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Abstract

Frankl and Füredi conjectured that if F ⊂ 2X is a non-trivial λ-intersecting
family of size m, then the number of pairs {x, y} ∈

(

X
2

)

that are contained in
some F ∈ F is at least

(

m
2

)

[P. Frankl and Z. Füredi. A Sharpening of Fisher’s
Inequality. Discrete Math., 90(1):103-107, 1991]. We verify this conjecture in some
special cases, focusing especially on the case where F is additionally required to be
k-uniform and λ is small.

1 Introduction

Let X be an n-element set, and let 2X denote the family of all subsets of X. For 0 ≤ k ≤ n,
let
(

X

k

)

denote the family of all subsets of X of cardinality k. For a family F ⊂ 2X , we
define the i-shadow of F , denoted ∂iF , to consist of those i-subsets of X contained in at
least one member of F ,

∂iF :=

{

E ∈

(

X

i

)

: E ⊂ F ∈ F

}

.

A family F ⊂ 2X is called λ-intersecting if we have |F1 ∩ F2| = λ for any distinct
F1, F2 ∈ F . The well-known Fisher’s Inequality states that if F is a λ-intersecting family
of size m, then |∂1F| ≥ m. Inspired by Fisher’s Inequality, Frankl and Füredi [7] con-
jectured a similar inequality for |∂2F|. Conjecture 1.1 easily implies Fisher’s Inequality

since
(

|∂1F|
2

)

≥ |∂2F| ≥
(

m

2

)

proves |∂1F| ≥ m.

Conjecture 1.1 (Frankl-Füredi, 1991) Let F ⊂ 2X be a λ-intersecting family of size
m. If there does not exist x ∈ X such that x ∈ F for all F ∈ F , then

|∂2F| ≥

(

m

2

)

.
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Frankl and Füredi [7] verified Conjecture 1.1 when λ = 1. While this paper appears to
be the first to consider Conjecture 1.1 since [7], several special cases of Conjecture 1.1 had
already been proved before [7] was published. For example, Ryser [13], Woodall [16], and
Babai [1] showed Conjecture 1.1 is true when m = n. Majindar [11] proved Conjecture 1.1
for regular λ-intersecting families.

Notation: We say F is k-uniform if F ⊂
(

X

k

)

. For x ∈ X, the degree of x, denoted
deg(x), is defined to be the number of sets in F that contain x. We can delete x ∈ X with
deg(x) = 0, so we always assume |∂1F| = |X| = n. We say F is r-regular if deg(x) = r
for all x ∈ X. We say that F is a sunflower if deg(x) ∈ {1, |F|} for all x ∈ X. We say
F is trivial if there exists x ∈ X with deg(x) = |F|, and is non-trivial otherwise. For
a subset S ⊂ X we define the co-degree of S, denoted codeg (S), to be the number of
sets in F that contain S. For a family F ⊂

(

X

k

)

and x ∈ X, the link of x is the family

L(x) := {A ⊂ X : |A| = k − 1, A ∪ {x} ∈ F}. A λ-intersecting family F ⊂
(

X

k

)

of size m
is called a symmetric design if n = |∂1F| = m.

The non-triviality restriction in Conjecture 1.1 is necessary. For example, if F ⊂
(

X

k

)

is a λ-intersecting sunflower of size m, then |∂2F| ≤ m
(

k

2

)

<
(

m

2

)

if m > k(k − 1) + 1.
We note that Conjecture 1.1 is equivalent to the seemingly stronger statement that if
F ⊂ 2X is a λ-intersecting family of size m that is not a sunflower, then |∂2F| ≥

(

m

2

)

.
Fisher’s inequality and its variants are usually proved by linear independence arguments
[2]; one difficulty in proving Conjecture 1.1 in this way is understanding how to interpret
the non-triviality restriction in a linear algebra setting.

The main results of this paper verify Conjecture 1.1 in the following cases. We will
use Theorem 1.2 to prove Theorem 1.3.

Theorem 1.2 Let F ⊂ 2X be a λ-intersecting family of size m. If F satisfies

∑

F∈F

(

|F |

2

)

≥
∑

x∈X

(

deg(x)

2

)

= λ

(

m

2

)

, (1.1)

then |∂2F| ≥
(

m

2

)

. Moreover, if λ ≥ 2 and F ⊂
(

X

k

)

is also k-uniform, then we have
|∂2F| =

(

m

2

)

if and only if F is a symmetric design.

Note that if F ⊂
(

X

k

)

is a λ-intersecting family of size m, then (1.1) is equivalent to

m ≤
k(k − 1)

λ
+ 1. (1.2)

Theorem 1.3 Let F ⊂
(

X

k

)

be a non-trivial λ-intersecting family of size m.

(i) If λ = 2, then |∂2F| ≥
(

m

2

)

and equality holds if and only if F is a symmetric design.

(ii) If λ = 3 and k /∈ {8, 11}, then |∂2F| ≥
(

m

2

)

and equality holds if and only if F is a
symmetric design.
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In light of (1.2), it is interesting to note that Stanton and Mullin [14] once conjectured
that if F ⊂

(

X

k

)

is a non-trivial λ-intersecting family of size m, then (1.2) holds. Had
this conjecture been true, Theorem 1.2 would have implied that Conjecture 1.1 is true
for uniform families as well as characterized the case of equality. Unfortunately, Hall [10]
proved that Stanton and Mullin’s conjecture is true only for λ ∈ {1, 2} and produced
counterexamples for every λ ≥ 3.

