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Abstract

The reconfiguration graph of the k-colourings of a graph G contains as its vertex
set the proper vertex k-colourings of G, and two colourings are joined by an edge
in the reconfiguration graph if they differ in colour on just one vertex of G. We
prove that for a graph G on n vertices that is chordal or chordal bipartite, if G
is k-colourable, then the reconfiguration graph of its `-colourings, for ` ≥ k + 1,
is connected and has diameter O(n2). We show that this bound is asymptotically
tight up to a constant factor.
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1 Introduction

For any pair α and β of k-colourings of a graph, one can ask whether it
is possible to transform one into the other by finding a sequence of proper
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colourings where the first is α, the last is β, and colourings that are adjacent
in the sequence differ on just one vertex. One can also ask for bounds on
the length of the sequence, or whether such a sequence exists for all possible
pairs of colourings of a graph. In this paper, we investigate these questions
for a number of graph classes. These are examples of what are known as
reconfiguration problems.

For any search problem, the corresponding reconfiguration graph contains
as vertices all solutions to the problem; the edge set is defined by a symmetric
adjacency relation on the solutions which is normally chosen to represent a
smallest possible change in the solution. In particular, the reconfiguration
graph of the k-colourings of a graph G contains as its vertex set the proper
vertex k-colourings of G, and two colourings are joined by an edge in the recon-
figuration graph if they differ in colour on just one vertex of G. To date, the
study of reconfiguration graphs has focussed on the computational complexity
of the problems of deciding whether the reconfiguration graph is connected,
and deciding whether it contains a path between two given solutions. Prob-
lems studied include boolean satisfiability [5], graph colouring [2,3,4], shortest
path [1,9], and independent set, clique and others [8].

A fundamental problem is to characterise the relationship between the
complexity of reconfiguration problems and search problems. Considering the
problem of finding paths between solutions, previous results often follow a
certain pattern: problems in P beget reconfiguration problems that are also in
P; NP-complete problems have PSPACE-complete reconfiguration problems.
There are exceptions such as the shortest path reconfiguration problem being
PSPACE-hard [1].

Also of interest is finding shortest paths between solutions. The diameter
of the reconfiguration graph provides an upper bound. This is also related
to the complexity of finding paths in the reconfiguration graph between given
solutions since paths of polynomial length in the reconfiguration graph are
certificates for the problem being in NP. For any graph, the diameter of the
reconfiguration graph of its 3-colourings has been shown to be quadratic (in
the number of vertices of the input graph) if the reconfiguration graph is
connected [4]. There is no known example of a family of graphs for which the
reconfiguration graph of k-colourings is connected but does not have quadratic
diameter, although there are cases where the reconfiguration graph is not
connected but contains components of superpolynomial diameter [2].

In this paper, we study the reconfiguration problem for graph colouring
and determine sufficient conditions for the reconfiguration graph to have a
quadratic diameter. We give two examples of graph classes, namely chordal



graphs and chordal bipartite graphs, that satisfy these conditions and show
that our quadratic bound is tight by showing that the diameter of the recon-
figuration graph for 3-colourings of a path is quadratic in the length of the
path.

2 Sufficient Conditions for Quadratic Diameter

A separator of a graph G is a set S ⊆ V such that G− S has more connected
components than G. We say that we identify two vertices u and v if we
replace them by a new vertex adjacent to all neighbours of u and v. The set
of neighbours of a vertex u is denoted N(u).

Fix a positive integer k. A class G of k-colourable graphs is called k-colour-
dense if for every G ∈ G either

(i) G is the disjoint union of cliques, each of which has at most k vertices, or

(ii) G has a separator S and G − S has components D and D′ with vertices
u ∈ D and v ∈ D′ such that

(a) |VD| ≤ max{1, k − |S|},
(b) S ⊆ N(v), and
(c) identifying u and v in G results in a graph G′ ∈ G.

We define the `-colour diameter of a graph G to be the diameter of the recon-
figuration graph of `-colourings of G.

Theorem 2.1 For an integer k ≥ 1, let G be a k-colour-dense graph class.
Then, for all ` ≥ k + 1, the `-colour diameter of every n-vertex graph G ∈ G
is at most 2n2.

Proof. Let k ≥ 1 be an integer and let G be a k-colour-dense graph class. We
assume ` = k + 1; the proof for ` > k + 1 is similar. We prove the following
claim.

Claim 1. Let α and β be two (k + 1)-colourings of an n-vertex graph G ∈ G.
Then we can transform α to β by recolouring every vertex of G at most 2n
times.

The statement of the theorem follows immediately from the claim since we re-
colour each of n vertices at most 2n times, resulting in at most 2n2 recolourings
when transforming any (k + 1)-colouring to any other.

In order to prove Claim 1 we shall use condition (ii) in our definition of a
k-colour-dense graph class to apply induction. The graphs of G for which this
condition does not hold are the disjoint union of cliques each of size at most



k, and these graphs form the base case of our induction. It is easy to check
these graphs satisfy the claim.

Suppose G ∈ G is an n-vertex graph that is not a disjoint union of cliques,
and suppose α and β are two (k + 1)-colourings of G. Thus, by definition, G
has a separator S that satisfies condition (ii) of the definition of k-colour-dense
with respect to sets D, D′ and vertices u ∈ D and v ∈ D′.

