
Mixed-Integer Nonlinear Programs featuring “on/off” constraints

Hassan Hijazi · Pierre Bonami · Gérard Cornuéjols
· Adam Ouorou

July 14, 2011

Abstract In this paper, we study MINLPs featuring “on/off” constraints. An “on/off” constraint
is a constraint f(x) ≤ 0 that is activated whenever a corresponding 0-1 variable is equal to 1.
Our main result is an explicit characterization of the convex hull of the feasible region when the
MINLP consists of simple bounds on the variables and one “on/off” constraint defined by an isotone
function f . When extended to general convex MINLPs, we show that this result yields tight lower
bounds compared to classical formulations. This allows us to introduce new models for the delay-
constrained routing problem in telecommunications. Numerical results show gains in computing
time of up to one order of magnitude compared to state-of-the-art approaches.

Keywords mixed-integer nonlinear programming, “on/off” constraints, disjunctive constraints,
convex programming, delay-constrained routing problems.

1 Introduction

A very active area of research in recent years has been the study of Mixed-Integer Nonlinear Pro-
grams (MINLPs). A special case of interest is that of convex MINLPs where the objective function
to minimize is convex and the feasible region obtained by dropping the integrality requirements on

First author is supported by Digiteo Emergence PASO, Digiteo Chair 2009-14D RMNCCO and Digiteo Emergence
2009-55D ARM. A major part of this work was accomplished while first author was working at Orange Labs R&D

Second author is supported by ANR grant ANR06-BLAN-0375 and by a Google Research Award.

Third author is supported by NSF grant CMMI1024554 and ONR grant N00014-03-1-0133.

H. Hijazi
LIX, École Polytechnique, F-91128 Palaiseau, France.

P. Bonami
LIF, CNRS-Aix Marseille Universite, Parc Scientifique et Technologique de Luminy, Marseille, France.

G. Cornuéjols
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

A. Ouorou
Orange Labs R&D/CORE-TPN, 38-40 rue du Général Leclerc, 92794 Issy-Les-Moulineaux cedex 9, France.

2

the variables is a convex set. For such problems, several algorithms have been developed [10,20,24,
7] and have been implemented in solvers such as FilMINT [1] or Bonmin[7] which are able to solve
problems of medium size. A challenge is to solve larger problems.

In this paper, we are considering convex MINLPs which feature certain specific structures.
Given convex functions g : Rn+K → (R ∪ {∞})m, h : Rn+K → R∪{∞}, fk : Rn → R∪{∞}, ∀k ∈
{1, 2, ...,K}, and two vectors l and u ∈ Rn, we are interested in optimization problems of the form:

min h(x, z)
s.t. g(x, z) ≤ 0,

fk(x) ≤ 0 if zk = 1, ∀k ∈ {1, 2, ...,K},
l ≤ x ≤ u,

x ∈ Rn, z ∈ {0, 1}K .

(1)

Our main object is to deal with the constraints fk(x) ≤ 0 if zk = 1. We call these constraints
“on/off” because fk(x) ≤ 0 is imposed to hold only when the corresponding indicator variable zk is
equal to 1. These constraints being not formulated using algebraic expressions, (1) can not be passed
to algebraic modeling languages such as AMPL or GAMS. A simple way to formulate (1) would
consist of transforming the “on/off” constraints into: zkfk(x) ≤ 0, ∀k ∈ {1, 2, ...,K}. In this case,
even the continuous relaxation of (1) becomes non-convex. Since all variables are bounded, another
alternative is to use a big-M formulation that leads to a compact convex continuous relaxation.
Unfortunately, these models often provide weak lower bounds.

A third alternative is to use disjunctive programming (see [5,8,22,13]). For k = 1, . . . ,K, let us
define Γ k0 = {(x, zk) ∈ Rn×B : zk = 0, l ≤ x ≤ u} and Γ k1 = {(x, zk) ∈ Rn×B : zk = 1, fk(x) ≤
0, l ≤ x ≤ u} (B denotes the set {0, 1}). Problem (1) can be reformulated as a disjunctive program:

min h(x, z)
s.t. g(x, z) ≤ 0,

(x, zk) ∈ Γ k0 ∪ Γ k1 , ∀k ∈ {1, 2, ...,K},
x ∈ Rn, z ∈ {0, 1}K .

(2)

Taking the convex hull of each union Γ k0 ∪ Γ k1 separately, (2) can be rewritten as:

min h(x, z)
s.t. g(x, z) ≤ 0,

(x, zk) ∈ conv(Γ k0 ∪ Γ k1), ∀k ∈ {1, 2, ...,K},
x ∈ Rn, z ∈ {0, 1}K .

(3)

The advantage of (3) is that the integrity requirement on z can be dropped to obtain a continuous
relaxation that is convex and typically gives a good lower bound on the value of (1). The convex
hull conv

(
Γ k0 ∪ Γ k1

)
has an explicit description in an extended space using results of Stubbs and

Mehrotra [22], Ceria and Soares [8], and Grossman and Lee [13]. However, since additional variables
are introduced for each “on/off” constraint in the problem, the resulting formulation is very large
and its continuous relaxation can be very difficult to solve. Convex formulations that do not require
the introduction of additional variables are of great interest. In [14], Günlük and Linderoth suggest
a formulation of conv

(
Γ k0 ∪ Γ k1

)
defined in the original space of variables in the case where Γ k0 =

3

{(x, zk) ∈ Rn × B : zk = 0, x = p}, that is the set Γ k0 is restricted to a single point. Under the
same assumptions, Aktürk, Atamtürk and Gürel [2] have given a strong characterization of such
convex hulls for a particular function used in machine scheduling problems.

In this work, we study the more general case where Γ k0 is defined by finite bounds on the x
variables. In Section 2, based on the work of [8], we start by studying extended formulations of
conv

(
Γ k0 ∪ Γ k1

)
. Our main result is a characterization of conv

(
Γ k0 ∪ Γ k1

)
in the space of original

variables when the functions fk satisfy a certain monotonicity property.
In Section 3, we study the application of this result to a problem in telecommunications intro-

duced by Ben-Ameur and Ouorou [3]: the Delay-Constrained Routing Problem (DCRP). This model
allows telecommunication operators to provide a “differentiated quality of service” by guaranteeing
a maximum end-to-end transfer delay for each type of commodity. We propose new mathematical
programming models for this problem based on the convex hull formulations introduced in Section
2. Finally, in Section 4, we report computational results with the different models we proposed for
DCRP.

An extended abstract of this paper appeared in the proceedings of ISCO 2010 [15] and we use
the same notation as there: given a set Γ ∈ Rn, we denote by cl(Γ) its topological closure and by
proj(x1,...,xj)(Γ) its projection onto the (x1, ..., xj) space.