Since (1.1) and (1.2) are equivalent for uniform families, Hall’s proof of Stanton
and Mullin’s conjecture for λ = 2 shows that (1.1) is true for uniform, non-trivial, 2-
intersecting families. Combined with Theorem 1.2, Hall’s result proves Theorem 1.3 (i).
If (1.1) were true for every non-trivial 2-intersecting family, then Theorem 1.2 would im-
ply that Conjecture 1.1 is true for λ = 2. We exhibit one non-trivial 2-intersecting family
that does not satisfy (1.1), but feel that this may be the only counterexample. Ryser [13]
showed that there is a unique non-uniform 2-intersecting family with size m = n:

F̂ := {{1, 2, 4}, {1, 4, 6, 7}, {1, 2, 5, 7}, {1, 2, 3, 6}, {2, 3, 4, 7}, {1, 3, 4, 5}, {2, 4, 5, 6}}.

It is easily seen that
∑

F∈F̂

(

|F |
2

)

= 39 while 2
(

m

2

)

= 42. We conjecture that F̂ is the only
non-trivial 2-intersecting family for which (1.1) does not hold.

Conjecture 1.4 If F ⊂ 2X is a non-trivial 2-intersecting family of size m and F 6= F̂ ,
then (1.1) holds.

Frankl and Füredi [7] showed (1.1) holds for all non-trivial 1-intersecting families using
an argument similar to that of de Bruijn and Erdős [4]. This summarizes the proof of
Conjecture 1.1 when λ = 1 as the proof of Theorem 1.2 is trivial in this case.

Theorem 1.2 implies that a uniform counterexample to Conjecture 1.1 is also a coun-
terexample to Stanton and Mullin’s conjecture. It is not difficult to see that Hall’s coun-
terexamples to Stanton and Mullin’s conjecture do not give counterexamples to Conjec-
ture 1.1; for definitions see [10]. Hence, we can view Conjecture 1.1 as a weakening of
Stanton and Mullin’s conjecture.

Another weakening of Stanton and Mullin’s conjecture is Conjecture 1.5, which is due
to Hall [10]. Together with Theorem 1.2, we see that Conjecture 1.5 would imply that
Conjecture 1.1 is true if F is additionally required to be k-uniform and k is sufficiently
large. Deza [6] showed that k1 = 2; Hall [10] showed that k2 = 3; our proof of Theorem 1.3
shows that k3 ≤ 12.

Conjecture 1.5 (Hall, 1977) For each λ ∈ Z
+, there exists a kλ ∈ Z

+ such that if
k ≥ kλ and F ⊂

(

X

k

)

is a non-trivial λ-intersecting family of size m, then (1.2) holds.

It is natural to wonder if the obvious analog of Conjecture 1.1 for higher shadows
holds. By considering λ-blowups of projective planes of order q when q is large enough,
we have infinitely many nontrivial λ-intersecting families F satisfying |∂iF| <

(

m

i

)

for
each i ≥ 3 and each λ ∈ Z

+.
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2 Proof of Theorem 1.2

We use linear programming duality to prove Theorem 1.2. We will use Theorem 1.2 to
prove Theorem 1.3 in Section 3.

Proof of Theorem 1.2. When λ = 1, the proof of Theorem 1.2 is trivial because |∂2F|
equals the left hand side of (1.1). We therefore assume that λ ≥ 2. Let F ⊂ 2X be
a λ-intersecting family of size m. Let ai denote the number of pairs {x, y} ∈

(

X

2

)

with
codeg ({x, y}) = i, and observe that the following identities hold

∑

i≥1

iai =
∑

F∈F

(

|F |

2

)

,
∑

i≥1

(

i

2

)

ai =

(

λ

2

)(

m

2

)

.

The first follows from counting pairs ({x, y}, F ) where {x, y} ∈
(

X

2

)

, F ∈ F , and

{x, y} ⊂ F . The second follows from counting pairs ({x, y}, {F1, F2}) where {x, y} ∈
(

X

2

)

,
{F1, F2} ⊂ F , and {x, y} ⊂ F1 ∩ F2. Consequently, (a1, . . . , am) is a feasible solution to
the following linear program with objective value |∂2F|:

Minimize

m
∑

i=1

zi (2.3)

subject to:
∑

i≥1

izi =
∑

F∈F

(

|F |

2

)

∑

i≥1

(

i

2

)

zi =

(

λ

2

)(

m

2

)

zi ≥ 0, i ∈ {1, . . . , m}.

The dual of this linear program is:

Maximize

(

λ

2

)(

m

2

)

x +

(

∑

F∈F

(

|F |

2

)

)

y (2.4)

subject to:

(

i

2

)

x + iy ≤ 1, i ∈ {1, . . . , m}.

The feasible region of the dual linear program (2.4) has extreme points given by

(

−
1

(

j+1

2

) ,
2

j + 1

)

, j ∈ {1, . . . , m − 1}. (2.5)

If F satisfies (1.1), then setting j = λ − 1 in (2.5) yields

|∂2F| ≥

(

λ

2

)(

m

2

)

(

−
1
(

λ

2

)

)

+

(

∑

F∈F

(

|F |

2

)

)

(

2

λ

)

≥

(

m

2

)

, (2.6)
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as desired. Finally, note that the equality in (1.1) follows from counting pairs (x, {F1, F2})
such that {F1, F2} ⊂ F and x ∈ F1 ∩ F2.

