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Abstract

We consider the following problem for oriented graphs and digraphs: Given an oriented graph
(digraph) G, does it contain an induced subdivision of a prescribed digraph D? The complexity
of this problem depends on D and on whether G must be an oriented graph or is allowed to
contain 2-cycles. We give a number of examples of polynomial instances as well as several NP-
completeness proofs.
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1 Introduction

Many interesting classes of graphs are defined by forbidding induced subgraphs, see [4] for a survey.
This is why the detection of several kinds of induced subgraphs is interesting, see [7] where several
such problems are surveyed. In particular, the problem of deciding whether a graph G contains, as an
induced subgraph, some graph obtained after possibly subdividing prescribed edges of a prescribed
graph H has been studied. This problem can be polynomial or NP-complete depending on H and
to the set of edges that can be subdivided. The aim of the present work is to investigate various
similar problems in digraphs, focusing only on the following problem: given a digraph H, is there a
polynomial algorithm to decide whether an input digraph G contains a subdivision of H?

Of course the answer depends heavily on what we mean by “contain”. Let us illustrate this
by surveying what happens in the realm of non-oriented graphs. If the containment relation is the
subgraph containment, then for any fixed H, detecting a subdivision of H in an input graph G can
be performed in polynomial time by the Robertson and Seymour linkage algorithm [9] (for a short
explanation of this see e.g. [2]). But if we want to detect an induced subdivision of H then the
answer depends on H (assuming P 6=NP). It is proved in [7] that detecting an induced subdivision
of K5 is NP-complete, and the argument can be reproduced for any H whose minimum degree is at
least 4. Polynomial-time solvable instances trivially exist, such as detecting an induced subdivision
of H when H is a path, or a graph on at most 3 vertices. But non-trivial polynomial-time solvable
instances also exist, such as detecting an induced subdivision of K2,3 that can be performed in time
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O(n11) by the Chudnovsky and Seymour’s three-in-a-tree algorithm, see [5]. Note that for many
graphs H, nothing is known about the complexity of detecting an induced subdivision of H: when H
is cubic (in particular when H = K4) or when H is a disjoint union of 2 triangles, and in many other
cases.

When we move to digraphs, the situation becomes more complicated, even for the subdigraph
containment relation. All the digraphs we will consider here are simple, i.e. they have no loops nor
multiple arcs. We rely on [1] for classical notation and concepts. A subdivision of a digraph D, also
called a D-subdivision, is a digraph obtained from D by replacing each arc ab of D by a directed
(a,b)-path. From the NP-completeness of the 2-linkage problem, proved by Fortune, Hopcroft and
Wyllie [6], it is straightforward to construct an oriented graph H such that deciding whether a given
oriented graph G contains a subdivision of H as a subgraph is NP-complete. See Theorem 33.

Let us now think about the induced subdigraph relation. An induced subdigraph of a digraph G
which is a subdivision of D is called an induced subdivision of D. When D is a digraph, we define:

PROBLEM ΠD

Input: A digraph G.
Question: Does G contain an induced subdivision of D?

In ΠD, the instance digraph G may have (directed) 2-cycles, where the 2-cycle is the digraph
C2 on 2 vertices a,b with 2 arcs ab and ba. Because of these 2-cycles, NP-completeness results
are often quite easy to obtain, because no induced directed path can go through a 2-cycle (which
by itself contains a chord). Hence 2-cycles are very convenient to force an induced directed path
to go through many places of a large digraph that models an instance of 3-SAT. This yields NP-
completeness results that cover large classes of detection problems. See Section 4. In fact, it can be
easily shown (see Section 2) that if D is the disjoint union of spiders (trees obtained from disjoint
directed paths by identifying one end of each path into a vertex) and at most one 2-cycle, then ΠD

is polynomial-time solvable. However, except from those digraphs, we are not aware of any D for
which ΠD is polynomial time solvable. We indeed conjecture that there are none. As an evidence, we
show that if D is an oriented graph, i.e. a digraph with no 2-cycles, then ΠD is NP-complete unless it
is the disjoint union of spiders (see Corollary 13).

It seems that allowing or not allowing 2-cycles is an essential distinction. Hence we also consider
the restricted problem Π′D in which the input graph G is an oriented graph.

PROBLEM Π′D
Input: An oriented graph G.
Question: Does G contain an induced subdivision of D?

Observe that if ΠD is polynomial-time solvable then Π′D is also polynomial-time solvable. Con-
versely, if Π′D is NP-complete then ΠD is also NP-complete. Hence, NP-completeness results cover
less cases for Π′D.

Similarly to ΠD, for several D’s, Π′D is solvable by very simple polynomial-time algorithms (See
Section 2). However, in this case they are not the only ones. We could obtain several digraphs for
which Π′D is solvable in polynomial time with non-trivial algorithms.

We denote by T T3 the transitive tournament on 3 vertices a,b,c and arcs ab,ac,bc. In Subsec-
tion 5.1, we use a variant of Breadth First Search that computes only induced trees to solve Π′T T3

in
polynomial time.

We also study oriented paths in Subsection 5.2. An oriented path is an orientation of a path. The
length of an oriented path P is its number of arcs and is denoted l(P). Its first vertex is called its origin
and its last vertex its terminus. The blocks of an oriented paths are its maximal directed subpaths. We
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denote by A−k the path on vertices s1,s2, . . . ,sk,sk+1 and arcs s2s1,s2s3,s4s3,s4s5, . . . and A+
k the path

on vertices s1,s2, . . . ,sk,sk+1 and arcs s1s2,s3s2,s3s4,s5s4, . . .. These two paths are the antidirected
paths of length k−1. Observe that A−k is the converse of A+

k (i.e. it is obtained from A+
k by reversing

all the arcs); if k is odd they are isomorphic but the origin and terminus are exchanged. Clearly, an
oriented path with k-blocks can be seen as a subdivision of A−k or A+

k . In particular, paths with one
block are the directed paths. We show that if P is an oriented path with three blocks such that the
last one has length one then ΠP is polynomial-time solvable. We also use classical flow algorithms to
prove that Π′A−4

is polynomial-time solvable.
If D is any of the two tournaments on 3 vertices, namely the directed 3-cycle C3 and the transitive

tournament T T3, then Π′D is polynomial time solvable. Hence it is natural to study the complexity
of larger tournaments. In Section 6, it is shown that if D is a transitive tournament on more than 3
vertices or the strong tournament on 4 vertices, then Π′D is NP-complete.

Finally, in Section 7, we point out several open questions.

2 Easily polynomial-time solvable problems

There are digraphs D for which ΠD or Π′D can be easily proved to be polynomial-time solvable. For
example, it is the case for the directed k-path Pk on k vertices. Indeed, a Pk-subdivision is a directed
path of length at least k−1 and an induced directed path of length at least k−1 contains an induced
Pk. Hence a digraph has a Pk-subdivision if and only if it has Pk as an induced subdigraph. This can
be checked in time O(nk) by checking for every set of k vertices whether or not it induces a Pk.

A vertex of a digraph is a leaf if its degree is one, a node if its out-degree or its in-degree is at least
2, and a continuity otherwise, that is if both its out- and in-degree equal 1. A spider is a tree having
at most one node.

Proposition 1. If D is the disjoint union of spiders then ΠD is polynomial-time solvable.

Proof. A digraph G contains an induced D-subdivision if and only if it contains D as an induced
subdigraph. This can be checked in time O(n|V (D)|).