2 Convex Hull Of Γ0 ∪ Γ1

We start by studying a simple example with one “on/off” constraint (i.e. K = 1) in R3:

min h(x, z)
s.t. (x, z) ∈ conv (Γ0 ∪ Γ1) ,

Γ0 = { (x, z) ∈ R2 × B : z = 0, l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2},
Γ1 = { (x, z) ∈ R2 × B : z = 1, f(x) ≤ 0, l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2},

(4)

where f(x) = 1
c1−x1

+ 1
c2−x2

− d, u1 ≤ c1 and u2 ≤ c2.

Fig. 1 The sets Γ0 and Γ1.

Figure 1 gives a representation of the sets Γ0 and Γ1 in R3. Γ0 is the rectangle on the right hand
side of the figure and Γ1 is the convex set on the left hand side.

4

Fig. 2 conv(Γ0 ∪ Γ1).

Figure 2 gives a representation of conv(Γ0∪Γ1) in R3. An interesting remark is that this convex
hull can be derived using perspective functions. The perspective function f̃ : Rn+1 → R ∪ {+∞} of

f is defined by: f̃(x, z) ≡

{
zf(x/z) if z > 0,
+∞ if z ≤ 0.

Fig. 3 Level curves of the perspective function f̃(x− (1− z)x∗, z) in R3.

In our example, the nonlinear constraint needed to describe conv (Γ0 ∪ Γ1) is obtained by taking
the perspective function of f from the point x∗ = (u1, u2). Figure 3 plots the level curves of
f̃(x − (1 − z)x∗, z) in R3. Note that conv (Γ0 ∪ Γ1) can be obtained by using the perspective
function when z > 0 and taking a topological closure.

For this specific example, conv (Γ0 ∪ Γ1) is written as follows:

conv (Γ0 ∪ Γ1) = cl


(x, z) ∈ R2×]0, 1] :
f̃(x− (1− z)x∗, z) ≤ 0
l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2.


= cl


(x, z) ∈ R2×]0, 1] :

z
zc1−x1+(1−z)u1

+ z
zc2−x2+(1−z)u2

≤ d
l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2.

 .

5

We now return to the general case dealing with an “on/off” constraint in Rn. First, we recall a
result of Ceria and Soares [8] characterizing the convex hull of a union of closed convex sets in an
extended space. Consider a closed convex set P ⊆ Rn defined by P ≡ cl conv(K), K ≡

⋃p
i=1K

i,
where every set Ki is a closed convex set having the representation Ki ≡ {x ∈ Rn : Gi(x) ≤ 0}, and
Gi : Rn → Rm is a vector mapping whose components are closed convex functions. The following
theorem gives a characterization of P (note that the statement is slightly different from [8] but both
statements are equivalent).

Theorem 1 ([8]) Let I ≡ {i : Ki 6= ∅}. If the set K is bounded below or above, then

P ≡ cl

{
x ∈ Rn : ∀i ∈ I, ∃λi > 0 and xi ∈ Rn with x =

∑
i∈I

xi,
∑
i∈I

λi = 1, G̃i(xi, λi) ≤ 0, i ∈ I

}
.

Let us emphasize that the above formulation introduces (2n + 4) variables to convexify one
“on/off” constraint (i = 2 in our case), thus a total of |K|(2n + 4) variables must be added to
convexify all the disjunctive constraints in (2). Therefore reducing the space dimension can have
a very important impact when dealing with large optimization problems including many “on/off”
constraints. In the following lemma, for our case of interest, we show that the convex hull formulation
corresponding to one “on/off” constraint can be obtained by adding only n new variables.

Lemma 1 ([15]) Let f : E → R, E ⊆ Rn, be a closed convex function,

Γ0 = { (x, z) ∈ Rn × B : z = 0, l0 ≤ x ≤ u0},
Γ1 = { (x, z) ∈ Rn × B : z = 1, f(x) ≤ 0, l1 ≤ x ≤ u1} 6= ∅.

Then conv (Γ0 ∪ Γ1) = pr(x,z)cl(Γ), with

Γ =


(x,y, z) ∈ R2n+1 :
zf (y/z) ≤ 0,
x− (1− z)u0 ≤ y ≤ x− (1− z)l0,
zl1 ≤ y ≤ zu1,
0 < z ≤ 1.



6

Proof. Theorem 1 in [8], allows to write the exact formulation of conv(Γ0 ∪ Γ1) as follows:
conv(Γ0 ∪ Γ1) = pr(x,z)cl(Γ), where

Γ =



(x, z, λ0, λ1, z0, z1,x0,x1) ∈ R3n+5 :

x = x0 + x1,

z = z0 + z1,

λ0 + λ1 = 1,

f̃
(
x1, λ1

)
≤ 0,

l0λ0 ≤ x0 ≤ u0λ0,

l1λ1 ≤ x1 ≤ u1λ1,

z0 = 0,

z1 = λ1,

0 < λ1, 0 ≤ λ0.



≡



(x, z, λ0,x0,x1) ∈ R3n+2 :

x = x0 + x1,

λ0 + z = 1,

f̃
(
x1, z

)
≤ 0,

l0λ0 ≤ x0 ≤ u0λ0,

l1z ≤ x1 ≤ u1z,

0 ≤ λ0.

0 < z.



.

Substituting x0 = x− x1 and λ0 = 1− z, we obtain:

Γ ≡



(x, z,x1) ∈ R2n+1 :

f̃
(
x1, z

)
≤ 0,

l0λ0 ≤ x− x1 ≤ u0λ0,

l1z ≤ x1 ≤ u1z,

0 ≤ 1− z.

0 < z.


≡



(x,y, z) ∈ R2n+1 :

f̃ (y, z) ≤ 0,

x− (1− z)u0 ≤ y ≤ x− (1− z)l0,

zl1 ≤ y ≤ zu1,

0 < z ≤ 1.


.

ut
Lemma 1 shows that only n additional variables are needed to explicitly describe the convex

hull. One can notice that these variables appear in the perspective function of f and the constraints:
x − (1 − z)u0 ≤ y ≤ x − (1 − z)l0 and zl1 ≤ y ≤ zu1. We observe that, if we consider only the
last two sets of constraints, Fourier-Motzkin elimination can be applied in a straightforward way
to eliminate y leading to the constraints zl1 + (1 − z)l0 ≤ x ≤ zu1 + (1 − z)u0. Nevertheless, the
projection becomes harder to describe when the nonlinear constraint in Γ is taken into account.