We now assume λ ≥ 2 and F ⊂
(

X

k

)

is also k-uniform, and prove that |∂2F| =
(

m

2

)

if and only if F is a symmetric design. Ryser [13], Woodall [16], and Babai [1] showed
that if F ⊂ 2X is a λ-intersecting family of size m = |∂1F| = n, then |∂2F| =

(

m

2

)

.

Conversely, suppose |∂2F| =
(

m

2

)

and let ai denote the number of pairs {x, y} ∈
(

X

2

)

with codeg ({x, y}) = i. We will show that F is k-regular, which immediately implies
that F is a symmetric design. By (2.6), we see that equality holds in (1.2), (a1, . . . , am)
is an optimal solution to the primal linear program (2.3), and (2.5) with j = λ − 1
is an optimal solution to the dual linear program (2.4). By complementary slackness,
this implies ai = 0 or

(

i

2

)

(−1/
(

λ

2

)

) + i(2/λ) = 1. Hence ai = 0 for i /∈ {λ − 1, λ} for
i ∈ {1, . . .m}. The constraints in the primal linear program (2.3) imply aλ−1 + aλ =

(

m

2

)

and
(

λ−1

2

)

aλ−1 +
(

λ

2

)

aλ =
(

λ

2

)(

m

2

)

, so aλ−1 = 0 and aλ =
(

m

2

)

.
Let x ∈ X and count pairs (y, F ) such that {x, y} ⊂ F . Since aλ =

(

m

2

)

, we have

λ|∂1L(x)| = (k − 1) deg(x) so |∂1L(x)| =
k − 1

λ
deg(x). (2.7)

We will give a lower bound on |∂1L(x)| in terms of deg(x) that will allow us to prove
that F is k-regular. For x ∈ X, let bx,i denote the number of vertices y ∈ X such that
codeg ({x, y}) = i and observe that the following identities hold

∑

i≥1

ibx,i = (k − 1) deg(x),
∑

i≥1

(

i

2

)

bx,i = (λ − 1)

(

deg(x)

2

)

.

The first follows from counting pairs (y, F ) where {x, y} ∈
(

X

2

)

, F ∈ F , and {x, y} ⊂ F .

The second follows from counting pairs (y, {F1, F2}) where {x, y} ∈
(

X

2

)

, {F1, F2} ⊂ F ,
and {x, y} ⊂ F1 ∩ F2. Consequently, (bx,1, . . . , bx,m) is a feasible solution to the following
linear program with objective value |∂1L(x)|:

Minimize

m
∑

i=1

wi

subject to:
∑

i≥1

iwi = (k − 1) deg(x)

∑

i≥1

(

i

2

)

wi = (λ − 1)

(

deg(x)

2

)

wi ≥ 0, i ∈ {1, . . . , m}.

The dual of this linear program is:

Maximize (λ − 1)

(

deg(x)

2

)

y + (k − 1) deg(x)z

subject to:

(

i

2

)

y + iz ≤ 1, i ∈ {1, . . . , m}.
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Since (2.5) with j = λ − 1 is a feasible solution, using (2.7) yields

k − 1

λ
deg(x) = |∂1L(x)| ≥ deg(x)

(

2(k − 1)

λ
− (λ − 1)

deg(x) − 1

2

(

λ

2

)−1
)

.

Hence, deg(x) ≥ k for each x ∈ X. On the other hand, let F ∈ F and count pairs (x, F ′)
such that F 6= F ′ ∈ F and x ∈ F ∩ F ′. Since equality holds in (1.2), we have

k2 ≤
∑

x∈F

deg(x) = λ(m − 1) + k = k2

so deg(x) = k for all x ∈ X. Hence F is k-regular and is thus a symmetric design.

3 Proof of Theorem 1.3

In light of (1.1) and (1.2), we are interested in upper bounds on the sizes of non-trivial
λ-intersecting families F that depend only on the sizes of the sets in F . One of the first
results of this kind is Deza’s theorem [6], which bounds the size of λ-intersecting families
that are not sunflowers. In the case when F ⊂

(

X

k

)

is k-uniform, the upper bound on m
in (3.8) is bigger than the upper bound on m in (1.2) by a factor of roughly λ.

Theorem 3.1 (Deza, 1974) Let F ⊂ 2X be a λ-intersecting family of size m that is
not a sunflower. Define K := maxF∈F |F |. Then

m ≤ max{λ(λ + 1) + 1, (K − λ)((K − λ) + 1) + 1}. (3.8)

Since non-triviality is a stronger restriction on F than not being a sunflower, it is
plausible that (3.8) could be improved for non-trivial F . Frankl and Füredi [7] did exactly
this when they showed that (1.1) holds for all non-trivial 1-intersecting families. We
mentioned in the introduction that Stanton and Mullin [14] conjectured that (3.8) could
be improved to (1.2) if F is non-trivial and k-uniform; Theorem 3.1 verifies Stanton and
Mullin’s conjecture for λ = 1 and Hall proved Stanton and Mullin’s conjecture when
λ = 2.

Theorem 3.2 (Hall, 1977) If F ⊂
(

X

k

)

is a non-trivial 2-intersecting family of size m,
then

m ≤

(

k

2

)

+ 1.

