [(1−ε)n, (1+ε)n]

In the original paper [4], it is proved that, under some conditions on the
analytical nature of the generating function, we only need a constant number of
trials for approximate-size sampling. Here, these conditions are often true, and
the generation stays linear.

Proposition 2.4. For any combinatorial structure whose generating function

∼ C(1−x)−α logβ
(

1
1−x

)
, using a simple rejection method, the number of trials

is constant for a given precision.

As a majority of ”interesting” classes ave thus property, it means that we
can quite often ensure a linear complexity even for approximate-size generation.

For example, in our particular case of alternating permutations, if ε = 10%,
then the average number of trials is less than 7.

2.3 Example: Alternating permutations

Alternating permutations (also known as increasing proper binary trees) are
defined by the specification T = Z + Z� × (T × T). From this one we can get
T (z) = z +

∫ z

0
dz
dz (u)T 2(u)du, and therefore T (z) = tan(z) with ρT = π

2 . To

lighten, let us note A = Z� × T 2 and A(x) = tan(x)− x.
From there, one can write:

δA
x (t) =

xdz
dz (tx)T 2(tx)

A(x)
= x

tan2(tx)

tan(x)− x

Hence, a Boltzmann sampler ΓT (x), for 0 6 x < ρT = π
2 , is the following:

5

Algorithm 2 Boltzmann sampler for T

Input: x ∈ R

Output: An object of T , meaning an alternating permutation
Require: 0 6 x 6

π
2

1: Draw uniformly U over [0, 1]
2: if U 6

x
T (x) = x

tan(x) then

3: T ← Leaf ➀

4: else

5: Draw α over [0, 1] according to δA
x

6: T ← Node⊙(ΓT (αx),ΓT (αx))
7: end if

8: return T with right labels

One can compute the expected size of the output:

E
T
x (N) = x

T ′(x)

T (x)
= x

1 + tan2(x)

tan(x)
=

2x

sin(2x)
∼

π/2

1

1− x
π/2

More precisely, one can compute the distribution of the sizes of the output.
We have P

T
x (N = 2n) = 0 and a simple computation leads to

P
T
x (N = 2n + 1) =

T2n+1x
2n+1

T (x)(2n + 1)!
∼
∞

(
4

π tanx

)(
x

π/2

)2n+1

This probability asymptotically follows a geometric distribution of parame-
ter x

π/2 . This behaviour really differs with the proper binary tree case.

3 Algorithmic issues

In order to be able to implement on a computer the previous algorithm, we first
have to adress a few practical points.

The B′ combinatorial class

This class B′ intuitively corresponds with the objects of the B class, in which
a reservation replaced an atom. One can check that the generating function of

B′ is (B′) (z) = dB(z)
dz (z). Proper definition and set of properties are presented

in [2].
To define it precisely, we have to introduce a new special atom, written ⊙

and such that |⊙ | = 0. But be aware that ⊙ 6= ε ! This atom, simply speaking,
is juste a reservation for a future atom Z. It’s just an empty place, but an
existing and reserved one.

Then, one can recursively define or class B′ by:

6

ε′ = ∅ ⊙′ = ∅ Z ′ = ⊙

(A+ B)
′

= A′ + B′

(A× B)
′

= A′ × B +A× B′

(Seq(A))
′

= Seq(A)×A′ × Seq(A)

(Set(A))
′

= A′ × Set(A)

(Cyc(A))
′

= A′ × Seq(A)

(A� × B)′ = A′ × B

We can check that we can always compute a formula without any differen-
tiated class isomorph to our differentiated class. Hence, one can automaticaly
compute a Boltzmann sampler for this isomorph class, and so for the differen-
tiated one. So, we are able to draw in a linear time an object of this class,
following Boltzmann’s model.

This being said, we have to notice that the two classes B and B′ are quite
close. This observation beeing done, it is really frustrating to have to unroll this
whole rewriting system to be able to draw objects in the differentiated class. It
might be possible to find a more efficient and satisfying way to draw into such
classes.

