
HAL Id: hal-00609746
https://hal.science/hal-00609746

Submitted on 19 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Study of Semidefinite Bounds for the
k-cluster Problem

Jérôme Malick, Frédéric Roupin

To cite this version:
Jérôme Malick, Frédéric Roupin. Numerical Study of Semidefinite Bounds for the k-cluster Problem.
Electronic Notes in Discrete Mathematics, 2010, 36, pp.399-406. �10.1016/j.endm.2010.05.051�. �hal-
00609746�

https://hal.science/hal-00609746
https://hal.archives-ouvertes.fr

Numerical Study of Semidefinite Bounds
for the k-cluster Problem

Jérôme Malick 1,2

CNRS, Lab. Jean Kuntzmann, INRIA Rhône-Alpes

655 avenue de l’Europe, Montbonnot, 38334 St Ismier Cedex, France

Frédéric Roupin 3

CNAM, Lab. CEDRIC

292, rue St-Martin 75141 Paris Cedex, France

Abstract

This paper deals with semidefinite bounds for the k-cluster problem, a classical NP-
hard problem in combinatorial optimization. We present numerical experiments
to compare the standard semidefinite bound with the new semidefinite bound of
[MR09], regarding the trade-off between tightness and computing time. We show
that the formulation of the semidefinite bounds has an impact on the efficiency of
the numerical solvers, and that the choice of the solver depends on what we expect
to get: good accuracy, cheap computational time, or a balance of both.

Keywords: combinatorial optimization, semidefinite programming, k-cluster,
Lagrangian duality and relaxation

1 This work has been supported by CNRS through “GdR Recherche Opérationnelle” and
by Grenoble University through “Pôle Math-STIC”. We thank Quentin Monnet and Lise-
Marie Veillon for their valuable help in developing parts of the solver.
2 Email: jerome.malick@inria.fr
3 Email: frederic.roupin@cnam.fr

1 Introduction, motivations

Many studies have shown the power, as well as the limitations, of semidefi-
nite programming (SDP) in combinatorial optimization. Regarding bounding
and exact resolution, the current statement of fact is, roughly speaking, that
semidefinite programming bounds are of very good accuracy, but demand
much time to be computed. This drawback prevents in general their use in
exact resolution procedures, as branch-and-bound algorithms.

The particular problem “k-cluster” (see forthcoming (1)) is well-suited for
a resolution using SDP, thought. Indeed this classical combinatorial optimiza-
tion problem does not admit a polynomial time approximation scheme, and
it is known to be NP-hard even in very special cases (see e.g. [LMZ08] for re-
cent results and references). The point is that linear bounds for this problem
are inaccurate so that they can hardly be used directly in an exact resolution
procedure. So in practice, one of the most efficient general exact resolution
methods for k-cluster problems is based on convex quadratic programming
combining an SDP solver with CPLEX [BEP09].

The recent work [MR09] presents a SDP-like bound for k-cluster which
keeps nice features of the SDP bounds, while gaining in computation time.
We sketch the approach in section 4. The driving idea is to trade computing
time for a (small) deterioration of the quality of the bound. The new SDP-like
bound reaches indeed a good balance between tightness and speed of computa-
tion. A basic branch-and-bound algorithm using this bound have been shown
to have very good performances and to be competitive with [BEP09].

The goal of this paper is to give a numerical comparison of these two
bounds (respectively the standard and the new SDP bound), in terms of
tightness, computation time, and balance between both. The computing time
depends obviously on the solvers, and in turn the performance of the solvers
depends on the formulation of the bounds. So we consider two SDP solvers
known to be very efficient, and two equivalent formulations of the SDP bound
(each of both turns out to advantage one solver). The conclusion of this
numerical work is that the new SDP bound has an advantageous trade-off
between accuracy and speed of computation in view of embedding it inside of
a branch-and-bound.

2 k-cluster problem

We briefly introduce the k-cluster problem, the combinatorial optimization
problem we consider in this work. We refer to the recent [LMZ08] for complete

references, and to [JS05] for discussions on the SDP approach for this problem.

Consider an undirected, weighted graph G = (V, E) of n vertices v1, . . . , vn,
and a non-negative weight wij on each edge (vi, vj). For a given integer k
in {1, . . . , n}, the k-cluster problem consists in determining a subset S of
k vertices such that the total edge weight of the subgraph induced by S is
maximized. In unweighted graphs, the problem is also called the densest
subgraph problem. Denoting W = (wij)ij the weight-matrix of the graph G,
the problem can be written as a {0, 1}-quadratic optimization problem with
one linear constraint

max

{

1

2
x⊤Wx :

n
∑

i=1

xi = k, x ∈ {0, 1}n

}

. (1)

As mentioned in the introduction, this problem is well-suited for a SDP ap-
proach. We study here the quality of different SDP relaxations of this problem.