Next, we show how the y variables can be projected out in the case where the function f is
isotone or order preserving (see definition below).

Definition 1 Let f : E → R, E ⊆ Rn.

– f is independently increasing (resp. decreasing) on coordinate i if for all x ∈ dom(f) and λ > 0
such that x+λei ∈ dom(f), where ei is ith unit vector of the standard basis, we have f(x+λei) ≥
f(x) (resp. f(x + λei) ≤ f(x)).

– We say that f is independently monotone on coordinate i if it is independently increasing or
independently decreasing on the ith coordinate.

7

– f is isotone if it is independently monotone on every coordinate.

Example 1 Consider the following functions:

1. f(x1, x2, x3) = e(2x1−x2) + x3, (x1, x2, x3) ∈ R3, f is independently increasing on coordinate 1
and 3, independently decreasing on coordinate 2, therefore it is an isotone function.

2. f(x, y) = x4 + y2, (x, y) ∈ R2, the variation of f depends on the sign of the variables, f is not
an isotone function.

3. f(x) =
∑n
i=1

1
ci−xi

, where xi ∈] − ∞, ci] for i = 1, . . . , n. Since f is a sum of one-variable
increasing functions, it is an isotone function.

Additively separable functions which are sums of one-variable monotone functions are a commonly
encountered case of isotone functions.

Theorem 2 ([15]) Let f : E → R, E ⊆ Rn, be an isotone closed convex function, with J1 (resp.
J2) the set of indices on which f is independently increasing (resp. decreasing),

Γ0 = { (x, z) ∈ Rn × B : z = 0, l0 ≤ x ≤ u0},
Γ1 = { (x, z) ∈ Rn × B : z = 1, f(x) ≤ 0, l1 ≤ x ≤ u1} 6= ∅.

Then conv (Γ0 ∪ Γ1) = cl(Γ
′
), where

Γ
′

=


(x, z) ∈ Rn+1 :
zqS (x/z) ≤ 0, ∀S ⊂ {1, 2, ..., n},
zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0,
0 < z ≤ 1

 ,

qS = (f ◦ hS), and hS(Rn×]0, 1]→ Rn) is defined by

(hS(x, z))i =


l1i ∀i ∈ S ∩ J1,

u1
i ∀i ∈ S ∩ J2,

xi − (1−z)u0
i

z ∀i ∈ J1, i 6∈ S,
xi − (1−z)l0i

z ∀i ∈ J2, i 6∈ S.

Proof. We prove that cl(Γ
′
) is the projection onto the (x, z) space of cl(Γ), the set defined in

Lemma 1.

1. We show that (x, z) ∈ cl(Γ ′
)⇒ ∃y ∈ Rn s.t. (x,y, z) ∈ cl(Γ).

For any given point (x, z) ∈ Γ ′
, z 6= 0, let y ∈ Rn be defined as follows:

yi = max{zl1i , xi − (1− z)u0
i }, ∀i ∈ J1 and yi = min{zu1

i , xi − (1− z)l0i }, ∀i ∈ J2.

One can see that ∃S ⊂ {1, 2, ..., n} such that hS(x/z) = y/z. Having zqS (x/z) = zf (hS(x/z)) ≤
0 in Γ

′
, we deduce that zf(y/z) ≤ 0. All other constraints in Γ are satisfied by definition, leading

to (x,y, z) ∈ Γ . Now consider the remaining points (x, 0) ∈ cl(Γ ′
). There exists a sequence of

points (xk, zk) ∈ Γ ′
such that limk→∞(xk, zk) = (x, 0). Defining yk = y ∀k ∈ N, we immediately

get (xk,yk, zk) ∈ Γ and limk→∞(xk,yk, zk) = (x,y, 0). This proves that (x,y, 0) ∈ cl(Γ).

8

2. We show that (x,y, z) ∈ cl(Γ)⇒ (x, z) ∈ cl(Γ ′
).

Let (x,y, z) be a point in Γ (z 6= 0). By definition of Γ and functions hS(x), we have ∀S ⊂
{1, 2, ..., n}

yi
z
≥ max

{
l1i ,

xi
z
− (1− z)u0

i

z

}
≥ (hS(x/z))i, ∀i ∈ J1

and
yi
z
≤ min

{
u1
i ,

xi
z
− (1− z)l0i

z

}
≤ (hS(x/z))i, ∀i ∈ J2.

f being an isotone function we have zf(hS(x/z)) ≤ zf(y/z) ≤ 0, ∀S ⊂ {1, 2, ..., n}. Finally, we
notice that the constraints zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0 are obtained by composing the
last two set of constraints defining set Γ .
The extension to the closure is trivial.

ut
Now, we are able to describe conv (Γ0 ∪ Γ1) in (3) without having to deal with additional

variables. Note that this formulation might include an exponential number of constraints. In the
next corollary, we show that only one constraint for each disjunction is sufficient to build a valid
formulation of our original MINLP defined in (2).

Corollary 1 Let f : E → R, E ⊆ Rn, be an isotone closed convex function with J1 (resp., J2) the
set of indices on which f is independently increasing (resp. decreasing),

Γ0 = { (x, z) ∈ Rn × B : z = 0, l0 ≤ x ≤ u0},
Γ1 = { (x, z) ∈ Rn × B : z = 1, h(x) ≤ 0, l1 ≤ x ≤ u1} 6= ∅,

Γ ′′ =



(x, z) ∈ Rn+1 :

zq∅ (x, z) ≤ 0,

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0,

0 < z ≤ 1


,

with q∅ = (f ◦ h∅) and h∅(Rn×]0, 1]→ Rn) defined as

(h∅(x, z))i =

{
xi−(1−z)u0

i

z ∀i ∈ J1,
xi−(1−z)l0i

z ∀i ∈ J2.

Then

1. cl (Γ ′′) is a valid convex relaxation for conv(Γ0 ∪ Γ1);
2. cl (Γ ′′)∩{z ∈ {0, 1}} ≡ Γ0 ∪ Γ1.

Proof.

1. cl(Γ ′′) is a valid convex relaxation of conv(Γ0 ∪ Γ1) since it only contains a subset of the con-
straints defining the convex hull in Theorem 2.