It is also not difficult to see that ΠC2 is polynomial-time solvable.

Proposition 2. ΠC2 is polynomial-time solvable.

Proof. A subdivision of the directed 2-cycle is a directed cycle. In a digraph, a shortest cycle is
necessarily induced, hence a digraph has a C2-subdivision if and only if it is not acyclic. Since
one can check in linear time if a digraph is acyclic or not [1, Section 2.1], ΠC2 is polynomial-time
solvable.

Since an oriented graph contains no 2-cycle, then Π′C2
= Π′C3

. Similarly to ΠC2 , this problem is
polynomial-time solvable.

Proposition 3. Π′C3
is polynomial-time solvable.

Proof. An oriented graph contains an induced subdivision of C3 if and only if it is not acyclic.

Moreover, the following is polynomial-time solvable.

Proposition 4. If D is the disjoint union of spiders and a C2 then ΠD is polynomial-time solvable.

Proof. D′ = D−C2 is a collection of spiders. Let p be its order. For each set A of p vertices, we
check if the digraph G〈A〉 induced by A is D′ and if yes we check if G− (A∪N(A)) has a directed
cycle.
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Similarly,

Proposition 5. If D is the disjoint union of spiders and a C3 then Π′D is polynomial-time solvable.

3 NP-completeness results for oriented graphs

In all proofs below it should be clear that the reductions can be performed in polynomial time and
hence we omit saying this anymore. Before starting with the NP-completeness proofs, we state a
proposition.

Proposition 6. Let D be a digraph and C a connected component1 of D. If ΠC is NP-complete then
ΠD is NP-complete. Similarly, if Π′C is NP-complete then Π′D is NP-complete.

Proof. Let D1, . . . ,Dk be the components of D and assume that ΠD1 is NP-complete. To show that
ΠD is NP-complete, we will give a reduction from ΠD1 to ΠD.

Let G1 be an instance of ΠD1 and G be the digraph obtained from D by replacing D1 by G1. We
claim that G has an induced D-subdivision if and only if G1 has an induced D1-subdivision.

Clearly, if G1 has an induced D1-subdivision S1 then the disjoint union of S1 and the Di, 2≤ i≤ k
is an induced D-subdivision in G.

Reciprocally, assume that G contains an induced D-subdivision S. Let Si, 1 ≤ i ≤ k be the con-
nected components of S such that Si is an induced Di-subdivision. Set Gi = Di if i ≥ 2. Then the
Gi’s are the connected components of G. Thus S1 is contained in one of the Gi’s. If it is G1 then
we have the result. Otherwise, it is contained in some other component say G2 = D2. In turn, S2
is contained in some G j. Hence G j contains a D1-subdivision because S2 contains a D1-subdivision
since D2 contains S1. Thus G j cannot be G2 since G2 already contains D1 and |S2| ≥ |G2|. If j = 1
then we have the result. If not we may assume that j = 3. And so on, for every i ≥ 3, applying the
same reasoning, we show that one of the following occurs:

• Si is contained in G1 and thus G1 contains a D1-subdivision because Si did.

• Si is contained in G j which cannot be any of the Gi, 1 ≤ l ≤ i, for cardinality reasons. Hence
we may assume that G j = Gi+1 and that Gi+1 and hence Si+1 contains a D1-subdivision.

Since the number of components is finite, the process must stop, so G1 contains an induced D1-
subdivision.

3.1 Induced (a,b)-path in an oriented graph

Our first result is an easy modification of Bienstock’s proof [3] that finding an induced cycle through
two given vertices is NP-complete for undirected graphs.

Lemma 7. It is NP-complete to decide whether an oriented graph contains an induced (a,b)-path
for prescribed vertices a and b.

Proof. Given an instance I of 3-SAT with variables x1,x2, . . . ,xn and clauses C1,C2, . . . ,Cm we first
create a variable gadget V 1

i for each variable xi, i = 1,2, . . . ,n and a clause gadget C1
j for each clause

C j, j = 1,2, . . . ,m as shown in Figure 1. Then we form the digraph G1(I ) as follows (see Figure 2):
Form a chain U of variable gadgets by adding the arcs biai+1 for i = 1,2, . . . ,n− 1 and a chain W
of clause gadgets by adding the arcs d jc j+1, j = 1,2, . . . ,m− 1. Add the arcs aa1,bnc1,cmb to get
a chain from a to b. For each clause C, we connect the three literal vertices of the gadget for C to
the variable gadgets for variables occuring as literals in C in the way indicated in the figure. To be
precise, suppose Cp = (xi ∨ x̄ j ∨ xk), then we add the following three 3-cycles l1

pxivil1
p, l2

px̄ jv̄ jl2
p and

l3
pxkvkl3

p. This concludes the construction of G1(I ).
1A connected component of a digraph H is a connected component in the underlying undirected graph of H.
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l1
j

vi

x̄i

ai

xi

d jc jbi

v̄i

l3
j

l2
j

Figure 1: The variable gadget V 1
i (left) and the clause gadget C1

j (right).

b3

d3

x1∨ x̄2∨ x3 x̄1∨ x2∨ x̄3

b

a

x̄1 x̄2 x̄3

x1 x2 x3

c1

Figure 2: The digraph G1(I ) when I has variables x1,x2,x3 and three clauses C1,C2,C3 where C1 =
(x̄1∨ x2∨ x̄3) and C3 = (x1∨ x̄2∨ x3) (for clarity we do not show the arcs corresponding to C2)
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We claim that there is an induced directed (a,b)-path in G1(I ) if and only if I is satisfiable.
Suppose first that I is satisfiable and consider a truth assignment T which satisfies I . Now form a
directed (a,b)-path P by taking the arcs aa1,cmb and the following subpaths: for each variable xi take
the subpath aix̄iv̄ibi if T sets xi true and otherwise take the subpath aixivibi. For each clause C j we fix
a litteral l′j which is satisfied by T and take the subpath c jl′jd j. It is easy to check that P is induced
as we navigate it to avoid each of the arcs between the variable chain U and the clause chain W .
Suppose now that Q is an induced directed (a,b)-path in G1(I ). It follows from the construction that
Q starts by a directed (a1,bn)-path through all variable gadgets which contains no vertices from W
and continues with a directed (c1,dm)-path through all clause gadgets which contains no vertices from
U . This follows from the presence of the directed 3-cycles that prevent Q from using any of the arcs
going from a variable gadget to a clause gadget other than the arc bnc1. Similarly there is no induced
directed (c1,dm)-path which contains any vertex from U . Now form a truth assignment by setting
xi true if and only if Q uses the subpath aix̄iv̄ibi and false otherwise. Since Q is induced, for each
clause C j if Q uses the subpath c jl′jd j, then we claim that l′j will be true with the truth assignment just
described: if l′j = xk for some k then since Q is induced the presence of the arc l′jxk implies that Q uses
the path akx̄kv̄kbk and similarly, if l′j = x̄k then Q uses the path akxkvkbk and again C j is satisfied.

3.2 Induced subdivisions of directed cycles

We first show that for any k ≥ 4, the problem Π′Ck
is NP-complete.

Theorem 8. It is NP-complete to decide whether an oriented graph contains an induced subdivision
of a fixed directed cycle of length at least 4.