We adapt Hall’s proof of Theorem 3.2 to prove Theorem 1.3. (For the reader’s con-
venience, we first reproduce Hall’s proof of Theorem 3.2.) In our proof of Theorem 1.3,
we will use the fact that if F ⊂

(

X

k

)

is a λ-intersecting family, then deg(x) does not lie in

a certain interval. Deza [5] showed that if F ⊂
(

X

k

)

is a λ-intersecting family of size m
then, for all x ∈ X,

deg(x)(m + 1 − deg(x)) ≤ max{λ, k − λ}(m + 1). (3.9)
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McCarthy and Vanstone [12] adapted an argument of Connor [3], and improved this
bound; they gave the following restriction on deg(x).

Theorem 3.3 (McCarthy-Vanstone, 1979) Let F ⊂
(

X

k

)

be a λ-intersecting family
of size m.

(i) If x ∈ X then,

deg(x)((k − λ) + λ(m − deg(x))) ≤ (k − λ)((k − λ) + λm). (3.10)

(ii) Let {x, y} ⊂
(

X

2

)

and define

(a) a11 = (k − λ)((k − λ) + λm) − deg(x)((k − λ) + λ(m − deg(x))),

(b) a12 = a21 = λ deg(x) deg(y) − ((k − λ) + λm) codeg ({x, y}),

(c) a22 = (k − λ)((k − λ) + λm) − deg(y)((k − λ) + λ(m − deg(y))).

The following determinant is non-negative:

det

(

a11 a12

a21 a22

)

≥ 0. (3.11)

We now reproduce Hall’s proof of Theorem 3.2. Note that Hall had originally used
(3.9) in his proof, but we will use (3.10) instead since it makes the argument cleaner.

Hall’s Proof of Theorem 3.2 Suppose, for a contradiction, that there exists a non-
trivial 2-intersecting F ⊂

(

X

k

)

of size m >
(

k

2

)

+ 1. Write

m =

(

k

2

)

+ 1 + ǫ, ǫ ∈ Z
+. (3.12)

Observe that the left hand side of (3.10) is quadratic in deg(x) with roots deg(x) = 0
and deg(x) = m−1+k/2. If there exists an x ∈ X with k ≤ deg(x) ≤ (m−1+k/2)−k,
then (3.10) is true for deg(x) = k; together with (3.12), this implies that ǫ ≤ 0, which is
impossible. Hence, for all x ∈ X, either

deg(x) ≤ k − 1 or deg(x) ≥ m −

⌈

k

2

⌉

. (3.13)

We say a vertex x ∈ X with deg(x) ≤ k − 1 is light and is heavy if deg(x) ≥ m − ⌈k/2⌉.
By (3.12), for any F ∈ F , we have

∑

x∈F

deg(x) = 2(m − 1) + k = k2 + 2ǫ. (3.14)
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Since the average degree of a vertex in F ∈ F is greater than k, every set F ∈ F contains
a heavy vertex. As F is non-trivial, there are at least two heavy vertices x1, x2. Define

s := |{F ∈ F : {x1, x2} ⊂ F}|, t := |{F ∈ F : x1 ∈ F, x2 /∈ F}|,

u := |{F ∈ F : x1 /∈ F, x2 ∈ F}|, v := |{F ∈ F : x1, x2 /∈ F}|.

We have s ≤ k − 1 because λ = 2 and F is non-trivial. Since u + v and t + v count
the number of sets F ∈ F not on x1, x2 respectively, (3.13) yields t + v, u + v ≤ ⌈k/2⌉.
Consequently (3.12) implies,

(

k

2

)

+ 1 + ǫ = m = s + t + u + v ≤ s + (t + v) + (u + v) ≤ (k − 1) + 2

⌈

k

2

⌉

≤ 2k.

As ǫ ∈ Z
+, we have a contradiction for k ≥ 5. For k = 4, Theorem 3.1 yields m ≤ 7, so

we have a contradiction in this case too. We have shown that if F ⊂
(

X

k

)

is a non-trivial

2-intersecting family of size m then m ≤
(

k

2

)

+ 1.

For larger λ, if we knew that a non-trivial λ-intersecting F ⊂
(

X

k

)

that does not
satisfy (1.2) has at least λ heavy vertices, then Hall’s argument would yield a proof of
Conjecture 1.5. Unfortunately, Hall’s averaging argument only shows that any non-trivial
λ-intersecting F ⊂

(

X

k

)

that does not satisfy (1.2) has at least two heavy vertices. In the
proof of Theorem 1.3, we expend a lot of effort to eliminate the possibility that there are
exactly two heavy vertices when λ = 3; the key difficulty is getting a good bound on the
number of sets F ∈ F that contain both the heavy vertices.

Proof of Theorem 1.3. We observe that Theorem 3.2 together with Theorem 1.2 yields
Theorem 1.3 (i).

For the rest of the proof, we assume that λ = 3. We will show that if F ⊂
(

X

k

)

is a non-trivial 3-intersecting family, where k /∈ {8, 11}, then (1.2) holds. Theorem 1.2
then implies that |∂2F| ≥

(

m

2

)

and that equality holds if and only if F is a symmetric
design. First suppose k < 6. It is not difficult to see that if F is a non-trivial k-uniform
3-intersecting family of size m, where k ∈ {4, 5}, then m ≤ 5; for proofs of these results
in a more general setting see [8], [9], and [15]. Hence, (1.2) holds when k < 6.