9

2. For z = 1, one can check that Γ ′′∩{(x,z): z = 1 }≡ Γ1. For z = 0, we have (Γ0 ∪ Γ1) ⊆ cl (Γ ′′)
since cl (Γ ′′) is a valid convex relaxation of Γ0 ∪ Γ1. Therefore intersecting with {(x, z) : z = 0}
gives (Γ0∪Γ1)∩{(x, z) : z = 0} = Γ0 ⊆ cl (Γ ′′)∩{(x, z) : z = 0}. On the other hand, by definition
of Γ ′′, when z = 0, all the constraints of Γ0 are satisfied in cl (Γ ′′), that is cl (Γ ′′) ∩ {(x, z) :
z = 0} ⊆ Γ0.

ut

2.1 Relationships To Previous Theoretical Results

Balas [4,5] was the first to introduce the explicit algebraic formulation of the convex hull of a union
of polyhedra in a higher dimensional space. Generalizations and extensions have been established
for unions of nonlinear convex sets [8,13,22]. Günlük and Linderoth [14] have characterized the
convex hull of the union of a point and a convex set in the space of original variables. We show that
this characterization is a special case of Lemma 1, obtained by fixing l0 = u0 = 0 in the definition
of this lemma:

conv(Γ0 ∪ Γ1) = cl



(x,y, z) ∈ R2n+1 :

zf (y/z) ≤ 0,

x ≤ y ≤ x,

zl1 ≤ y ≤ zu1,

0 < z ≤ 1.


≡ cl



(x, z) ∈ Rn+1 :

zf (x/z) ≤ 0,

zl1 ≤ x ≤ zu1,

0 < z ≤ 1.


.

which corresponds exactly to the result established in [14].

Technical issues. Let us note that some technical issues must be considered due to the fact that
the formulations introduced previously involve topological closures of sets. In practice, when im-
plementing perspective functions, one must avoid dividing by zero (for z = 0). A first alternative
is to use cutting plane methods. Instead of explicitly writing the convex hull formulas in the origi-
nal model, valid cuts are generated to strengthen the formulation (see [8,22,12] for more details).
A second alternative proposed in [13,20,10], is to approximate the constraints by adding epsilon
values to the corresponding functions. We show in Section 3 that, for our application of interest,
these difficulties can be avoided while still guaranteeing exact convex MINLP models. In the next
section, we introduce our main application and use the above results in order to improve existing
formulations.

3 Application: The Delay-Constrained Routing Problem

In this section, we study the application of the results obtained in Section 2 to a problem in
telecommunications first introduced by Ben-Ameur and Ouorou [3] and revisited in [15]: the delay-
constrained routing problem.

The constant rise of traffic in telecommunication induce that networks (or certain parts of them)
become congested. One of the main consequences of this congestion is a delay in the communications

10

that go through the congested parts of the network. Parallel to this congestion is the introduction
of more and more real time services (voice on IP, video on demand, gaming,. . .) that can only
operate properly if the delay of the communications is controlled. Managing these delays is therefore
an important question. A common approach is to study routing problems under average end-to-
end delay constraints, see [6,21,18]. Unfortunately, this approach is not adequate with real time
services since it ignores the heterogeneous nature of real world networks. These services rather
require the consideration of individual source-to-destination delays (i.e., packet delay from the
source to all destinations) and need to be differentiated from delay-tolerant services. The delay-
constrained routing model we consider takes into account an end-to-end delay guarantee for each
type of service. This application can be formulated as a mixed-integer nonlinear program including
“on/off” constraints.

3.1 Mathematical Models

Let G be a finite directed network,

1. Parameters:
(a) V represents the set of vertices, E the set of arcs and K the set of commodities.
(b) For each commodity k ∈ K, vk ∈ R is the quantity of demand that needs to be routed and

αk ∈ R the maximum delay.
(c) Each commodity has a set of candidate paths denoted by P (k) = {P 1

k , P 2
k , ..., Pnk

k }, each one
of these corresponding to a different routing for commodity k. N represents the maximum
authorized number of activated paths per commodity.

(d) For each arc e, ce ∈ R represents its capacity and we ∈ R its cost.
2. Variables:

(a) We call φik the fraction of the kth demand carried by its ith path, φik ∈ [0, 1].
(b) zik is a binary variable indicating if path P ik is activated.
(c) xe denotes the total amount of flow crossing over arc e, xe ∈ R.

Initial mathematical model (P). The objective function (5) is to minimize the total routing cost on
all used links. For each commodity k, constraint (6) ensures that the total flow routed is greater than
1 in order to satisfy demand. Constraints (7) define the variables xe on each arc as the sum of all the
flows passing through e. In (8), xe is bounded by the capacity installed on the link. Constraint (9)
represents the main “on/off” delay constraints: the delay guarantee associated to a given commodity
must be satisfied on its candidate path if the latter is activated. As mentioned above, this model
allows to fix a maximum number of active paths per commodity. This is established in (10). In (11),
we link the indicator variables zik to the φik variables. Finally, bounds on all variables are introduced
in (12-14). Let us point out that if N = 1, i.e. only one path can be activated per commodity (mono-
routing), the variables φik become redundant and can be replaced by the zik variables. Ben-Ameur
and Ouorou showed in [3] that as soon as one considers two candidate paths per commodity, the
underlying feasibility problem (ignoring the objective function) is NP-complete.

11

min
∑
e∈E

wexe (5)

s.t.
nk∑
i=1

φik ≥ 1, ∀k ∈ K, (6)∑
k∈K

∑
P i

k3l

φikvk ≤ xe, ∀e ∈ E, (7)

xe ≤ ce, ∀e ∈ E (8)∑
e∈P i

k

1
ce − xe

≤ αk, ∀k ∈ K, ∀P ik ∈ P (k) if zik = 1, (9)

∑
P i

k∈P (k)

zik ≤ N, ∀k ∈ K, (10)

φik ≤ zik, ∀k ∈ K, ∀P ik ∈ P (k), (11)

zik ∈ {0, 1}, ∀k ∈ K, ∀P ik ∈ P (k), (12)

φik ∈ [0, 1], ∀k ∈ K, ∀P ik ∈ P (k), (13)
xe ∈ R, ∀e ∈ E. (14)

The continuous relaxation of this model is obviously non-convex due to the presence of “on/off”
constraints in (9). We will next introduce four different convex models equivalent to (3) and offering
each a different continuous relaxation.

Big-M relaxation: (Pbig−M). A classical convex relaxation of constraint (9) is the big-M relaxation:

min
∑
e∈E

wexe

s.t. (6), (7), (8), (10), (11), (12− 14),∑
e∈P i

k

1
ce − xe

≤M − zik(M − αk), ∀k ∈ K, ∀P ik ∈ P (k). (9-a)

This formulation is exact if zik is a binary variable, provided that the constant M is big enough.
When zik = 0, the constraint (9-a) is redundant, due to the big-M quantity on its right-hand-side;
when zik = 1, the big-M disappears leading to the original delay constraint formula. Since the
validity of constraint (9-a) and the quality of the bound given by this formulation depends on the
constant M, one has to compute it accurately. Ben-Ameur and Ouorou [3] pointed out that the
flow on a given arc e always admits an upper bound ue verifying ue < ce. If a link e is used in
an activated path P ik, then one can write 1

ce−xe
≤ αk −

∑
e′ 6=e

1
ce′

. Based on these observations,
one can easily deduce an upper bound αe for the delay on each arc and therefore obtain an upper
bound on the total delay generated on any given path. In other words, the big M constant can be
replaced by αik =

∑
e∈P i

k
αe.