Proof. Given an instance I of 3-SAT with variables x1,x2, . . . ,xn and clauses C1,C2, . . . ,Cm we form
the digraph G∗1(I ) from G1(I ) which we defined above by adding the arc ba.

Let C be an induced cycle of G∗1(I ). Since the variable chain U and the clause chain W are both
acyclic, C must contain an arc with tail l in W and head y in U . If ly 6= ba, then there exists i such that
y ∈ {xi, x̄i} and so C = lxivil or C = lx̄iv̄il by construction of G∗1(I ). Hence every induced directed
cycle of length at least 4 contains the arc ba. Thus G∗1(I ) has an induced cycle of length at least 4 if
and only if G1(I ) has an induced directed (a,b)-path. As shown in the proof of Lemma 7 this is if
and only if I is satisfiable.

Theorem 9. Let D be an oriented graph containing an induced directed cycle of length at least 4
with a vertex of degree2 2. It is NP-complete to decide whether a given oriented graph contains an
induced subdivision of D.

Proof. Let D be given and let I be an arbitrary instance of 3-SAT. Fix an induced directed cycle C of
length at least 4 in D and fix an arc uv on C such that u is of degree 2. Let G′1(I ) be the oriented graph
that we obtain by replacing the arc uv by a copy of G1(I ) and the arcs ua,bv. We claim that G′1(I )
contains an induced subdivision of D if and only if I is satisfiable (which is if and only if G1(I )
contains an induced directed (a,b)-path).

Clearly, if G1(I ) has an induced directed (a,b)-path, then we may use the concatention of this
path with ua and bv instead of the deleted arc uv to obtain an induced D-subdivision in G′1(I ) (the
only subdivided arc will be uv).

Conversely, suppose that G′1(I ) contains an induced subdivision D′ of D. Clearly D′ has at least
as many vertices as D and thus must contain at least one vertex z of V (G1(I )). Since u is of degree
2, the digraph D\uv has fewer induced directed cycles of length at least 4 than D. (Note that the fact

2The degree of a vertex v in a digraph is the number of arcs with one end in v, that is, the sum of the in- and out-degree
of v.

6



that u is of degree 2 is important: if u has degree more than 2, deleting uv could create new induced
directed cycles. ) Thus z must be on a cycle of length at least 4 in D′. But this and the fact that G1(I )
has no induced directed cycle of length at least 4 implies that G′1(I ) contains an induced directed
(a,b)-path (which passes through z).

We move now to the detection of induced subdivisions of digraphs H when H is the disjoint
union of one or more directed cycles, all of length 3. If there is just one cycle in H, the problem
is polynomial-time solvable by Proposition 3. But from two on, it becomes NP-complete. We need
results on the following problem.

PROBLEM DIDPP
Input: An acyclic digraph G and two vertex pairs (s1, t1),(s2, t2). Moreover, there is no directed path
from {s2, t2} to {s1, t1}.
Question: Does G have two paths P1, P2 such that Pi is a directed (si, ti)-path, i = 1,2, and G〈V (P1)∪
V (P2)〉 is the disjoint union of P1 and P2?

Problem k-DIDPP was shown to be NP-complete by Kobayashi [8] using a proof similar to Bien-
stock’s proof in [3].

Theorem 10. Let D be the disjoint union of two directed cycles with no arcs between them. Then Π′D
is NP-complete.

Proof. Let G be an instance of DIDPP and H the oriented graph obtained from it by adding new
vertices u1,u2 and the arcs t1u1, u1s1, t2u2 and u2s2. Since G was acyclic it is not difficult to see that
H is a yes-instance of Π′D if and only if G is a yes-instance of DIDPP.

4 NP-completeness results for digraphs

l2

x̄i

ai

xi

d j

l3

l1

c jbi

Figure 3: The variable gadget V 2
i (left) and the clause gadget C2

j (right). Unoriented bold edges
represent 2-cycles.

Theorem 11. Let k ≥ 3 be an integer. Then ΠCk is NP-complete.

Proof. Reduction from 3-SAT. Let I be an instance of 3-SAT with variables x1,x2, . . . ,xn and clauses
C1,C2, . . . ,Cm. We first create a variable gadget V 2

i for each variable xi, i = 1,2, . . . ,n and a clause
gadget C2

j for each clause C j, j = 1,2, . . . ,m as shown in Figure 3. Then we form the digraph G2(I )
as follows (see Figure 4): Form a chain U of variable gadgets by adding the arcs biai+1 for i =
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1,2, . . . ,n−1 and a chain W of clause gadgets by adding the arcs d jc j+1, j = 1,2, . . . ,m−1. Add the
arcs aa1,bnc1,cmb to get a chain from a to b. For each clause C, we connect the three literal vertices
of the gadget for C to the variable gadgets for variables occuring as literals in C in the following way.
Suppose Cp = (xi ∨ x̄ j ∨ xk), then we add the following three 2-cycles l1

pxil1
p, l2

px̄ jl2
p and l3

pxkl3
p. This

concludes the construction of G2(I ). See Figure 4.

b3

d3

x1∨ x̄2∨ x3 x̄1∨ x2∨ x̄3

b

a

x̄1 x̄2 x̄3

x1 x2 x3

c1

Figure 4: The digraph G2(I ) when I has variables x1,x2,x3 and three clauses C1,C2,C3 where C1 =
(x̄1∨ x2∨ x̄3) and C3 = (x1∨ x̄2∨ x3) (for clarity we do not show the arcs corresponding to C2)

Similarly to the proof of Lemma 7, one can show that there is an induced directed (a,b)-path in
G2(I ) if and only if I is satisfiable.

Let Gk
2(I ) be the digraph obtained from Ck by replacing one arc ab by G2(I ). It is easy to check

that G2(I ) has no induced cycle of length at least 3. Hence Gk
2(I ) has an induced directed cycle of

length k if and only if G2(I ) has an induced directed (a,b)-path. Hence by Lemma 7, Gk
2(I ) has an

induced D-subdivision if and only if I is satisfiable.

A branch is a directed walk such that all the vertices are distinct except possibly its ends, its ends
are nodes or leaves and all its internal vertices are continuities. A branch is central if its two ends are
nodes.

The skeleton of a multidigraph D is the digraph whose vertices are the nodes and leaves in D and
in which ab is an arc if and only if there is a directed (a,b)-branch in D. Observe that a skeleton may
have loops and multiple arcs. Clearly, any subdivision of D has the same skeleton as D.

Theorem 12. Let D be an oriented graph. If D contains a central branch, then ΠD is NP-complete.
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Proof. Reduction from 3-SAT. Let I be an instance of 3-SAT. Let B be a central branch with origin a
and terminus c. Let GD

2 (I ) be the digraph obtained from D by replacing the first arc ab of B by G2(I ).
Clearly if G2(I ) has an induced directed (a,b)-path P, then the union of P and D \ ab is a D-

subdivision (in which only ab is subdivided) in GD
2 (I ).

Conversely, assume that GD
2 (I ) contains an induced D-subdivision S. It is easy to check that no

vertex in V (G2(I ))\{a,b} can be a node of S (the 2-cycles prevent this). Then since S has the same
skeleton as D, a and b are nodes of S. In addition, since the number of central branches in D \ ab is
one less than the number of central branches in D, one central branch of D must use vertices of G2(I ).
Thus, there is an induced directed (a,b)-path in G2(I ).

Hence GD
2 (I ) has an induced D-subdivision if and only if G2(I ) has an induced directed (a,b)-

path and thus if and only if I is satisfiable.