3 Lagrangian and semidefinite relaxations

Lagrangian duality is a mechanical way to create bounds. The choice of the
constraints to be dualized gives different bounds. The dualization of all the
constraints for a {0, 1}-quadratic problem leads naturally to a SDP problem
(see e.g. the pedagogical [LO99]). The best bound θB obtained by duality for
{0, 1}-quadratic optimization is the one given by the dualizing only the 0, 1-
constraints. This bound however does not lead to a SDP problem directly.
The usual technique is to add redundant constraints to the problem until the
total dualization (corresponding to a SDP problem) tights the best bound θB.

General results [FR07] applied to the {0, 1}-quadratic problem (1) give
that both the following constraint sets to be dualized lead to θB:

• all the “product” constraints xj(
∑n

i=1 xi − k) = 0 for all j in {1, . . . , n},

• just the “squared” constraint (
∑n

i=1 xi − k)2 = 0.

The next theorem formalizes this result while operating at the same time
several transformations: namely the change of variable {0, 1} → {−1, 1}, the
homogenization of linear terms in R

n and the lifting in n+1 symmetric matrix
space Sn+1. The notation we need is the following. Define the n+4 symmetric
(n + 1) × (n + 1)-matrices Q, QS, and Qj (for j ∈ {0, . . . , n}) by

Q :=
1

4





e⊤We e⊤W

We W



 , Q0 :=





0 e⊤

e 0



 , Qj :=





0 ẽ⊤j

ẽj Cj





and QS =





0 0

0 ee⊤



 + (n − 2k)Q0 where e is the vector of all ones, ẽj =

e + (n− 2k)ej is the vector of R
n made up from e and ej the j + 1-th element

of the canonical basis of R
n, and the jth line/column of Cj equals e + ej (all

other elements are 0). Moreover Ei is the (n + 1) × (n + 1) matrix with zero
entries everywhere but in position (i, i) where there is a one. Recall that the
inner-product in matrix space Sn+1 is 〈X, Y 〉 =

∑n+1
i,j=1 XijYij = trace(XY),

then set

AP (X) :=
(

〈Q0, X〉, . . . , 〈Qn, X〉, 〈E0, X〉, . . . , 〈En, X〉
)

∈ R
2n+2

AS(X) :=
(

〈QS, X〉, 〈E0, X〉, . . . , 〈En, X〉
)

∈ R
n+2

bP := (4k − 2n, . . . , 4k − 2n, 1, . . . , 1) ∈ R
2n+2

bS := ((2k − n)2, 1, . . . , 1) ∈ R
n+2

Theorem 3.1 (Equivalent SDP relaxations of k-cluster) The two SDP

problems

max {〈Q, X〉 : AP (X) = bP , X � 0} (2)

max {〈Q, X〉 : AS(X) = bS, X � 0} (3)

have the same optimal value, which corresponds to θB, the relaxation of the

{0, 1} constraint in (1). We call it the SDP bound for k-cluster. Adding any

redundant quadratic equalities to (1) cannot enhance this bound.

Proof. The equivalence of the SDP relaxation of (1) with the product con-
straints on one hand, and with the squared constraint on the other hand comes
from [FR07, Prop. 5], as well as the optimality among addition of any redun-
dant equality constraints. The fact that the transformations lead to those
SDP is detailed in [MR09] for the case with product constraints. The case
with the squared constraint follow the same way. ✷

To compute the SDP bound for k-cluster (that is, to solve (2) or (3)), we
use solvers that are known to be among the most efficient and reliable:

• CSDP [Bor99], which implements an interior-point method,

• SB, based on the spectral method [HR00], which is much used in the context
of combinatorial optimization.

The efficiency of these solvers depends on the formulation of the SDP bound.
In Section 5, we will take the best choices to have a fair comparison with the
alternative bound and solver, that we present in the next section.