12

Higher space convex hull relaxation model (Phigh). First, we present a model based on the state of
the art in disjunctive programming using Theorem 1 (introduced in [8]).

min
∑
e∈E

wexe

s.t. (6), (7), (8), (10), (11), (12− 14),∑
e∈P i

k

(
zik

2

zikce − λ
(1,i,k)
e

)
− zikαk ≤ 0, ∀k ∈ K, ∀P ik ∈ P (k),

xe = λ(0,i,k)
e + λ(1,i,k)

e , ∀k ∈ K, ∀P ik ∈ P (k), ∀e ∈ P ik,
0 ≤ λ(0,i,k)

e ≤ (1− zik)u0
e, ∀k ∈ K, ∀P ik ∈ P (k), ∀e ∈ P ik,

0 ≤ λ(1,i,k)
e ≤ ziku1

e, ∀k ∈ K, ∀P ik ∈ P (k), ∀e ∈ P ik.

Next, we use the results of Section 2 to introduce new formulations. To every path P ik corresponds
a delay constraint (9) in (P) that is written: f (i,k)(x) ≤ 0 if zik = 1, with f (i,k) : Rn → R,
f (i,k)(x) =

∑
e∈P i

k

1
ce−xe

−αk. The functions f (i,k) being closed convex functions, Lemma 1 applies
leading to the following corollary.

Corollary 2 Let

f : Rn+ → R, f(x) =
n∑
i=1

(
1

ci−xi

)
− b, b ≥ 0,

Γ0 = { (x, z) ∈ Rn × B : z = 0, 0 ≤ x ≤ u},
Γ1 = { (x, z) ∈ Rn × B : z = 1, f(x) ≤ 0, l ≤ x ≤ u} non empty.

Then conv (Γ0 ∪ Γ1) = {(x, z) ∈ Rn+1 | ∃y ∈ Rn with (x, y, z) ∈ cl(Γ)}, where

Γ =



(x,y, z) ∈ R2n+1 :
n∑
i=1

(
z2

zci−yi

)
− zb ≤ 0,

x− (1− z)u ≤ y ≤ x,

zl ≤ y ≤ zu,

0 < z ≤ 1.


As discussed previously, the values of the functions in the nonlinear constraints are not well defined
in zik = 0. In the following proposition, we suggest a new valid relaxation of the convex hull which
overcomes this issue while still being exact for zik ∈ {0, 1}.

Proposition 1 Let

f : Rn+ → R, f(x) =
n∑
i=1

(
1

ci−xi

)
− b, b ≥ 0.

Γ0 = { (x, z) ∈ Rn × B : z = 0, 0 ≤ x ≤ u < c},
Γ1 = { (x, z) ∈ Rn × B : z = 1, f(x) ≤ 0, l ≤ x ≤ u} non empty.

13

For ε > 0, let

Γ ε =



(x,y, z) ∈ R2n+1 :
n∑
i=1

(
z2

zci−yi+(1−z)ε

)
− zb ≤ 0,

x− (1− z)u ≤ y ≤ x,

zl ≤ y ≤ zu,

0 ≤ z ≤ 1.


Then

1. proj(x,z)(Γ ε) is a valid convex relaxation of conv(Γ0 ∪ Γ1)
2. proj(x,z)(Γ ε) ∩ {z ∈ {0, 1}} ≡ Γ0 ∪ Γ1.

Proof. First, we show that all the constraints of Γ ε are convex. The only nonlinear constraint
in Γ ε is g(y, z) ≤ 0 with g(y, z) =

∑n
i=1 gi(yi, z) − zb and gi(yi, z) = z2

zci−yi+(1−z)ε . The Hessian
matrix of gi is

H(gi) =

 2(yi−ε)2
(z(ci−ε)−(yi−ε))3

−2z(yi−ε)
(z(ci−ε)−(yi−ε))3

−2z(yi−ε)
(z(ci−ε)−(yi−ε))3

2z2

(z(ci−ε)−(yi−ε))3

 .

Having yi ≤ zui ≤ zci + (1− z)ε, ∀i ∈ {1, .., n}, one can check that H is positive semidefinite,
that is the functions gi are all convex, g being a sum of convex functions is convex. Note also that,
since z2

zci−yi+(1−z)ε ≤
z2

zci−yi
, the validity of the constraint is preserved.

Next we prove that the projection of Γ ε on the (x, z)-space contains both Γ0 and Γ1.
For z = 0 we have

Γ ε =


(x,y, 0) ∈ R2n+1 :

x ≤ u, y = 0,

x ≥ y = 0,

 ,

in this case proj(x,z)(Γ ε) = Γ0.

For z = 1 we have

Γ ε =



(x,y, 1) ∈ R2n+1 :
n∑
i=1

(
1

ci−yi

)
− b ≤ 0,

x = y, l ≤ y ≤ u


,

in this case proj(x,z)(Γ ε) = Γ1.

ut
Based on this proposition, we introduce a new convex MINLP equivalent to (P) which gives a

tighter continuous relaxation than the big-M model.

14

Reduced convex hull relaxation model (Pred) We replace constraints (9) by the convex relaxations
defined in Proposition 1:

min
∑
e∈E

wexe

s.t. (6), (7), (8), (10), (11), (12− 14)∑
e∈P i

k

(
zik

2

zikce − y
(i,k)
e + (1− zik)ε

)
− zikαk ≤ 0, ∀k ∈ K, ∀P ik ∈ P (k), (9-b)

xe − (1− zik)ue ≤ y(i,k)
e ≤ xe, ∀k ∈ K, ∀P ik ∈ P (k), ∀e ∈ P ik,

zikle ≤ y(i,k)
e ≤ zikue, ∀k ∈ K, ∀P ik ∈ P (k), ∀e ∈ P ik.

If we denote by nmax = maxk{nk} the maximum number of candidate paths for commodities,
up to |E|× |K|×nmax variables can be added in this new model. While the bound might be tighter
than those obtained with the big-M formulation, this relaxation may be difficult to solve due to
the large number of additional variables. The corollary below is a first step toward a tight model
defined in the space of original variables.