Corollary 13. Let D be an oriented graph. Then ΠD is NP-complete unless D is the disjoint union of
spiders.

Proof. Let D be an oriented graph. If one of its connected components is neither a directed cycle nor
a spider, then it contains at least one central branch. So ΠD is NP-complete by Theorem 12.

If one of the components is directed cycle of length at least 3, then ΠD is NP-complete by Theo-
rem 11 and Proposition 6.

Finally, if all its connected components are spiders then ΠD is polynomial-time solvable according
to Theorem 5.

We believe that Corollary 13 can be generalized to digraphs.

Conjecture 14. Let D be a digraph. Then ΠD is NP-complete unless D is the disjoint union of spiders
and at most one 2-cycle.

As support for this conjecture, we give some other digraphs D (which are not oriented graphs),
for which ΠD is NP-complete. In particular, when D is the lollipop, that is the digraph L with vertex
set {x,y,z} and arc set {xy,yz,zy}. Note that the lollipop seems to be the simplest digraph that is not
an oriented graph nor a C2. So it should be an obvious candidate for a further polynomial case if one
existed.

Theorem 15. Deciding if a digraph contains an induced subdivision of the lollipop is NP-complete.

Proof. Reduction from 3-SAT. Let I be an instance of 3-SAT with variables x1,x2, . . . ,xn and clauses
C1,C2, . . . ,Cm. We first create a variable gadget V 3

i for each variable xi, i = 1,2, . . . ,n and a clause
gadget C3

j for each clause C j, j = 1,2, . . . ,m as shown in Figure 5. Then we form the digraph G3(I )
as follows: Form a chain U of variable gadgets by adding the arcs biai+1 for i = 1,2, . . . ,n−1 and a
chain W of clause gadgets by adding the arcs d jc j+1, j = 1,2, . . . ,m−1. Add the arcs aa1,bnc1,cmb
to get a chain from a to b. For each clause C, we connect the three literal vertices of the gadget for C
to the variable gadgets for variables occuring as literals in C in the way indicated in the figure.

Similarly to the proof of Lemma 7, one can check that there is an induced directed (a,b)-path in
G3(I ) if and only if I is satisfiable.

The digraph GL
3(I ) is obtained from L and G3(I ) by deleting the arc yz and adding the arcs ya

and bz.
It is easy to see that G3(I ) has no induced directed cycle of length 3 and that no 2-cycle is

contained in an induced lollipop. Hence if GL
3(I ) contains an L-subdivision, the induced directed

cycle in it is the concatenation of the path bzya and a induced directed (a,b)-path in G3(I ). Thus I is
satisfiable. The other direction is (as usual) clear.
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Figure 5: The variable gadget V 3
i , (top left), the clause gadget C3

i (bottom left) and the way to connect
them in G3(I ) (right). Bold unoriented edges represent 2-cycles. Only the connection for one variable
gadget and one clause gadget is shown and the general strategy for connecting variable and clause
gadgets is the same as in G1(I) (Figure 2).

Remark 16. The cone is the digraph C with vertex set {x,y,z} and arc set {xy,xz,yz,zy}. In the very
same way as Theorem 15, one can show that finding an induced subdivision of the cone in a digraph
is NP-complete.

5 Polynomial-time algorithms for induced subdivisions in oriented graphs

According to Conjecture 14, the only digraphs for which ΠD is polynomial-time solvable are disjoint
unions of spiders and possibly one 2-cycle. For such digraphs, easy polynomial-time algorithms exist
(See Section 2).

In this section, we show that the picture is more complicated for Π′D than for ΠD. We show some
oriented graphs D for which Π′D is polynomial-time solvable. For all these oriented graphs, ΠD is
NP-complete by Corollary 13.

5.1 Induced subdivision of cherries in oriented graphs

Let s,u,v be three vertices such that s 6= v and u 6= v (so s = u is possible). A cherry on (s,u,v) is any
oriented graph made of three induced directed paths P,Q,R such that:

• P is directed from s to u (so when s = u it has length 0);

• Q and R are both directed from u to v (so they both have length at least 1 and since we do not
allow parallel edges, at least one of them has length at least 2);

• u,v are the only vertices in more than one of P,Q,R;

• there are no other arcs than those from P,Q,R.

The cherry is rooted at s.

An induced cherry contains an induced T T3-subdivision (made of Q and R) and a T T3-subdivision
is a cherry (with u = s). Hence detecting an induced cherry is equivalent to detecting an induced T T3-
subdivision.

10



In order to give an algorithm that detects a cherry rooted at a given vertex, we use a modification
of the well-known Breadth First Search algorithm (BFS), see e.g. [1, Section 3.3]. Given an oriented
graph G and a vertex s ∈ V (D), BFS returns an out-tree rooted at s and spanning all the vertices
reachable from s. It proceeds as follows:

BFS(G,s)
Create a queue Q consiting of s; Intialize T = ({s}, /0)
while Q is not empty do

Consider the head u of Q and visit u, that is
foreach out-neighbour v of u in D do

if v /∈V (T ) then
V (T ) :=V (T )∪{v} and A(T ) := A(T )∪{uv}
Put v to the end of Q

Delete u from Q

Note that the arc-set of the out-branching produced by BFS depends on the order in which the vertices
are visited, but the vertex-set is always the same: it is the set of the vertices reachable from s. See [1]
p. 92 for more details on BFS. We need the following variant:

IBFS(G,s)
Create a queue Q consisting of s; Intialize T = ({s}, /0)
while Q is not empty do

Consider the head u of Q and visit u, that is
foreach out-neighbour v of u in G do

if NG(v)∩V (T ) = {u} then
V (T ) :=V (T )∪{v} and A(T ) := A(T )∪{uv}
Put v to the end of Q

Delete u from Q

Observe that IBFS (which we also call induced-BFS) is the same as BFS except that we add the
out-neighbour v of u to T only if it has no other neighbour already in T , hence ensuring that the
resulting out-tree is an induced subdigraph of G. Contrary to BFS, the vertex-set of a tree obtained
after IBFS may depend on the order in which the vertices are visited.

IBFS can easily be implemented to run in time O(n2). When T is an oriented tree, we denote by
T [x,y] the unique oriented path from x to y in T .

Theorem 17. Let G be an oriented graph, s a vertex and T a tree obtained after running IBFS(G,s).
Then exactly one of the following outcomes is true:

(i) D contains an induced subdigraph that is a cherry rooted at s;

(ii) for every vertex x of T , any out-neighbour of x not in T has an out-neighbour that is an ancestor
of x in T .

This is algorithmic in the sense that there is an O(n2) algorithm that either outputs the cherry of
(i) or checks that (ii) holds.