4 Alternative semidefinite bounds

The recent work [MR09] introduces the following SDP-like bounds for the
k-cluster problem. For a given α > 0, we define ΘP (α) by

ΘP (α) =
(α

2
n2+

1

2α
‖Q‖2

)

−
α

2
min

{

‖X − Q/α‖2 : AP (X) = bP , X � 0
}

. (4)

We similarly define ΘS(α) with AS and bS; the properties we discuss below
hold for both ΘP (α) and ΘS(α). Regarding our objectives (explained in the
introduction), ΘP (α) has interesting features. [MR09] shows that ΘP (α) is a
bound for (1) which is weaker that the SDP bound, but can still get arbitrarily
close to SDP:

ΘP (α) ≥ val (2) and ΘP (α) −→α→0 val (2).

Moreover, it turns out that solving (4) is easier to solve than (2) (for α not too
small). The quadratic SDP problem inside of (4) is a particular semidefinite
least-squares problem; so we call ΘP (α) and ΘS(α) the SDLS bounds. These
problems have nice geometrical properties and admit an efficient resolution,
even for large-scaled problems; we have implemented an solver adapted and
tuned for solving (4) using the approach presented in [Mal04]. Of course,
computing ΘP (α) gets harder when α → 0. In practice, we fix the value
α = 10−4 for which our solver has no problem while the obtained bound ΘP (α)
is almost as accurate as the SDP bound (2). There is still a difference which
is notified in the tables of results in relative value in the column “gap(%)”.

5 Numerical results

The numerical experiments aim at comparing:

• the usual SDP bound for k-cluster (2) or (3) computed by CSDP and SB,

• the new bound ΘP (α) or ΘS(α) computed by our solver, called SDLS.

We consider randomly generated instances of k-cluster (test problems already
used for similar testing [BEP09]). We use a Pentium IV 2.2 GHz with 1 Go
of RAM under Linux.

In Table 1, we compare the solvers on each of the two formulations: the
one with the product constraints and the one with the squared constraint. For
CSDP, the computing time depends on the number of constraints, so (3) is
solved about ten times faster than (2) when n = 100. On the other hand, (2)
generally provides the best results for SB (except for large values of k or in

dense graphs), as for ΘP (α). Hence, the best formulation of the semidefinite
bounds is not always the one with fewer constraints.

In Table 2, we keep only the best formulation-software combination. Since
the stopping criteria are different for the solvers, we indicate the time required
by SB and CSDP to achieve the SDLS bound. The values of the stopping cri-
teria are: 10−7 for SDLS, 10−4 for SB, and 10−5 for CSDP. Table 2 shows that
our solver is fast. Moreover, the decrease of the bound at each iteration during
the run is really strong. We illustrate this point in figure 1. In particular, our
solver has a sharp decrease at the beginning. This is important for the use
inside of a branch-and-bound. Note that even if the total computing time of
SB is generally greater than the one of CSDP, the strong tailing-off effect of
this solver can be an advantage (the two curves cross each other).

Our solver to compute the bound (4) combines several advantages of the
SDP solvers SB and CSDP: it provides SDP-quality bounds, has a strong
tailing-off effect, and it is significantly faster (even when the solving process is
interrupted). These nice features explain why [MR09] used it successfully in a
branch-and-bound to solve the k-cluster problem exactly. It is also interesting
to note that the behavior of the solvers depends a lot on the formulation of
the bound, and that dual solvers (like SB and SDLS) are more efficient in our
case when there are more dual variables.

 490

 500

 510

 520

 530

 540

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
ou

nd

CPU time (s)

"SDLS"

 490

 500

 510

 520

 530

 540

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
ou

nd

CPU time (s)

"SDLS"

 490

 500

 510

 520

 530

 540

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
ou

nd

CPU time (s)

"SB"

 490

 500

 510

 520

 530

 540

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
ou

nd

CPU time (s)

"SB"

 490

 500

 510

 520

 530

 540

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
ou

nd

CPU time (s)

"CSDP"

 490

 500

 510

 520

 530

 540

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
ou

nd

CPU time (s)

"CSDP"

Fig. 1. Semidefinite bounds in dependence of time. n = 80, d = 0.5, and k = 40

Table 1
For each n, 45 problems are tested. The averaged relative difference between the

computed bounds SDLS and SDP is gap(%).

Problem SDLS ΘP (α) (2) with SB (2) with CSDP

n time (s) gap(%) time (s) time (s)

80 0.15” 0.07% 1.09” 1.41”

100 0.19” 0.08% 2.90” 6.70”

300 2.59” 0.05% 25.84” 186.95”

SDLS ΘS(α) (3) with SB (3) with CSDP

n time (s) gap(%) time (s) time (s)

80 0,66” 1,46% 3.15” 0.34”

100 0,92” 1,66% 3.80” 0.58”

300 10,63” 2,11% 39.64” 10.12”

Table 2
Five problems are tested for each (n, k, d). d is the graph density in percent.