Suppose, for a contradiction, that k ≥ 12 and F ⊂
(

X

k

)

is a non-trivial 3-intersecting
family of size m for which (1.2) does not hold. Write

m =
k(k − 1)

3
+ 1 + ǫ, ǫ > 0. (3.15)

Note that the left hand side of (3.10) is quadratic in deg(x) with roots deg(x) = 0 and
deg(x) = m − 1 + k/3. If there exists an x ∈ X with k ≤ deg(x) ≤ (m − 1 + k/3) − k,
then (3.10) is true for deg(x) = k; together with (3.15), this implies that ǫ ≤ 0, which is
impossible. Hence, for all x ∈ X, either

deg(x) ≤ k − 1 or deg(x) ≥ m −

⌈

2k

3

⌉

≥ m −
2k + 2

3
. (3.16)
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Following Hall [10], we say a vertex x ∈ X is light if deg(x) ≤ k − 1 and is heavy if
deg(x) ≥ m − ⌈2k/3⌉.

By (3.15), for any F ∈ F , we have

∑

x∈F

deg(x) = 3(m − 1) + k = k2 + 3ǫ. (3.17)

Since the average degree of a vertex in F ∈ F is greater than k, every set F ∈ F contains
a heavy vertex. As F is non-trivial, there are at least two heavy vertices. We consider
two cases, according to whether there are exactly two or greater than two heavy vertices.

Case 1: There are exactly two heavy vertices. Let x1, x2 be the heavy vertices. Since F
is non-trivial, there exists a set F1 ∈ F which contains x1 but not x2, and there exists a
set F2 ∈ F which contains x2 but not x1. Let F1 ∩ F2 := {y1, y2, y3}. Define

s := |{F ∈ F : {x1, x2} ⊂ F}|, t := |{F ∈ F : x1 ∈ F, x2 /∈ F}|,

u := |{F ∈ F : x1 /∈ F, x2 ∈ F}|,

and observe that m = s + t + u since every F ∈ F contains a heavy vertex. By (3.16), we
have t, u ≤ ⌈2k/3⌉ ≤ (2k + 2)/3.

We now show how to obtain an upper bound on s in terms of k. Observe that any
F ∈ F that contains {x1, x2} intersects F1 \ {x1} in a subset of size two. Consequently,

2s =
∑

{x1,x2}⊂F

|F ∩ F1 \ {x1}| =
∑

w∈F1\{x1}

codeg (x1, x2, w). (3.18)

We claim that if w ∈ X \ {x1, x2} and there exists an F ∈ F such that

{x1, x2} 6⊂ F, w /∈ F, (3.19)

then codeg ({x1, x2, w}) ≤ (k − 1)/2. Suppose F ′, F̂ ∈ F are distinct sets in F that both
contain {x1, x2, w}. Since λ = 3, we see that the intersections of F ′ and F̂ with F \{x1, x2}
must be disjoint subsets of size two. Consequently, codeg ({x1, x2, w}) ≤ (k − 1)/2.
Observe that if w ∈ F1 \ {x1, y1, y2, y3} then F2 is a set in F that satisfies (3.19). We will
consider two subcases according to whether for each yi ∈ F1 ∩ F2, there exists an F ∈ F
that satisfies (3.19) for w = yi.

Subcase 1: For each yi ∈ F1 ∩ F2, there exists an F ∈ F that satisfies (3.19) for w = yi.

Applying (3.16) and (3.18) yields

k(k − 1)

3
+ 1 + ǫ = m = s + t + u ≤

(k − 1)2

4
+ 2

⌈

2k

3

⌉

≤
3k2 + 10k + 19

12
. (3.20)

This implies that k2−14k−7+12ǫ ≤ 0, which is a contradiction for k ≥ 15 since ǫ ≥ 1/3.
For the remaining values of k, we refer the reader to the appendix.
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Subcase 2: There exists a yi ∈ F1 ∩ F2 for which no F ∈ F satisfies (3.19) for w = yi.

Observe that if yi is in every F ∈ F that does not contain {x1, x2} then, by (3.16),
codeg ({x1, x2, yi}) ≤ k − 1− (t + u). Suppose that every F ∈ F , not containing {x1, x2},
contains j of the elements {y1, y2, y3} where j ∈ {1, 2, 3}. Applying (3.18) yields

k(k − 1)

3
+ 1 + ǫ = m = s + t + u (3.21)

≤
1

2





∑

w∈F1\{x1}

codeg (x1, x2, w)



+ t + u

≤
1

2

(

j(k − 1 − (t + u)) +
(k − 1 − j)(k − 1)

2

)

+ t + u

=
j

2
(k − 1) +

(k − 1 − j)(k − 1)

4
+ (2 − j)

t + u

2

≤
j

2
(k − 1) +

(k − 1 − j)(k − 1)

4
+ (2 − j)

2k + 2

3

= −

(

k

6
+

7

6

)

j +
(k − 1 − j)(k − 1)

4
+

4k + 4

3

≤
3k2 + 5k + 8

12
,

since the penultimate expression in (3.21) is maximized when j = 1. This implies that
(k − 1)(k − 8) + 12(ǫ − 1/3) ≤ 0, which is a contradiction for k ≥ 9.