Proof. Suppose that T does not satisify (ii). Then some vertex x of T has an out-neighbour y not in
T and no out-neighbour of y is an ancestor of x. Without loss of generality, we assume that x is the
first vertex added to T when running IBFS with such a property. In particular, T [s,x]y is an induced
directed path because a chord would contradict (ii) or the choice of x. Let v be the neighbour of y in
T , different from x, that was first added to T when running IBFS. Note that v exists for otherwise y
would have been added to T when visiting x. If x is the parent of v in T then T [s,x]y together with v
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form a cherry rooted at s (whatever the orientation of the arc between y and v). So we may assume
that x is not the parent of v. When visiting x, vertex y was not added to T , hence v was already visited
(because x is not the parent of v). In addition, when v was visited, it was the unique neighbour of y
in the current out-tree, so y is an in-neighbour of v, for otherwise it would have been added to T . Let
u be the common ancestor of x and v in T , chosen closest to x. Since T does not satisfy (ii) by the
choice of x and y, u 6= v. Now the directed paths sTu, T [u,x]yv and T [u,v] form an induced cherry
rooted at s. Indeed since T is an induced out-tree, it suffices to prove that y has no neighbour in these
three paths except x and v. By definition of v, there is no neighbour of y in T [s,u] and T [u,v] except
v. Moreover, y has no out-neighbour in T [u,x] by the assumption that (ii) does not hold for y and x
and it has no in-neighbour in T [u,x] except x by the choice of x.

Conversely, let us assume that T satisfies (ii) and suppose by contradiction that G contains an
induced cherry C rooted at s. Since T is an induced out-branching, some vertices of C are not in T .
So, let y be a vertex of V (C)\V (T ) as close to s as possible in the cherry. Let x be an in-neighbour of
y in C∪T . From the choice of y, x and all its ancestors along the cherry are in T . Since T is induced,
the ancestors of x along the cherry are in fact the ancestors of x along T . Hence, x is a vertex of T
with an out-neighbour y not in T having no out-neighbour among the ancestors of x along T . This
contradicts T satisifying (ii).

All this may be turned in an O(n2)-algorithm that finds a cherry rooted at s if it exists or answer no
otherwise. Indeed we first run IBFS and then check in time O(n2) if the obtained tree T satisfies (ii).
If not, then we can find the cherry following the first paragraph of the proof.

Remark 18. Since a digraph contains an induced T T3-subdivision if and only if it contains an in-
duced cherry, Theorem 17 implies directly that Π′T T3

is solvable in time O(n3) (because we need to
enumerate all potential roots).

We can slightly extend our result. A tiny cherry is a cherry such that the path Q and R as in the
definition form a T T3.

Corollary 19. For any tiny cherry D, the problem Π′D is solvable in time O(n|V (D)|).

Proof. Let P be the path of D as in the definition of cherry. Let G be the input oriented graph. Enu-
merate by brute force all induced directed paths of order |P| by checking all the possible subdigraphs
of order |P|. For each such path P′ with terminus x, look for a cherry rooted at x in the graph G′

obtained by deleting all the vertices of P− x and their neighbourhoods except x. If there is such a
cherry C then the union of P and C is an induced D-subdivision.

Similarly to Propositions 4 and 5, we have the following.

Corollary 20. If D is the disjoint union of spiders and a tiny cherry then Π′D is polynomial-time
solvable.

5.2 Induced subdivision of oriented paths with few blocks in oriented graphs.

By Proposition 1, for any oriented path P with at most two blocks ΠP and thus Π′P are polynomial-
time solvable. In this section, we shall prove that Π′P is polynomial-time solvable for some oriented
paths with three or four blocks. In contrast, ΠP is NP-complete for every oriented path with at least
three blocks as shown in Corollary 13.

5.2.1 Oriented path with three blocks

Theorem 21. There exists an algorithm of complexity O(m2) that given a connected oriented graph
on n vertices and m arcs with a specified vertex s returns an induced A+

2 -subdivision with origin s if
one exists, and answer ‘no’ if not.
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Proof. Observe that any induced A+
2 -subdivision with origin s contains an induced A+

2 -subdivision
with origin s such that the directed path corresponding to the arc s3s2 is some arc f . Such a subdivision
is called f -leaded.

Given an oriented graph G, we enumerate all arcs f = s′3s′2. For each arc in turn we either show
that there is no f -leaded induced A+

2 -subdivision with origin s or give an induced subdivision of A+
2

with origin s, (but not necessarily f -leaded). This will detect the A+
2 -subdivision since if some exists,

it is f -leaded for some f .
We do this as follows. We delete all in-neighbours of s and all neighbours of s′3 except s′2. Let us

denote by G′ the resulting graph. Then we compute by BFS a shortest directed path P from s to s′2. If
it is induced, together with s′3s′2, it forms the desired A+

2 subdivision. So, as P has no forward chord
(since it is a shortest path), there is an arc uv in G′〈V (P)〉 such that u occurs after v on P. Take such an
arc b3b2 such that b2 is as close as possible to s (in P). Observe that since we deleted all in-neighbours
of s we have b2 6= s. Now, P[s1,b2] together with b3b2 forms the desired A+

2 -subdivision.

There are O(m) arcs and for each of them we must find a shortest path in G′ which can be done
in O(m). Hence the complexity of the algorithm is O(m2).

From this theorem, one can show that finding an induced A−3 -subdivision is polynomial-time
solvable. It is enough to enumerate all arcs s′2s′1, to delete s′1 and its neighbours except s′2, and to
decide whether there exists in what remains an A+

2 -subdivision with origin s2. One can also de-
rive polynomial-time algorithms for finding induced subdivisions of other oriented paths with three
blocks.

Corollary 22. Let P be a path with three blocks such that the last one has length 1. One can check in
time O(n|P|−2m2) whether a given oriented graph contains an induced P-subdivision.

Proof. By directional duality, we may assume that P is an A−3 -subdivision. Let Q be the subdigraph
of P formed by the first block of P and the second block of P minus the last arc. Let s be the terminus
of Q. For each induced oriented path Q′ in the instance graph, isomorphic to Q (there are at most
O(n|P|−2) of them), we delete Q′− s and all vertices that have neighbours in Q− s except s. We then
detect an A+

2 -subdivision rooted at s in the resulting graph. This will detect a P-subdivision if there is
one.

5.2.2 Induced subdivision of A−4 in an oriented graph

We show how to check the presence of an induced copy of A−4 by using flows (for definitions and
algorithms for flows see e.g. [1, Chapter 4]).

Theorem 23. There exists an algorithm of complexity O(nm2) that given an oriented graph on n
vertices and m arcs with a specified vertex s returns an induced A+

3 -subdivision rooted at s, if one
exists, and answer ‘no’ if not.

Proof. The general idea is close to the one of the proof of Theorem 21. Observe that any induced
A+

3 -subdivision with origin s = a1 contains an induced subdivision of A+
3 with origin s = a1 such that

the directed path corresponding to the arc s3s4 is some arc f . If, in addition, the vertex corresponding
to s2 is v, such a subdivision is called (v, f )-leaded.