Corollary 3 Let

f : Rn+ → R, f(x) =
n∑
i=1

(
1

ci−xi

)
− b, b ≥ 0,

Γ0 = { (x, z) ∈ Rn × B : z = 0, 0 ≤ x ≤ u < c},
Γ1 = { (x, z) ∈ Rn × B : z = 1, f(x) ≤ 0, l ≤ x ≤ u} non empty.

For ε > 0, let

Γ εr =



(x, z) ∈ Rn+1 :
n∑
i=1

(
z2

zci−xi+(1−z)(ui+ε)

)
− zb ≤ 0,

zl ≤ x ≤ u,

0 ≤ z ≤ 1.


.

Then

1. Γ εr is a valid convex relaxation for conv(Γ0 ∪ Γ1)
2. Γ εr ∩ {z ∈ {0, 1}} ≡ Γ0 ∪ Γ1

Proof. f being an isotone closed convex function, Corollary 1 applies leading to the following
constraint:

∑n
i=1

(
z2

zci−xi+(1−z)ui

)
− zb ≤ 0. Since z2

zci−xi+(1−z)(ui+ε)
≤ z2

zci−xi+(1−z)ui
the validity

of this new constraint is guaranteed, convexity is also maintained since one can replace (ui+ ε) with
vi leading to the initial constraint definition. Replacing z in Γ εr respectively by 0 and 1, one can
check that the resulting sets are Γ0 and Γ1 respectively. ut

15

Projected convex hull relaxation model (Pproj). We replace constraints (9) by the convex relaxations
defined in the previous corollary:

min
∑
e∈E

wexe

s.t. (6), (7), (8), (10), (11), (12− 14)∑
e∈P i

k

(
zik

2

zikce − xe + (1− zik)(ue + ε)

)
− zikαk ≤ 0, ∀k ∈ K, ∀P ik ∈ P (k), (9-c)

0 ≤ xe ≤ ue, ∀e ∈ E.

In Pproj we add only one nonlinear constraint for each “on/off” constraint. As shown by Corol-
lary 1, this is enough to obtain a valid formulation. Of course a stronger formulation would be ob-
tained if all (exponentially many) non-linear constraints describing the convex hull of each “on/off”
constraint were added. The main reason we use only one constraint here is that the formulation with
all nonlinear constraints was too heavy to solve with the continuous nonlinear solver at our disposal.
A natural way to overcome this would be to add these constraints in a dynamic way, but nonlinear
solvers do not offer the capabilities to do that easily at this time. We note that from a theoretical
point of view, independently of the application, the constraint used in Corollary 3 dominates all
the others for (x, z) satisfying x ≥ zl1 + (1− z)u0. To evaluate the quality of the model in practice,
we compared the lower bound given by the continuous relaxation of the extended formulation Pred
(which should be equal to the one obtained by adding all the nonlinear constraints) to the one
given by Pproj . The experiment showed that the quality of the bounds are very close with both
formulations. This assesses the strength of the projected model Pproj for our application but we do
not claim that this experimental finding is true in general.

We next compare the formulation Pproj to the one proposed in [3].

3.2 Relationship To Previous Research On This Application

Ben-Ameur and Ouorou [3] have introduced the following convex reformulation of the “on/off”
delay constraint: ∑

e∈P i
k

(
zik

2

ce − xe

)
− zikαk ≤ 0, ∀k ∈ K, ∀P ik ∈ P (k). (15)

In Proposition 2 we show that constraint (9-c) introduced in (Pproj) dominates (15).

Proposition 2 Constraint (9-c) dominates constraint (15).

Proof.
Constraints (9-c) dominates constraints (15) if and only if∑
e∈P i

k

(
zi

k
2

ce−xe

)
− zikαk ≤

∑
e∈P i

k

(
zi

k
2

zi
kce−xe+(1−zi

k)(ue+ε)

)
− zikαk, ∀k ∈ K, ∀P ik ∈ P (k).

16

By definition of ue, ∀e ∈ E, one can write:

ue + ε ≤ ce ⇒ ue + ε− ce ≤ 0⇒ zik
2(1− zik)(ue + ε)− zik

2(1− zik)ce ≤ 0

⇒ zik
2(1− zik)(ue + ε)− zik

2
ce + zik

3
ce ≤ 0⇒ zik

2(1− zik)(ue + ε)− zik
2
ce + zik

3
ce + zik

2
xe− zik

2
xe ≤ 0

⇒ zik
2(zikce − xe + (1− zik)(ue + ε))− zik

2(ce − xe) ≤ 0⇒ zi
k
2

(ce−xe) −
zi

k
2

(zi
kce−xe+(1−zi

k)(ue+ε))
≤ 0

⇒ zi
k
2

(ce−xe) ≤
zi

k
2

(zi
kce−xe+(1−zi

k)(ue+ε))
, ∀e ∈ E ⇒

∑
e∈P i

k

(
zi

k
2

ce−xe

)
≤
∑
e∈P i

k

(
zi

k
2

zi
kce−xe+(1−zi

k)(ui+ε)

)
⇒
∑
e∈P i

k

(
zi

k
2

ce−xe

)
− zikαk ≤

∑
e∈P i

k

(
zi

k
2

zi
kce−xe+(1−zi

k)(ui+ε)

)
− zikαk.

ut
In the next section, we compare numerically the four formulations of DCRP presented in this

section.

4 Computational Experiments

In order to compare the four models presented in Section 3, we solved the corresponding formulations
on different networks with different settings for the number of candidate paths and the number
of paths that can be simultaneously used to route the traffic demands. We consider two types of
networks: real world networks (denoted rdatax) and randomly generated networks (denoted adatax).
Table 1 summarizes the main characteristics of these networks.

Table 1 Main networks characteristics

name |V | |E| |K|
rdata1 60 280 100
rdata2 61 148 122
adata3 100 600 200
rdata4 34 160 946
rdata5 67 170 761
adata6 100 800 500

To solve the convex MINLP models, we used the open source solver Bonmin [7] (release 1.1.3, see
http://www.coin-or.org/Bonmin) with CBC [11] as underlying mixed-integer linear programming
(MILP) solver and Ipopt [23] for the nonlinear programming solver. The four models were coded
in C++ to be solved by Bonmin and all tests were performed on an Intel Xeon 1.6 Ghz CPU.

Bonmin offers the possibility to choose one of five algorithms: a nonlinear programming based
branch-and-bound [9], a pure outer approximation decomposition [10], a vanilla implementation of
the Quessada-Grossmann branch-and-cut algorithm [20], a hybrid method [7] and a method based
on extended cutting planes [24] (similar to the method proposed in [1]). Here we report results
obtained with the hybrid method since it was consistently better than the others (with all four
models) in preliminary experiments. First, we give a brief summary of the hybrid method.