If k = 8 then ǫ = 1/3. Observe that codeg (x1, x2, w) ≤ 3 if w is not one of
the j special vertices in {y1, y2, y3}; in the bound for s in (3.21), we use the weaker
bound codeg (x1, x2, w) ≤ 7/2 for vertices w that are not one of the j special vertices in
{y1, y2, y3}. If we replace the weaker bound on codeg (x1, x2, w) by the tighter bound,
then we get a contradiction for k = 8 as well. Finally, if k ∈ {6, 7}, then ǫ ∈ Z

+ so we
also get a contradiction in this case.

Case 2: There are greater than two heavy vertices. Let x1, x2, x3 be three heavy vertices.
Define

s := |{F ∈ F : {x1, x2, x3} ⊂ F}|, t := |{F ∈ F : x1 ∈ F, x2, x3 /∈ F}|,

u := |{F ∈ F : x2 ∈ F, x1, x3 /∈ F}|, v := |{F ∈ F : x3 ∈ F, x1, x2 /∈ F}|,

w := |{F ∈ F : x1, x2 ∈ F, x3 /∈ F}|, x := |{F ∈ F : x1, x3 ∈ F, x2 /∈ F}|,

y := |{F ∈ F : x2, x3 ∈ F, x1 /∈ F}|, z := |{F ∈ F : x1, x2, x3 /∈ F}|.

By counting the number of sets not containing x1, x2, or x3 respectively we have

u + v + y + z, t + v + x + z, t + u + w + z ≤

⌈

2k

3

⌉

≤
2k + 2

3
, (3.22)
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by (3.16). As λ = 3 and F is non-trivial, we have s ≤ k − 2. Therefore (3.22) implies,

k(k − 1)

3
+ 1 + ǫ = m = s + t + u + v + w + x + y + z

≤ s + (u + v + y + z) + (t + v + x + z) + (t + u + w + z)

≤ (k − 2) + 3

⌈

2k

3

⌉

≤ (k − 2) + (2k + 2) = 3k. (3.23)

This implies k2 − 10k + 3 + 3ǫ ≤ 0, so we have a contradiction for k ≥ 10 since ǫ ≥ 1/3.
For the remaining values of k, we refer the reader to the appendix.

We have shown that if F ⊂
(

X

k

)

is a non-trivial 3-intersecting family of size m and
k /∈ {8, 11}, then F satisfies (1.2). By Theorem 1.2, this implies that if F satisfies the
hypotheses of Theorem 1.3 (ii), then |∂2F| ≥

(

m

2

)

and equality holds if and only if F is a
symmetric design.

4 Appendix

Here, we collect some computations that are needed to verify Theorem 1.3 for small values
of k. We regret that we could not prove Theorem 1.3 for all values of k. The missing
cases are k = 11, m = 40 in Case 1, Subcase 1 and k = 8, m = 20 in Case 2.

Case Analysis for Case 1, Subcase 1:

If k = 14, then codeg (x1, x2, w) ≤ 6 for w ∈ F1 \ {x1} so (3.18) yields s ≤ 39. Using
this value for s in (3.20) yields ǫ < 0, which contradicts (3.15).

If k = 13, then the penultimate inequality in (3.20) yields that m = 54, s = 36, and
t = u = 9. Using these values in (3.11) yields a contradiction.

If k = 12, then codeg (x1, x2, w) ≤ 5 for w ∈ F1 \ {x1} so (3.18) yields s ≤ 27. Using
this value for s in (3.20) yields ǫ < 0, which contradicts (3.15).

If k = 11, then (3.20) yields m ∈ {38, 39, 40, 41}. If we add the constraint zs = 1 to
(2.3), then the dual linear program becomes

Maximize 3

(

m

2

)

w +

(

k

2

)

mx + y (4.24)

subject to:

(

i

2

)

w + ix ≤ 1, i ∈ {1, . . . , m} \ {s}

(

s

2

)

w + sx + y ≤ 1.

and any feasible solution to (4.24) is a lower bound on |∂2F|. If m = 38, then (3.20)
implies s ≥ 22 because t, u ≤ 8. Observe that

(

p

2

) (

−1

3

)

+ p
(

2

3

)

≤
(

q

2

) (

−1

3

)

+ q
(

2

3

)

if

p > q ≥ 2. We have that
(

22

2

) (

−1

3

)

+ 22
(

2

3

)

+ 631

3
= 1, so the previous inequality implies
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that (−1/3, 2/3, 631

3
) is always a feasible solution to (4.24) for m = 38 and k = 11. Hence,

|∂2F| >
(

m

2

)

, which contradicts our initial assumption. A similar argument eliminates the
case m = 39. If m = 41, then s = 25 and t = u = 8 so deg(x1) = 33; this contradicts
Theorem 3.3.

If k = 10, then the penultimate inequality in (3.20) yields that m = 32 and s = 18.
Since

(

18

2

) (

−1

3

)

+18
(

2

3

)

+40 = 1, we have (−1/3, 2/3, 40) is a feasible solution to (4.24) for
m = 32 and k = 10. Consequently, |∂2F| >

(

m

2

)

, which contradicts our initial assumption.
If k = 9, then (3.20) yields ǫ ∈ {1, 2, 3} and s ≤ 16. We consider the cases ǫ = 1 and

ǫ ∈ {2, 3} separately.