Drawing according to δx

The second issue is that we have to be able to draw a (real) variabel according
to an (almost arbitrary) distribution δx over [0, 1]

One can easily verify that, if x < ρ, then δx is a C∞ function from [0, 1] to

R
+. More precisely, we know that ∀k ∈ N,∀t ∈ [0, 1], ∂kδx

∂tk (t) > 0. Particularly,
the probability density is non-decreasing on his definition domain, and ∀t ∈
[0, 1], lim

x→0
δx(t) = 1 and lim

x→ρ
δx(t) = Dirac(t− ρ).

To draw a random variable X according to δx, we will adapt a rejection
method to our particular distribution. We define a subdivision of [0, 1] into
consecutive intervals ([α0, α1], . . . , [αi−1, αi], . . . , [αN−1, αN]) with 0 = α0 <
α1 < · · · < αi < · · · < αN = 1. On each [αi−1, αi], let hi > δx be a continuous
function. We choose the hi simple enough to be able to compute and know all
the values Ai = (αi − αi−1)

∫ αi

αi−1

hi(u)du.

These conditions on the hi ensure that we will be able to draw a random
variable according to these functions, and to correct the fault induced by this
approximation of δx.

In the following, let Area(h) =
∑N

i=1 Ai be the total area under all the hi.
We use then the following algorithm:

7

Algorithm 3 Draw a variable x according to a probability density δx

Input: δx : [0, 1]→ R
+ ; N ∈ N ; αi ∈ [0, 1] ; and hi : [αi−1, αi]→ R

+

Output: X ∈ [0, 1]
Require: δx is a probability density over [0, 1] ; α0 = 0 and αN = 1 ; and
∀i ∈ {1, . . . , N}, hi > δx

Ensure: X ∼ δx

1: repeat

2: Draw i ∈ {1, . . . , N} such that P(i = k) = Ak

Area(h)

3: Draw a random variable X according to the density hi

Ai
sur [αi−1, αi]

4: Draw a random variable Y according to the uniform law over [0, 1]
5: until Y hi(X) 6 δx(X)
6: return X

Theorem 3.1. This algorithm returns a random variable X according to the

distribution δx ; and the expected number of rounds to finish is Area(h).

0 1

t

δA
x (t)

Figure 2: Shape of a typical δx distribution

We can compute that, if p = 1
Area(h) , then P(stopk) = (1 − p)k−1p and

E({Number of trials}) =

∞∑

k=0

kP(stopk) =
1

p
= Area(h).

We can see here that the hi functions have to be the closest to the density
δx, in order to minimize the average number of trials to draw the variable X.

We tried two kind of approximations for the hi functions:

• piecewise constant functions:

∀i ∈ {1, . . . , N},∀t ∈ [αi−1, αi], hi(t) = δx(αi)

• piecewise linear functions

δx being non-decrasing, we are sure that in both case:

∀i ∈ {1, . . . , N},∀t ∈ [αi−1, αi], hi(t) > δx(t)

In practice, we can see that for our problem, piecewise constant functions ap-
pear to offer the better compromise between pre-computing time and computing
time. As our distributions are ”more and more increasing” over [0, 1] — i.e. all
their derivatives are non-negatives — we chose to have a geometric subdivision
of the interval: αi = 1−2i and αN = 1 (see figure 2). Experimentally, this kind
of subdivision works quite well.

8

4 Conclusion

The random generation of ordered structures is in general a very difficult prob-
lem. In this short paper, we have presented a way to efficiently generate some of
these structures, using Boltzmann model. As said before, it is possible with our
algorithm for the box operator to generate objects of size up to 107 in reasonable
time (at most about 100 seconds).

Moreover, we keep all the good properties induced by Boltzmann samplers:
genericity of the algorithms, uniformity over objects of the same size, linear
complexity in the size of the output as far as only the shape is concerned. The
basic idea behind this extension is to slightly change the parameter during the
recursive calls.

We think this idea can be extended to generate a lot of other structures and
operators. For example, the shuffle operator, the Hadamard product, or almost
any specification which can be described by a system of differential equations
on the combinatorial classes.