Given an oriented graph G, we enumerate all pairs (a2,a3a4) such that a2,a3,a4 are distinct ver-
tices and a3a4 ∈ E(G). For each such pair in turn we either show that there is no (a2,a3a4)-leaded
induced A+

3 -subdivision with origin a1 or give an induced subdivision of A+
3 with origin a1 (but not

necessarily (a2,a3a4)-leaded).
We do this as follows. We first delete all the neighbours of a4 except a3, all in-neighbours of a1

and a3 and finally all out-neighbours of a2. If this results in one or more of the vertices a1, . . . ,a4 to
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be deleted, then there cannot be any (a2,a4a3)-leaded induced A+
3 -subdivision with origin a1 because

there is an arc in G〈{a1, . . . ,a4}〉 which is not in {a1a2,a3a2,a3a4}. So we skip this pair and proceed
to the next one. Otherwise we delete a4 and we use a flow algorithm to check in the resulting digraph
G′ the existence of two internally-disjoint directed paths P,Q such that the origin of P and Q are a1
and a3 respectively and such that a2 is the terminus of both P and Q. Moreover, we suppose that
these two paths have no forward chord (this can easily be ensured by running BFS on the graphs
induced by each of them). If no such paths exist , then we proceed to the next pair because there is
no (a2,a3a4)-leaded induced A+

3 -subdivision. If we find such a pair of directed paths P,Q, then we
shall provide an induced subdivision of A+

3 with origin a1. If P and Q are induced and have no arcs
between them, then these paths together with the arc a3a4 form the desired induced subdivision of
A+

3 .
Suppose that P is not induced. As P has no forward chord, there is an arc uv in G′〈V (P)〉 such that

u occurs after v on P. Take such an arc b3b2 such that b2 is as close as possible to a1 (in P), and subject
to this, such that b3 is as close as possible to a2. Observe that since we deleted all in-neighbours of a1
and all out-neighbours of a2 before, we must have b2 6= a1 and b3 6= a2. Let b4 be the successor of b3
on P. Now P[a1,b2] and the arcs b3b2,b3b4 form the desired induced subdivision of A+

3 . From here
on, we suppose that P is induced.

Suppose now that there is an arc e with an end x ∈V (P) and the other y ∈V (Q). Choose such an
arc so that the sum of the lengths of P[a1,x] and Q[a3,y] is as small as possible. If e is from x to y we
have y 6= a3 because we removed all the in-neighbours of a3, else e is from y to x and we have x 6= a1
because we removed all the in-neighbours of a1. In all cases, we get an induced subdivision of A+

3 by
taking the paths P[a1,x] and Q[a3,y] and the arcs a3a4,e. From here on, we suppose that there are no
arcs with an end in V (P) and the other in V (Q).

The last case is when Q is not induced. Since Q has no forward chord, there is an arc uv in
G′〈V (Q)〉 such that u occurs after v on Q. Take such an arc b3b4 such that b3 is as close as possible to
a2 (in Q). Observe that since we deleted all out-neighbours of a2 before, we must have b3 6= a2. Now
P, Q[b3,a2] and the arc b3b4 form the desired induced subdivision of A+

3 .

There are O(nm) pairs (a2,a3a4) and for each of them, we run an O(m) flow algorithm (we just
need to find a flow of value 2, say, by the Ford-Fulkerson method [1, Section 4.5.1]) and do some
linear-time operations. Hence the complexity of the algorithm is O(nm2).

One can check in polynomial time if there is an induced A−4 -subdivision: it is enough to enumerate
all arcs t2t1, to delete t1 and its neighbours except t2, and to decide whether there exists in what remains
an A+

3 subdivision with origin t2. One can also derive polynomial-time algorithm for finding induced
subdivision of other oriented paths with four blocks.

Corollary 24. Let P be an oriented path that can be obtained from A−4 by subdividing the first arc
and the second arc. One can check in time O(n|P|−1m2) whether a given oriented graph contains an
induced subdivision of P.

Proof. Let R be the subdigraph of P formed by the first block of P and its second block minus the last
arc. Let s be the last vertex of R. For each induced oriented path Q in the instance graph, isomorphic
to R (there are O(n|P|−3) of them), we delete Q− s, all vertices that have neighbours in Q− s except s
and detect an A−3 -subdivision with origin s. This will detect a P-subdivision if there is one.

14



l3
j

c j d jd jc j

l1
j

l2
j

l3
j

l2
j

l1
j

Figure 6: Left: clause gadget of G1(I ). Right: clause gadget of G4(I ).

6 Induced subdivisions of tournaments in oriented graphs

6.1 Induced subdivision of transitive tournaments

The transitive tournament on k vertices is denoted T Tk. We saw in Section 5.1 that Π′T T3
is polynomial.

The next result shows that Π′T Tk
is NP-complete for all k ≥ 4.

Theorem 25. For all k ≥ 4, Π′T Tk
is NP-complete

Proof. For a given instance I of 3-SAT, let G4(I ) be the digraph we obtain from G1(I ) by replacing
each clause gadget C1

j by the modified one C4
j from Figure 6. Also for each variable, modify the

gadget V 1
i as follows: replace the path aixivibi by a path aix1

i v1
i x2

i v2
i . . .x

m
i vm

i bi, and similarly the path
aix̄iv̄ibi by a path aix̄1

i v̄1
i x̄2

i v̄2
i . . . x̄

m
i v̄m

i bi. Then in G4(I) the links representing a variable xi and a clause
C j that uses this variable are represented by arcs between vertices from the variable gadget with
superscript j (as in Figure 2).

Recall that G1(I ) has an induced directed (a,b)-path if and only if I is satisfiable. It is easy to
see that the same holds for G4(I ). Note that in G4(I ) no vertex has in- or out-degree larger than 2.

Given an instance I of 3-SAT we form the digraph Gk
4(I ) from G4(I ) and a copy of T Tk (with

vertices v1,v2, . . . ,vk and arcs viv j, 1≤ i < j≤ k) by deleting the arc v1vk and adding the arcs v1a,bvk.
We claim that Gk

4(I ) contains an induced subdivision of T Tk if and only if G4(I ) has an induced
directed (a,b)-path which is if and only if I is satisfiable.

Clearly, if I is satisfiable, we may use the concatenation of an induced directed (a,b)-path in
G4(I ) with v1a and bvk in place of v1vk to obtain an induced T T4-subdivision in Gk

4(I ).
Conversely, suppose that Gk

4(I ) contains an induced subdivision of T Tk and let h(vi), 1 ≤ i ≤ k,
denote the image of vi in some fixed induced subdivision H of T Tk. Then we must have h(v1) = v1
and h(vk) = vk, because G4(I ) does not contain any vertex of out-degree k− 1 or in-degree k− 1
because k ≥ 4. For all i, 1 < i < k, the vertex h(vi) could not be in V (G4(I )) since otherwise there
must be either two disjoint directed (vi,vk)-paths to vk or two disjoint directed (v1,vi)-paths. This
is impossible because there is no directed (vi,vk)-path in Gk

4(I )\bvk and no directed (v1,vi)-path in
Gk

4(I ) \ v1a. Hence h(vi) = vi for all 1 ≤ i ≤ k and so it is clear that we have an induced directed
(a,b)-path in G4(I ), implying that I is satisfiable.

In the proof above we used that the two vertices v1,vk cannot be mapped to vertices of G4(I ),
the fact that the connectivity between these and the other vertices is too high to allow any of these
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to be mapped to vertices of G4(I ) and finally we could appeal to the fact that G4(I ) has an induced
directed (a,b)-path if and only if I is satisfiable. Refining this argument it is not difficult to see
that the following holds where a (z,X)-path is a path whose initial vertex is z and whose last vertex
belongs to X .

Theorem 26. Let D = (V,A) be a digraph and let X (resp. Y ) be the subset of vertices with out-
degree (resp. in-degree) at least 3 and let Z = V \ (X ∪Y ) (note that X ∩Y 6= /0 is possible and also
Z = /0 is possible). Suppose that for every z ∈ Z the digraph D contains either two internally disjoint
(X ,z)-paths or two internally disjoint (z,Y )-paths. Then Π′D is NP-complete.