The hybrid algorithm combines the two schemes [10,20] of which the pure outer approximation
decomposition and the Quessada Grossmann Algorithm occur as extreme cases. The basic idea of
outer approximation is to build an MILP equivalent to the original MINLP, namely a polyhedral

http://www.coin-or.org/Bonmin

17

Table 2 Results for N = 1 (mono-routing).

Pbig−M Pproj Phigh Pred

cpu nodes cpu nodes cpu nodes cpu nodes
2 candidate paths per commodity

rdata1 0.4 0 0.4 0 35 0 2 0
rdata2 190 5193 155 1012 2997 21312) 1948 15129
adata3 144 335 57 0 206 556 159 84
rdata4 3 0 3 0 2040 11691 (1485 5845
rdata5 [∞] 14788 251 3357 1549 2793 [0.03%] 15697
adata6 1065 27991 1470 42244 [1%] 6831 [0.3%] 2499

3 candidate paths per commodity
rdata1 2.7 0 2.4 0 2.8 0 11.9 0
rdata2 25 0 13 0 994 3671 1396 7815
adata3 [0.28%] 157748 344 5097 722 3286 312 1124
rdata4 [0.001%] 79807 1525 50583 [0.04%] 28876 [0.1%] 22438
rdata5 [0.43%] 138618 [0.03%] 202122 [0.2%] 9472 [0.14%] 9461
adata6 [0.006%] 176413 934 19351 [0.6%] 16539 [0.06%] 4067

10 candidate paths per commodity
rdata1 568 13649 231 4762 1415 9263 1209 6485
rdata2 120 0 66 0 1527 1599 1555 2563
adata3 534 5118 644 14216 4866 8841 6684 11626
rdata4 [1.9%] 79807 [2.1%] 96212 [∞] 3409 [1.8%] 3156
rdata5 [∞] 37446 [∞] 30500 [∞] 747 [∞] 1568
adata6 [2.7%] 35520 [1.5%] 2680 [∞] 2642 [∞] 1001

outer approximation of the non-linear constraints of the problem. The hybrid algorithm constructs
this outer approximation using two principles: a decomposition method which solves a sequence of
MILPs [10] and a branch-and-cut approach. The decomposition method is ran at the beginning of
the algorithm for a limited amount of time (120 seconds in our experiments). If optimality was not
proved during this initial phase, the branch-and-cut method is started using the outer approximation
of the feasible region obtained at the end of the decomposition phase.

In the experiments, we ran the different formulations on different networks, with different num-
bers of candidate paths and using different values for the parameter N (maximum number of path
used by each commodity): N = 1 (mono-routing), N = 2 (bi-routing), N = ∞ (multi-routing).
For each instance, we report the computing time to optimality and the number of nodes explored
during the branch-and-cut phase with the four models. If the problem is solved during the initial
outer approximation decomposition phase, we just report 0 nodes of branch-and-cut. If optimality
is not reached within the time limit, the gap between the current best integer feasible solution and
the continuous relaxation is displayed inside brackets, ∞ indicates that no integer feasible solution
has been found after two hours of computing time. For each instance, the best computing time or
the smallest gap is listed in bold characters.

Table 2 summarizes the results for the case N = 1, i.e. only one path per commodity can
be activated at a time (mono-routing problems). The number of candidate paths per commodity
is set to 2, 3 and 10 respectively. These paths are obtained by the k-shortest path algorithm
proposed by Martins and Pascoal in [19]. For the Pproj model, the epsilon value (appearing in the
perspective formulation) is set to 10−4. Different values were tested, varying between 10−3 and
10−6. Experiments showed no sensitivity to this parameter, neither on the optimal value nor on the
global computing time.

18

Table 3 Results with N = 2 (bi-routing).

Pbig−M Pproj

cpu nodes cpu nodes
2 candidate paths per commodity

rdata1 0.8 0 0.4 0
rdata2 2.4 0 10.9 0
adata3 47.6 0 4.7 0
rdata4 5.6 0 3.4 0
rdata5 38.3 0 50.4 0
adata6 40.1 0 42.4 0

3 candidate paths per commodity
rdata1 16.7 0 2.9 0
rdata2 129.2 18 59 0
adata3 291.5 760 171.3 615
rdata4 154.9 62 343.8 472
rdata5 [0.15%] 91430 609.1 5290
adata6 1579.8 8176 747.7 7056

10 candidate paths per commodity
rdata1 1909 56788 399 7846
rdata2 28.8 0 288.8 666
adata3 [0.11%] 67705 [0.13%] 77129
rdata4 [1.2%] 23984 [0.6%] 32939
rdata5 [2%] 11772 [1.2%] 16285
adata6 [0.7%] 6480 [0.14%] 22364

The projected convex hull model Pproj scores the best performance on these instances. Pproj
solves 14 instances out of 18 while Pbig−M , Phigh and Pred only solve (resp.) 10, 11 and 10 instances.
If we consider geometric means, Pproj is 2.1 times faster than Pbig−M , 6.7 times faster than Phigh and
6.3 times faster than Pred. The advantage in terms of number of nodes is comparable. Considering
the four problems Pbig−M is unable to solve, Pproj is at least one order of magnitude faster than
Pbig−M with at least 5 times fewer nodes to reach optimality (it is at least 5.45 and 7.17 times
faster that Phigh and Pred). In conclusion, even if Phigh and Pred provide better lower bounds,
their average time is penalized due to the increased number of variables. For problem adata3 with
3 candidate paths, one can see that optimality is reached with Pred in only 1124 nodes, while the
big-M model explored 157748 nodes with a final nonzero gap. Let us emphasize that the projected
model Pproj provides bounds almost as tight as the extended formulations, without having to deal
with the inconvenience of large size problems.

We now consider the bi-routing case(N = 2) where two paths can be activated for each com-
modity. From previous results on the mono-routing case, it appears clearly that Pproj is consistently
better than Phigh and Pred for all instances except one, where they are equivalent. Furthermore,
since the bi-routing and the multiple-routing case involve adding new variables corresponding to
fractions of demands (φik), these high dimensional relaxations would be even larger and more diffi-
cult to solve in these cases. For this reason, Phigh and Pred were not implemented in the remaining
of the experiments. Table 3 reports results obtained for instances with respectively 2, 3 and 10
candidate paths per commodity.