We first show how to transform α into some (k+ 1)-colouring α′ satisfying
α′(u) = α′(v), where each vertex of G is recoloured at most once. Suppose
that α(u) 6= α(v). We can recolour u with α(v) unless there is a nonempty set
W of neighbours of u such that each vertex in W has colour α(v). Because v
is adjacent to all vertices in S, we find that W ⊆ D \ {u}. Because |VD| ≤
max{1, k−|S|} and W is nonempty, we find that |VD| ≤ k−|S|. Hence every
vertex in W has at most k − |S| − 1 neighbours in D, and consequently, at
most k − 1 neighbours in G. Hence, each vertex of W can be successively
recoloured with some colour not used in its neighbourhood. This leads to a
new (k + 1)-colouring α′ with α′(u) = α′(v). By the same argument, we can
modify β to a (k + 1)-colouring β′ with β′(u) = β′(v). Changing α to α′ and
β to β′ together require that each vertex of D is recoloured at most twice.

We identify u and v. This leads to a new vertex u′ and a graph G′ that
belongs to G by definition. We can consider α′ and β′ to be colourings of G′ by
giving u′ the colour and α′(u) = α′(v). We apply the induction hypothesis and
find that we can transform α′ into β′ on G′ using at most 2(n−1) recolourings
for each vertex. Thus we can transform α′ into β′ on G by simulating a
recolouring of u′ by a recolouring of u and v in G, i.e., every time we recolour
u′ in G′ we apply the same recolouring to u and then immediately to v in G.
Thus transforming α′ to β′ in G requires that each vertex of G be recoloured
at most 2(n− 1) times, and transforming α to α′ and β′ to β requires at most
two additional recolourings of each vertex, resulting in a total of at most 2n
recolourings of each vertex, as required. 2

3 Graph Classes

We present two graph classes for which Theorem 2.1 is applicable and show
that the bound in Theorem 2.1 is asymptotically tight up to a constant factor.

3.1 Chordal graphs

A chordal graph is a graph with no induced cycle of length more than 3. A
clique tree of a (connected) graph G is a tree that has as vertices the maximal



cliques of G and has edges such that each graph induced by those cliques that
contain a particular vertex of G is a subtree. The next lemma is well known.

Lemma 3.1 ([7]) A connected graph is chordal if and only if it has a clique
tree.

Theorem 3.2 For any integer k ≥ 1, the class of k-colourable chordal graphs
is k-colour-dense.

Proof. (sketch) Let G denote the class of k-colourable chordal graphs. Let
G = (V,E) be a graph in G that is not the disjoint union of cliques. We must
check that G satisfies condition (ii) of the definition of k-colour-dense. We
may assume without loss of generality that G is connected; otherwise we can
apply the argument below to any one of the components.

By Lemma 3.1, G has a clique tree T . Let K be a leaf of T , and let K ′

be the unique neighbour of K. In order to demonstrate condition (ii) we let
S = K ∩K ′ and we define D := G[K \ S] and D′ := G[V \K]; here we use
the notation G[U ] for the subgraph of G induced by a subset U ⊆ V . We
observe that VD and VD′ are non-empty because otherwise one of K or K ′

would be contained in the other, contradicting that they are maximal cliques.
Consequently, S is a separator. Because G is k-colourable, K has at most
k vertices. This means that |VD| = |K| − |S| ≤ k − |S| = max{1, k − |S|},
demonstrating condition (ii)(a). Recall that VD and VD′ are non-empty. For u
and v we take arbitrary vertices in K\K ′ = VD and K ′\K ⊆ VD′ , respectively.
Then, because K ′ is a clique and S ⊆ K ′, we find that v is adjacent to every
vertex in S, demonstrating condition (ii)(b). Finally, we identify u and v. It
is not hard to check that the resulting graph is a k-colourable chordal graph,
demonstrating condition (ii)(c). This completes the proof of Theorem 3.2. 2

3.2 Chordal bipartite graphs

A chordal bipartite graph is a bipartite graph with no induced cycle of length
strictly more than 4. It is a misnomer since chordal bipartite graphs are only
chordal if they are trees. We need the following terminology. A vertex u
in a bipartite graph G is weakly simplicial if its neighbours can be labelled
v1, . . . , vt such that N(vi) ⊆ N(vi+1) for i = 1, . . . , t− 1.

Lemma 3.3 ([6]) A bipartite graph is chordal bipartite if and only if every
induced subgraph has a weakly simplicial vertex.

Because chordal bipartite graphs are bipartite, they are 2-colourable. The
proof of Theorem 3.4 is based on Lemma 3.3; we use it to show that in a chordal



bipartite graph we can always find two vertices u and v with N(u) ⊆ N(v).
Consequently, we can define S = N(u) in order to satisfy conditions (i) and
(ii). We omit the details.

Theorem 3.4 The class of chordal bipartite graphs is 2-colour-dense.

3.3 Lower Bounds

We can show that the 3-colour diameter of a path on n vertices is Θ(n2) and
have an example of a k-colourable chordal graph with (k+ 1)-colour diameter
of order Θ(n2) for every k ≥ 4. We omit the proofs.
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