ǫ = 1: By (3.16), we have s ≥ 14 and t, u ≤ 6. Note that
(

15

2

)

(−1

3
) + 15(2

3
) + 26 = 1 so

(−1

3
, 2

3
, 26) is a feasible solution to (4.24) for m = 26, k = 9, and s ≥ 15. If s = 14, then

t = u = 6 so deg(x1) = deg(x2) = 20. Observe that (3.16) and (3.17) imply

84 =
∑

x∈F1

deg(x) = deg(x1) +
∑

x1 6=x∈F1

deg(x) ≤ 20 + 8(8) = 84;

hence, if w is a light vertex in a set in F that doesn’t contain both x1, x2, then deg(w) = 8.
Now suppose that z is a light vertex that is only contained in sets that contain both
x1, x2; that is deg(z) = codeg (x1, x2, z). Since F1 satisfies (3.19) for w = z, we see
deg(z) = codeg (x1, x2, z) ≤ 4. Now let F ′ ∈ F be a set that contains both x1, x2 and
observe that

84 =
∑

x∈F ′

deg(x) = deg(x1) + deg(x2) +
∑

z∈F ′\{x1,x2}

deg(z) = 20 + 20 +
∑

z∈F ′\{x1,x2}

deg(z).

For z ∈ F ′ \ {x1, x2}, we have deg(z) ≤ 4 or deg(z) = 8 so either F ′ contains four vertices
of degree eight and three vertices of degree four or five vertices of degree eight and two
vertices whose degrees sum to four. Hence for x ∈ X, we have deg(x) ∈ {1, 2, 3, 4, 8, 20}.
Let ni denote the number of vertices of degree i. Also define

m1 := |{F ∈ F : {x1, x2} ⊂ F , ∃ w, z ∈ F with deg(w) = 1, deg(z) = 3}|,

m2 := |{F ∈ F : {x1, x2} ⊂ F , ∃ w, z ∈ F with deg(w) = deg(z) = 2}|,

m3 := |{F ∈ F : {x1, x2} ⊂ F , ∃ w ∈ F with deg(w) = 4}|,

and observe that m1 + m2 + m3 = s = 14. Note that n20 = 2, 3n3 = n1 = m1, n2 = m2,
and 4n4 = 3m3. In particular, m3 is even so n1 +n2 = m1 +m2 is also even. Observe that

234 = 9 · 26 = km =
∑

x∈X

deg(x) = 20n20 + 8n8 + 4n4 + 3n3 + 2n2 + n1

= 20n20 + 8n8 + 4n4 + n1 + 2n2 + n1 = 20n20 + 8n8 + 4n4 + 2(n1 + n2). (4.25)

Since n1 + n2 is even, (4.25) implies that 4|234, which is a contradiction.
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ǫ ∈ {2, 3}: Without loss of generality, we will assume deg(x1) ≤ deg(x2) or equivalently
that u ≥ t. Observe that (3.16) and (3.17) imply

deg(x1) =
∑

x∈F1

deg(x) −
∑

z∈F1\{x1}

deg(z) ≥
∑

x∈F1

deg(x) − (k − 1)2

= k2 + 3ǫ − (k − 1)2 = 2k − 1 + 3ǫ. (4.26)

If ǫ ∈ {2, 3}, then s ≤ 16 implies u = 6. When ǫ = 2, we have deg(x1) = 21, which
contradicts (4.26). When ǫ = 3, we have deg(x1) = 22, which again contradicts (4.26).

The case k ∈ {6, 7, 8} can be eliminated with an argument similar to the one for
k = 9, ǫ ∈ {2, 3}; we omit the details.

Case Analysis for Case 2:

If k = 9, then we arrive at a contradiction by using the third to last expression in
(3.23).

If k = 8, then m ∈ {20, 21, 22, 23, 24} by (3.23). For m ∈ {21, 22, 23, 24, 25}, any
heavy vertex x satisfies deg(x) ≥ m − 5 by (3.10). Hence, the upper bound in (3.22) is
improved and implies that deg(x1) = s + t + w + x ≤ 16. This gives a contradiction for
m ∈ {22, 23, 24}. For m = 21, we have s = 6, w = x = y = 5, and t = u = v = z = 0.
Hence codeg ({xi, xj}) = 11 for {i, j} ∈ {1, 2, 3}. Adding the constraint z11 ≥ 3 to (2.3)
yields that |∂2F| ≥

(

m

2

)

, which contradicts our initial assumption; we omit the details
since the computation is similar to that in (4.24).

If k = 7, then m ∈ {16, 17, 18, 19, 20} by (3.23) and (3.10) shows that any heavy vertex
x satisfies deg(x) ≥ m − 4. Hence, the upper bound in (3.22) is improved and implies
that deg(x1) = s + t + w + x ≤ 13. This gives a contradiction for m ∈ {18, 19, 20}.