First, we note that bi-routing problems seem in general easier to solve than their mono-routing
counterparts. For these problems Pbig−M and Pproj solved respectively 13 and 14 instances. The
instances with 2 candidate paths are all solved in less than one minute with both formulations and

19

Table 4 Results with N =∞ (multiple-routing)

Pbig−M Pproj

cpu nodes cpu nodes
3 candidate paths per commodity

rdata1 2.7 0 1.2 0
rdata2 10 0 29.7 0
adata3 195.7 164 50.5 0
rdata4 20.7 0 43 0
rdata5 2503.1 34783 362.8 4024
adata6 1482.4 6083 224.7 326

10 candidate paths per commodity
rdata1 799.7 12633 220.8 1922
rdata2 16.1 0 24.8 0
adata3 [0.08%] 94194 768.6 5207
rdata4 [0.4%] 40820 [0.04%] 45492
rdata5 [1.2%] 16106 5467.7 17347
adata6 [0.7%] 5880 5392 23867

instances with 3 candidate paths seem also much easier than before. On average Pproj is still faster
than Pbig−M taking about 1761 secs versus 2235 secs.

We finally consider the multiple-routing case where all the paths in P (k) can be activated (N =
∞). Table 4 reports results obtained for instances with 3 and 10 candidate paths per commodity
(instances with 2 paths are similar in the bi-routing and multi-routing cases).

Multi-routing problems bring the same observations as the bi-routing case. For these problems
Pbig−M and Pproj solved respectively 8 and 11 instances out of 12. All instances with 3 paths per
commodity are solved with both formulations. On average, for all instances, Pproj takes 1649 secs
while Pbig−M takes 2819 secs. For the instance not solved by both formulations, the final gap for
Pproj is about one order of magnitude smaller than for Pbig−M .

5 Conclusion

Disjunctive programming is one of the most successful approaches for constructing tight convex
relaxations to mixed-integer programs. Its efficiency in the context of MILP has been demonstrated
many times. The case of convex MINLPs is more difficult and presents several challenges. One of
them is that typical approaches using extended formulations often lead to nonlinear programs that
are too large to be tackled using state of the art softwares. Therefore, it is necessary to construct
formulations in smaller spaces. In this work we looked closely at a specific setting: A disjunctive set
defined by the union of an hyper-rectangle and a closed convex set featuring one nonlinear constraint
f(x) ≤ 0. When the function f is isotone, we gave an explicit characterization of the convex hull
in the space of original variables. This leads to formulations that are tighter than those obtained
using more naive approaches (such as big-M constraints) and whose continuous relaxations are still
solvable in a reasonable amount of time. Numerical experiences showed that these new formulations
allow to solve instances with computational gains of up to one order of magnitude compared to
classical models.

There are several challenges that naturally arise from this study. The first one is to be able
to extend results on compact formulations to more general settings of unions of convex sets. Also,
one would like to automatically detect and reformulate these disjunctions. Finally, let us emphasize

20

that even in the case of polytopes, applying Theorem 2 yields a family of new MIP cuts [16] that
would be worth exploring.

References

1. K. Abhishek, S. Leyffer, and J. T. Linderoth. FilMINT: An outer-approximation-based solver for nonlinear
mixed integer programs. Preprint ANL/MCS-P1374-0906, Mathematics and Computer Science Division, Argonne
National Laboratory, 2006.

2. S. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic reformulation for machine-job assignment
with controllable processing times. Technical Report BCOL Research Report 07.01, Industrial Engineering &
Operations Research, University of California, Berkeley, 2007.

3. W. Ben-Ameur and A. Ouorou. Mathematical models of the delay-constrained routing problem. Algorithmic
Operations Research, 1(2):94–103, 2006.

4. E. Balas. Disjunctive programming. In Annals of Discrete Mathematics 5: Discrete Optimization, pages 3–51.
North Holland, 1979.

5. E. Balas. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J.
Alg. Disc. Math., 6:466–486, 1985.

6. D.P. Bertsekas and R.G. Gallager. Data networks. Prentice-Hall, Englewood Cliffs, 1987.
7. P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee, A. Lodi, F. Margot,

N. Sawaya, and A. Wächter. An algorithmic framework for convex mixed-integer nonlinear programs. Discrete
Optimization, 5(2):186–204, 2008.

8. S. Ceria and J. Soares. Convex programming for disjunctive optimization. Mathematical Programming, 86:595–
614, 1999.

9. R. J. Dakin. A tree search algorithm for mixed programming problems. Computer Journal, 8:250–255, 1965.
10. M. A. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear

programs. Mathematical Programming, 36:307–339, 1986.
11. J. Forrest. CBC, 2004. Available from http://www.coin-or.org/.
12. A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0-1 mixed-integer programs. Mathematical

Programming, 106(2):225–236, 2006.
13. I. Grossmann and S. Lee. Generalized convex disjunctive programming: Nonlinear convex hull relaxation. Com-

putational Optimization and Applications, 26:83–100, 2003.
14. O. Günlük and J. Linderoth. Perspective relaxation of mixed-integer nonlinear programs with indicator variables.

Lecture Notes in Computer Science, 5035:1–16, 2008.
15. H. Hijazi, P. Bonami, G. Cornuéjols and A. Ouorou. Mixed Integer Non-Linear Programs featuring “On/Off”

constraints: convex analysis and application. Proceedings of ISCO 2010 - International Symposium on Combi-
natorial Optimization Electronic Notes in Discrete Mathematics, 36:1153 – 1160, 2010.

16. H. Hijazi, Mixed Integer Non-Linear Optimization approaches for network design in Telecommunications. Ph.D.
Thesis, Université d’Aix Marseille, November 2010.

17. J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms, volume 2. Springer-Verlag,
Berlin Heidelberg New York, 1993.

18. J.G. Klincewicz and J. Schmitt. Incorporating qos into ip entreprise network design. Telecommunication Systems,
20(1,2):81–106, 2002.

19. E. Martins and M. Pascoal. A new implementation of yens ranking loopless paths algorithm. 4OR, 1(2):121–133,
2003.

20. I. Quesada and I. E. Grossmann. An LP/NLP based branch–and–bound algorithm for convex MINLP optimiza-
tion problems. Computers and Chemical Engineering, 16:937–947, 1992.

21. M. G. C. Resende and P. M. Pardalos. Handbook of Optimization in Telecommunications. Springer, 2006.
Chapter 17 by J.G. Klincewicz.

22. R. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex programming. Mathematical
Programming, 86:515–532, 1999.

23. A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line search algorithm
for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006.

24. T. Westerlund and F. Pettersson. A cutting plane method for solving convex MINLP problems. Computers and
Chemical Engineering, 19:s131–s136, 1995.

http://www.coin-or.org/