Figure 3: Increasing proper binary tree: size 2033, drawn in less than 1ms

References

[1] F. Bergeron, P. Flajolet, and B. Salvy. Varieties of increasing trees. Springer,
pages 24–48, 1992.

[2] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like

structures. Cambridge University Press, 1998.

[3] L. Devroye. Non-uniform random variate generation. Springer-Verlag New
York, 1986.

[4] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann sam-
plers for the random generation of combinatorial structures. Combinatorics,

Probability and Computing, 13(4-5):577–625, 2004.

[5] P. Flajolet, E. Fusy, and C. Pivoteau. Boltzmann sampling of unlabelled
structures. Proceedings of ANALCO, 7.

[6] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University
Press, 2008.

[7] D.H. Greene. Labelled formal languages and their uses, 1983.

[8] A. Nijenhuis and H.S. Wilf. Combinatorial algorithms. New York, 1978.

9

Appendix

4.1 Proofs

Proposition The generating function of A = B� × C is

A(z) =

∫ z

0

B′(t)C(t)dt

Proof. Following the definition of the box product, we have

An =

n∑

k=0

(
n− 1

k − 1

)
BkCn−k

Indeed, we have to distribute only n−1 labels, the least being fixed in B. Among
those, we have to choose only k − 1 for the first composant, and n − k for the
second one. We can then rewrite this equation, using properties of binomial
coefficients, and the fact that B0 = 0:

An =
1

n

n∑

k=0

(
n

k

)
(kBk)Cn−k

which is a Cauchy product. This last remark leads to the claimed formula.

Remark Funnily, using this framework, the well-known integration by parts
formula ∫ z

0

B′(t)C(t)dt +

∫ z

0

B(t)C ′(t)dt = B(z)C(z)

can be proven and read as: ”In a pair of labelled object, the least labeal is either
on the first composant, either on the second one”, which is absolutely trivial.

Proposition If 0 < x < ρA, then δA
x (t) = xB′(tx)C(tx)

A(x) is a probability density

over [0, 1].

Proof. By definition of δA
x , we can write that ∀t ∈ [0, 1], 0 6 δA

x (t), and:

∫ 1

0

δA
x (t)dt =

∫ 1

0

xB′(tx)C(tx)∫ x

0
B′(u)C(u)du

dt

= x

∫ x

0
B′(z)C(z)dz

x∫ x

0
B′(u)C(u)du

= 1

Therefore, δA
x define a correct probability density over [0, 1].

Theorem The algorithm described above for the combinatorial class A = B�×
C is a correct Boltzmann sampler.

Proof. We have to check that we can get each object in A with this algorithm,
and only those ones ; and mainly that we get each object with the right proba-
bility.

10

The first point is easy to check, as the algorithm follows by construction the
exact definition of what is a box product.

About the second point, we have to check that we get any object α ∈ A with

probability P
A
x (α) = x|α|

A(x)
1

|α|! .

Indeed, we can remind that:

C(x) =
∑

γ∈C

x|γ|

|γ|!
and B(x) =

∑

β∈B

x|β|

|β|!

From this equation:

B′(x) =
∑

β∈B

x|β|−1

(|β| − 1)!

A(x) =

∫ x

0

B′(u)C(u)du

=

∫ x

0



∑

β∈B

u|β|−1

(|β| − 1)!





∑

γ∈C

u|γ|

|γ|!


du

=

∫ x

0

∑

(β,γ)∈B×C

u|β|+|γ|−1

(|β| − 1)!|γ|!
du

=

∫ x

0

∑

α=(eβ,eγ)∈A

(|β̃| − 1)!|γ̃|!

(|α| − 1)!

u|α|−1

(|β̃| − 1)!|γ̃|!
du

=

∫ x

0

∑

α∈A

u|α|−1

(|α| − 1)!
du

A(x) =
∑

α∈A

x|α|

|α|!