Problem SDLS SDP with SB SDP with CSDP
n k d(%) time gap(%) time time (s) to time time (s) to

(s) (s) achieve SDLS (s) achieve SDLS
80 20 25 0.18” 0.21% 0.55” 0.23” 0.29” 0.19”

50 0.18” 0.14% 0.87” 0.41” 0.45” 0.35”
75 0.16” 0.12% 1.37” 0.61” 0.31” 0.24”

40 25 0.17” 0.06% 0.54” 0.37” 0.35” 0.28”
50 0.10” 0.04% 0.98” 0.80” 0.33” 0.28”
75 0.07” 0.03% 1.39” 0.81” 0.40” 0.32”

60 25 0.15” 0.02% 1.17” 0.85” 0.35” 0.29”
50 0.14” 0.01% 1.34” 1.30” 0.35” 0.29”
75 0.15” 0.01% 1.64” 1.41” 0.33” 0.29”

mean 0.15” 0.07% 1.09” 0.76” 0.34” 0.28”

100 25 25 0.19” 0.23% 1.27” 0.51” 0.64” 0.50”
50 0.23” 0.15% 2.40” 0.86” 0.53” 0.42”
75 0.29” 0.13% 2.54” 1.14” 0.56” 0.45”

50 25 0.23” 0.07% 1.15” 0.67” 0.52” 0.43”
50 0.12” 0.05% 2.77” 1.01” 0.57” 0.47”
75 0.12” 0.05% 2.02” 1.10” 0.59” 0.48”

75 25 0.17” 0.02% 3.12” 1.75” 0.57” 0.47”
50 0.17” 0.01% 1.86” 1.37” 0.65” 0.55”
75 0.16” 0.01% 8.99” 6.25” 0.54” 0.47”

mean 0.19” 0.08% 2.52” 1.63” 0.58” 0.47”

300 75 25 3.51” 0.15% 17.27” 7.20” 15.26” 12.40”
50 3.56” 0.09% 26.96” 8.21” 7.04” 5.38”
75 3.79” 0.08% 20.24” 9.12” 6.89” 5.60”

150 25 1.66” 0.05% 11,45” 8.33” 16.25” 12.64”
50 0.92” 0.02% 13.78” 11.93” 12.04” 9.92”
75 0.74” 0.04% 8.21” 5.95” 7.30” 6.01”

225 25 2.68” 0.02% 10.99” 10.05” 8.43” 6.74”
50 3.01” 0.01% 52.92” 12.85” 7.84” 6.53”
75 3.45” 0.01% 38.14” 25.66” 10.06” 7.19”

mean 2.59” 0.05% 22.22” 9.67” 10.12” 8.05”

References

[BEP09] A. Billionnet, S. Elloumi, and M.-C. Plateau. Improving the
performance of standard solvers for quadratic 0-1 programs by a tight
convex reformulation: The qcr method. Discrete Applied Mathematics,
157(6):1185–1197, 2009.

[Bor99] B. Borchers. Csdp, a c library for semidefinite programming. Optimization

Methods and Software, 11(1):613–623, 1999.

[FR07] A. Faye and F. Roupin. Partial lagrangian for general quadratic
programming. 4’OR, A Quarterly Journal of Operations Research,
5(1):75–88, 2007.

[HR00] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite
programming. SIAM Journal on Optimization, 10(3):673–696, 2000.

[JS05] G. Jäger and A. Srivastav. Improved approximation algorithms for
maximum graph partitioning problems. Journal of Combinatorial

Optimization, 10(2):133–167, 2005.

[LMZ08] M. Liazi, I. Milis, and V. Zissimopoulos. A constant approximation
algorithm for the densest k-subgraph problem on chordal graphs. Inf.

Process. Lett., 108(1):29–32, 2008.

[LO99] C. Lemaréchal and F. Oustry. Semidefinite relaxations and Lagrangian
duality with application to combinatorial optimization. Rapport de
Recherche 3710, INRIA, 1999.

[Mal04] J. Malick. A dual approach to semidefinite least-squares problems. SIAM

Journal on Matrix Analysis and Applications, 26, Number 1:272–284, 2004.

[MR09] J. Malick and F. Roupin. Solving k-cluster problems to optimality using
adjustable semidefinite programming bounds. Submitted, 2009.

	Introduction, motivations
	k-cluster problem
	Lagrangian and semidefinite relaxations
	Alternative semidefinite bounds
	Numerical results
	References