Proof. (Sketch) For a given instance I of 3-SAT we form the digraph G′4(I ) from D by replacing
one arc uv with at least one of its endvertices in X ∪Y by G4(I ) and the arcs ua,bv. Again it is
clear how to obtain an induced subdivision of D in G′4(I ) when I is satisfiable. Let us now assume
that G′4(I ) contains an induced subdivision D′ of D. Let {h(v)|v ∈ V} be the vertices corresponding
to the vertices of V in the subdivision. For degree reasons, none of the vertices in X ∪Y can have
h(v) ∈ V (G4(I )) and because of connectivity, none of the vertices of Z can have h(z) ∈ V (G4(I ))
because there is only one arc entering and leaving V (G4(I )) in G′4(I ). Thus {h(v)|v ∈ V} = V
(possibly with h(v) 6= v for several vertices). However, since we deleted the arc uv and replaced it by
G4(I ) and the arcs ua,bv, it follows that G′4(I ) and so G4(I ) contains an induced directed (a,b)-path,
implying that I is satisfiable.

6.2 Induced subdivision of the strong tournament on 4 vertices

Let ST4 be the unique strong tournament of order 4. It can be seen has a directed cycle αγβδα together
with two chords αβ and γδ. The aim of this section is to show that Π′ST4

is NP-complete.
An (x,y1,y2)-switch is the digraph with vertex set {x,z,y1,y2} and edge set {xz,xy1,zy1,zy2,y2y1}.

See Figure 7.

z

x

y1

y2

Figure 7: An (x,y1,y2)-switch.

A good (x,y1,y2)-switch in a digraph D is an induced switch Y such that all the arcs entering Y
have head x and all arcs leaving Y have tail in {y1,y2}.

Lemma 27. Let Y be a good (x,y1,y2)-switch in a digraph D. Then every induced subdivision S of
ST4 in D intersects Y on either the path (x,y1), the path (x,z,y2), or the empty set.

Proof. Suppose for a contradiction, that y2y1 ∈ E(S). Then S must contain the unique in-neighbour z
of y2 and the unique in-neighbour x of z. Hence y1 has in-degree 3 in S, a contradiction.

Suppose for a contradiction, that zy1 ∈ E(S). Then S must contain x the unique in-neighbour of z.
Hence xy1 is a chord of S and so z must have degree 3 in S. Thus y2 ∈V (S) and y1 has in-degree 3 in
S, a contradiction.

Theorem 28. Π′ST4
is NP-complete.
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Proof. Reduction from 3-SAT. Let I be an instance of 3-SAT with variables x1,x2, . . . ,xn and clauses
C1,C2, . . . ,Cm. We first create a variable gadget V 5

i for each variable xi, i = 1,2, . . . ,n and a clause
gadget C5

j for each clause C j, j = 1,2, . . . ,m as shown in Figure 8. Then we form the digraph G5(I ) as
follows: Form a chain U of variable gadgets by adding the arcs biai+1 for i= 1,2, . . . ,n−1 and a chain
W of clause gadgets by adding the arcs d jc j+1, j = 1,2, . . . ,m− 1. Add the arcs aa1,bnb,cc1, tmd.
For each clause C, we connect the three literal vertices of the gadget for C to the variable gadgets for
variables occuring as literals in C in the way indicated in Figure 9.

x4
i

d j

q3
jq2

jq1
jq0

j

p0
j p2

jp1
j p3

j
p j

q jc j

q′j

r0
j r1

j r2
j r3

j

a′i

x0
i

ai

x̄0
i x̄1

i x̄2
i

b′i

bi

x̄3
i x̄4

i

x1
i x3

ix2
i

Figure 8: The variable gadget V 5
i (left) and the clause gadget C5

j (right).

Figure 9: Connections between a clause gadget and a variable gadget in G5(I ). Only the connec-
tion for one variable gadget and one clause gadget is shown and the general strategy for connecting
variable and clause gadgets is the same as in G1(I) (Figure 2).

We denote by Xi the path aia′ix
0
i x1

i x2
i x3

i x4
i bi, by X̄i the path aix̄0

i x̄1
i x̄2

i x̄3
i x̄4

i b′ibi, by Pj the path c j p j p0
j p1

j p2
j p3

jd j,
by Q j the path c jq jq′jq

0
jq

1
jq

2
jq

3
jd j, and by R j the path c jq jr0

j r
1
j r

2
j r

3
j d j.

Similarly to the proof of Lemma 7, one can check that I is satisfiable if and only if there are two
induced disjoint directed (a,b)- and (c,d)-paths in G5(I ).

Let G∗5(I ) be the digraph obtained from G5(I ) by adding the edges ac, cb, bd and da. Observe
that G∗5(I )\da is acyclic.

Let us prove that G∗5(I ) contains an induced ST4-subdivision if and only if I is satisfiable.
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If I is satisfiable, then in G5(I ) there are two induced disjoint directed (a,b)- and (c,d)-paths.
The union of these paths and the directed cycle acbd is an induced ST4-subdivision in G∗5(I ).

Conversely, assume that G∗5(I ) contains an induced subdivision S of ST4. For sake of simplicity
(and with a slight abuse of notation), we will denote the vertices of S corresponding to α, β, γ and δ

by the same names. Let T1 and T2 be the paths corresponding to the chord αβ and γδ respectively in
S and let C be the directed cycle corresponding to αγβδα. Observe that the ends of T1 and T2 must
alternate on C.

Notice that the subdigraphs induced by the sets {ai,a′i,x
0
i , x̄

0
i }, 1 ≤ i ≤ n, {c j, p j, p0

j ,q j} and
{q j,q′j,q

0
j ,r

0
j} are good switches. In addition, the subdigraphs induced by the sets {bi,b′i,x

4
i , x̄

4
i },

1≤ i≤ n, are the converse of good switches. Hence Lemma 27 (and its converse) imply the following
proposition.

Claim 28.1.

(i) For 1≤ i≤ n, if ai ∈V (S), then exactly one of the two paths (ai,a′i,x
0
i ) and (ai, x̄0

i ) is in S.

(ii) For 1≤ i≤ n, if bi ∈V (S), then exactly one of the two paths (x̄4
i ,b
′
i,bi) and (x4

i ,bi) is in S.

(iii) For 1 ≤ j ≤ m, if c j ∈ V (S), then exactly one of the three paths (c j, p j, p0
j), (c j,q j,q′j,q

0
j) and

(c j,q j,r0
j ) is in S.

Since G∗5(I ) \ da is acyclic, C must contain the arc da. Moreover since there is no arc with tail
in some clause gadget and head in some variable gadget, C contains at most one arc with tail in some
variable gadget and head in some clause gadget.

Claim 28.2. For any 1 ≤ i ≤ n and any 1 ≤ j ≤ m, the cycle C contains no arc with tail in {x3
i , x̄

3
i }

and head in {p1
j ,q

1
j ,r

1
j}.

Proof. Assume for a contradiction that C contains such an arc y3
i l1

j . Then since l1
j and l2

j have out-
degree 1 then C must also contain l2

j and l3
j . Thus, in S, y3

i has out-degree 3 in S, a contradiction.

Claim 28.3. For any 1 ≤ i ≤ n and any 1 ≤ j ≤ m the cycle C contains no arc with tail in {x3
i , x̄

3
i }

and head in {p3
j ,q

3
j ,r

3
j}.

Proof. Assume for a contradiction that C contains such an arc y3
i l3

j . Then since y3
i and y2

i have in-
degree 1 then C must also contain y2

i and y1
i . Thus, in S, l3

j has in-degree 3 in S, a contradiction.