Then we can write, assuming having Boltzmann samplers for B′ and C, for

a given pair (β′, γ) ∈ B′ × C, the probability Px((β′, γ)) = x|β′|

B′(x)
1

|β′|!
x|γ|

C(x)
1

|γ|! .

Hence, for a given α = (β̃, γ̃) ∈ A, we can write, for the algorithme described
earlier for A that:

P
A
x (α) =

∫ 1

0

(|β̃| − 1)!|γ̃|!

(|α| − 1)!
Ptx ((β′, γ)) δA

x (t)dt

=

∫ 1

0

(|β| − 1)!|γ|!

(|α| − 1)!
×

(tx)|β
′|

B′(tx)

1

|β′|!

(tx)|γ|

C(tx)

1

|γ|!
×

xB′(tx)C(tx)∫ x

0
B′(u)C(u)du

dt

=
x|α|

A(x)

1

(|α| − 1)!

∫ 1

0

t(|α|−1)dt

=
x|α|

A(x)

1

|α|!

Eventually, we get a correct Boltzmann sampler for this combinatorial class.

Theorem The algorithm 3 returns a random variable X according to the dis-
tribution δx ; and the expected number of rounds to finish is Area(h).

11

Proof. It is quite simple to see that this algorithm implements the rejection
method for the distribution δx under the curve defined by the hi, and since
hi > δx on each inverval, the algorithm is correct.

We will now find the expected number of rounds before returning a value.
Let us use the events {The algorithm ends after exactly k rounds} written

stopk, and {We chose the ith interval} written Ai. First, we will have to com-
pute

P(stop1) =

N∑

i=1

P(stop1|Ai)P(Ai)

But P(Ai) = Ai

Area(h) according to the algorithm. And as to the conditional

probability, we get:

P(stop1|Ai) = P(Y hi(X) 6 δx(X)|Ai)

=

∫ αi

αi−1

P(Y hi(X) 6 δx(X)|X ∈ [µ, µ + dµ],Ai)P(X ∈ [µ, µ + dµ]|Ai)

=

∫ αi

αi−1

P(Y hi(X) 6 δx(X)|X ∈ [µ, µ + dµ],Ai)
hi(µ)

Ai
dµ

=

∫ αi

αi−1

δx(µ)

hi(µ)

hi(µ)

Ai
dµ

=
1

Ai

∫ αi

αi−1

δx(µ)dµ

So

P(stop1) =

N∑

i=1

(
1

Ai

∫ αi

αi−1

δx(µ)dµ

)
×

(
Ai

Area(h)

)

=
1

Area(h)

N∑

i=1

∫ αi

αi−1

δx(µ)dµ

=
1

Area(h)

∫ 1

0

δx(µ)dµ

=
1

Area(h)
= p

From this point, P(stopk) = (1 − p)k−1p and E({Number of rounds}) =
∞∑

k=0

kP(stopk) =
1

p
= Area(h).

4.2 Alternating permutations: experimental results

On a 1Ghz notebook, with 2Go of RAM, and a naive implementation in OCaml,
we can reach sizes about 107 in reasonable time (about 10 seconds for free
generation: see figure 4).

Moreover, on can compute, for this specific class, the number of trials for
approximate size generation. We can show that, for a given precision ε, only
e
4

1
sinh ε trials are required: this number does not depend on ε!

12

• If ε = 20%, only 3.38 trials are required

• If ε = 10%, only 6.78 trials are required

• If ε = 5%, only 13.59 trials are required

• If ε = 1%, only 67.96 trials are required

Size

Time, in seconds

102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

102

Red: Free generation; Blue: Approximate size generation with ε = 5%

Figure 4: Time for generating alternating permutation

Using this approach, we can use Boltzmann model advantages, on so draw
large object in very few time. For example, the example displayed as figure 3
can be computed in less than one millisecond on a standard computer.

13

	Boltzmann model for labelled structures
	Extension to ordered structures
	Boltzmann sampler for the box operator
	Theoretical complexity
	Example: Alternating permutations

	Algorithmic issues
	Conclusion
	Proofs
	Alternating permutations: experimental results