Claim 28.4. For any 1 ≤ i ≤ n and any 1 ≤ j ≤ m then C contains no arc with tail in {x3
i , x̄

3
i } and

head in {p2
j ,q

2
j ,r

2
j}.

Proof. Assume for a contradiction that C contains such an arc y3
i l2

j . The vertex l2
j has a unique out-

neighbour l3
j which must be in C. It follows that y3

i l3
j corresponds to one of the chords αβ or γδ.

Thus l2
j must have degree 3 in S. It follows that l1

j is in V (S) and so y3
i has out-degree 3 in S, a

contradiction.

Claim 28.5. For any 1 ≤ i ≤ n and any 1 ≤ j ≤ m the cycle C contains no arc with tail in {x2
i , x̄

2
i }

and head in {p3
j ,q

3
j ,r

3
j}.

Proof. Assume for a contradiction that C contains such an arc y2
i l3

j . The vertex y2
i has a unique in-

neighbour y1
i which must be in C. It follows that y1

i l3
j corresponds to one of the chords αβ or γδ.

Thus y2
i must have degree 3 in S. It follows that y3

i is in V (S) and so l3
j has in-degree 3 in S, a

contradiction.
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Claim 28.6. For any 1 ≤ i ≤ n and any 1 ≤ j ≤ m the cycle C contains no arc with tail in {x1
i , x̄

1
i }

and head in {p3
j ,q

3
j ,r

3
j}.

Proof. Assume for a contradiction that C contains such an arc y1
i l3

j . Without loss of generality y1
i = x1

i .
By the remark after Claim 28.1 this is the only arc from a variable gadget to a clause gadget.

Furthermore, we have that b is not on C.
Thus, by Claim 28.1, for every 1 ≤ k < i, the intersection of C and V 4

k is either Xk or X̄k, and for
every j < l ≤ m, the intersection of C and C5

j is either Pj, Q j or R j.
Consider y ∈ {α,β}. It is on C and has outdegree 2. On the other hand, applying Claim 28.1 we

see that the following must hold as none of these vertices can belong to S and at the same time have
two of their out-neighbours in S:

• y 6∈ ∪1≤ j≤m{c j, p j,q j,q′j,q
0
j},

• y 6∈ ∪k 6=i{ak,a′k,x
0
k ,x

4
k} and

• y 6∈ {ai,a′i,x
0
i ,x

4
i }.

By Claims 28.2-28.5, we have y 6∈ {x2
i ,x

3
i } and since b is not on C we also have y 6= b. If y = x1

i ,
then using that yl3

j is and arc of C we get a contradiction because x2
i l3

j is an arc (so we cannot obtain
an induced copy of S using both arcs yl3

j ,x
2
i l3

j ). Hence (as y was any of α,β) we have a = α = β, a
contradiction.

Claim 28.7. C = acbda.

Proof. Suppose not. Then by the above claims, C either does not intersect the clause gadget and
intersect all the variable ones or does not intersect the variable gadget and intersect all the gadget ones.
In both cases, similarly to the proof of Claim 28.5, one shows that a = α = β, a contradiction.

Since C = acbda and by construction of G∗5(I ), T1 and T2 are two induced disjoint path in G5(I )
and so I is satisfiable.

7 Remarks and open problems

It would be nice to have results proving a full dichotomy between the digraphs D for which ΠD

(resp. Π′D) is NP-complete and the ones for which it is polynomial-time solvable. Regarding ΠD,
Conjecture 14 gives us what the dichotomy should be. But for Π′D we do not know yet.

A useful tool to prove such a dichotomy would be the following conjecture.

Conjecture 29. If D is a digraph such that ΠD (resp. Π′D) is NP-complete, then for any digraph D′

that contains D as an induced subdigraph, ΠD′ (resp. Π′D′) is NP-complete.

We were able to settle the complexity of Π′D when D is a directed cycle, a directed path, or some
paths with at most four blocks. The following problems are perhaps the natural next steps.

Problem 30. What is the complexity of Π′D when D is an oriented cycle which is not directed?

Problem 31. What is the complexity of Π′D when D is an oriented path which is not directed?
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Note that the approach used above to find an induced subdivision of A−4 relied on the fact that
one can check in polynomial time (using flows) whether a digraph contains internally disjoint (x,z)-,
(y,z)-paths for prescribed distinct vertices x,y,z. If we want to apply a similar approach for A−5 , then
for prescribed vertices x,y,z,w we need to be able to check the existence of internally disjoint paths
P,Q,R such that P is an (x,y)-path, Q is a (z,y)-path and R is a (z,w)-path such that these paths are
induced and have no arcs between them. However, the problem of deciding just the existence of
internally disjoint paths P,Q,R with these prescribed ends is NP-complete by the result of Fortune et
al. [6]. Thus we need another approach to obtain a polynomial-time algorithm (if one exists).

vH

uH

yH

xH

Figure 10: The digraph H with specified vertices uH ,vH ,xH ,yH .

It seems that little is known about detecting a subdivision of some given digraph D as a subgraph
(possibly non-induced). This leads us to the following problem:

Problem 32. When D is fixed directed graph, what is the complexity of deciding whether a given
digraph G contains a D-subdivision as a subgraph?

The following shows that the problem above can be NP-complete.

Theorem 33. Let H be the digraph in Figure 10. It is NP-complete to decide whether a given digraph
G contains an H-subdivision.

Proof. By the classical result of Fortune, Hopcroft and Wyllie [6], the so-called 2-linkage problem
(given a digraph and four distinct vertices u,v,x,y; does G contain a pair of vertex-disjoint paths P,Q
so that P is a directed (u,v)-path and Q is a directed (x,y)-path?) is NP-complete. By inspecting
the proof (see [1, Section 10.2]) it can be seen that the problem is NP-complete even when G has
maximum in- and out-degree at most 3. Given an instance G of the 2-linkage problem with maximum
in- and out-degree at most 3 and a copy of H we form a new digraph GH by identifying the vertices
{u,v,x,y} with {uH ,vH ,xH ,yH} in that order. Clearly, if G has disjoint directed (u,v), (x,y)-paths,
then we can use these to realize the needed paths from uH to vH and from xH to yH (and all other
paths are the original arcs of H). Conversely, suppose there is a subdivision H∗ of H in GH . For
every v ∈ {uH ,vH ,xH ,yH}, let us denote by v∗ the vertex corresponding to v in H∗. Since d−(uH) =
4,d+(vH) = 5,d−(xH) = 5,d+(yH) = 4 in GH , we have u∗H = uH ,v∗H = vH , x∗H = xH , and y∗H = yH .
Thus the two disjoint directed (u∗H ,v

∗
H)- x∗H ,y

∗
H)-paths in H∗ are disjoint directed (u,v), (x,y)-paths in

G implying that G is a ’yes’-instance.

Finally, we would like to point out that in all detection problems about induced digraphs, back-
ward arcs of paths play an important role, especially in NP-completeness proofs. Also, these back-
ward arcs make all “connectivity-flavoured” arguments fail: when two vertices x,y are given, it is not
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possible to decide whether x can be linked to y. So, maybe another notion of induced subdigraph
containment would make sense: chords should be kept forbidden between the different directed paths
that arise from subdividing arcs, but backward arcs inside the paths should be allowed.
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