If k = 7 and m = 17, then we conclude s = 5, w = x = y = 4, and t = u = v = z = 0.
Note that if x ∈ X is heavy then deg(x) ≥ 13 by (3.16). If there is a fourth heavy vertex
x4, it can be in at most one of the five sets on x1, x2, x3; moreover since heavy vertices have
degree at least thirteen, x4 is in each of the four sets on {x1, x2}, {x1, x3}, and {x2, x3}. As
λ = 3, this argument shows that there are at most four heavy vertices. If there are exactly
four heavy vertices x1, x2, x3, x4, then codeg ({xi, xj}) = 9 for {i, j} ⊂ {1, 2, 3, 4}. Adding
the constraint z9 ≥ 6 to (2.3) yields that |∂2F| ≥

(

m

2

)

, which contradicts our initial
assumption; we omit the details since the computation is similar to the one in (4.24).
Hence, there are exactly three heavy vertices and deg(x1) = deg(x2) = deg(x3) = 13.
Moreover, any set in F contains either exactly two or exactly three heavy vertices. Let F ′

be a set that contains exactly two heavy vertices. Equations (3.16) and (3.17) yield that
F ′ contains four vertices of degree six and one of degree five. Hence, if w is a light vertex
and w is contained in a set of F with two heavy vertices, then deg(w) ∈ {5, 6}; otherwise
deg(w) = codeg (x1, x2, x3, w) = 1. Now let F̂ be a set in F that contains exactly three
heavy vertices. Since deg(w) ∈ {1, 5, 6} for w ∈ X \ {x1, x2, x3}, (3.17) yields that F̂
contains three vertices of degree five and one vertex of degree one. As s = 5, there are
fifteen vertices of degree five and five of degree one. Let ni denote the number of vertices

the electronic journal of combinatorics 18 (2011), #P56 13



of degree i. We have

119 = km =
∑

x∈X

deg(x) = 13n13 + 6n6 + 5n5 + n1 = 39 + 6n6 + 75 + 5,

which implies that n6 = 0, a contradiction.
If k = 7 and m = 16 then (3.23) implies that s ∈ {4, 5} and t + u + v + 2z ≤ 1. We

conclude that z = 0 and at most one of t, u, v equals one. We first show that the situation
where exactly one of t, u, v is one is impossible. Without loss of generality, assume for a
contradiction that t = 1 and u = v = 0. If s = 4, then (3.22) implies that

16 = m = s + t + u + v + w + x + y + z ≤ 4 + 1 + 0 + 0 + 0 + 3 + 3 + 4 = 15,

which is a contradiction. If s = 5, then we can conclude via a similar argument that
w = x = 3 and y = 4. Consider the unique F̂ ∈ F with x1 ∈ F and x2, x3 /∈ F .
Since light vertices have degree at most six, F̂ must contain another heavy vertex x4 by
(3.17). Now deg(x4) ≥ 12 and since x4 can only be in one of the five sets on x1, x2, x3,
we have that x4 is in each of the remaining 11 sets. As a result, for i, j ∈ {1, 2, 3, 4},
we have codeg ({xi, xj}) = 8 if {i, j} 6= {1, 3} and we have codeg ({x1, x3}) = 9. Adding
the constraints z9 ≥ 1 and z8 ≥ 5 to (2.3) yields that |∂2F| ≥

(

m

2

)

, which contradicts
our initial assumption; we omit the details since the computation is similar to the one
in (4.24). Hence, we can assume t = u = v = 0. If s = 5, then two of w, x, y equal
four and the other equals three. Hence, two of the pairs {x1, x2}, {x1, x3}.{x2, x3} have
codegree nine and one has codegree eight. Adding the constraints z9 ≥ 2 and z8 ≥ 1
to (2.3) yields that |∂2F| ≥

(

m

2

)

, which contradicts our initial assumption; we omit the
details since the computation is similar to the one in (4.24). If s = 4, then w = x = y = 4
so deg(x1) = deg(x2) = deg(x3) = 12 and codeg ({xi, xj}) = 8 for {i, j} ⊂ {1, 2, 3}. If we
add the constraint z8 ≥ 3 to (2.3), then the corresponding dual linear program is

Maximize 360w + 336x + y (4.27)

subject to:

(

i

2

)

w + ix ≤ 1, i ∈ [16] \ {8}

(

8

2

)

w + 8x + y ≤ 1.

y ≥ 0.

It is not difficult to see that (−1/3, 2/3, 5) is a feasible solution to (4.27) so |∂2F| ≥ 119.
Since

(

16

2

)

= 120, we obtain a contradiction unless (−1/3, 2/3, 5) is an optimal solution to
(4.27). If (−1/3, 2/3, 5) is an optimal solution to (4.27), then by complementary slackness
codeg ({x, y}) ∈ {0, 2, 3, 8} for {x, y} ∈

(

X

2

)

; moreover z8 = 3. Since t = u = v = z = 0,
if w ∈ X \ {x1, x2, x3} then

deg(w) =
∑

{i,j}⊂{1,2,3}

codeg ({xi, xj, w}) − 2 codeg ({x1, x2, x3, w}) ≤ 9,
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so (3.16) shows that x1, x2, x3 are the only heavy vertices. Moreover, as t = u = v = z = 0,
every F ∈ F contains either exactly two or exactly three heavy vertices. If F ′ ∈ F is a
set with exactly two heavy vertices, then (3.16) and (3.17) yield that either F ′ contains
three vertices of degree six and two vertices of degree five or four vertices of degree six
and one of degree four. Now, every light vertex w must be contained in a set with exactly
two heavy vertices; otherwise deg(w) = codeg (x1, x2, x3, w) = 1, which contradicts the
fact that codeg ({x, y}) ∈ {0, 2, 3, 8}. Hence, deg(w) ∈ {4, 5, 6} for w ∈ X \ {x1, x2, x3}.
As a result, if F̂ is a set with three heavy vertices, then (3.17) yields that F̂ contains four
vertices of degree four. We conclude that deg(w) ∈ {4, 6} for w ∈ X \ {x1, x2, x3}. Since
s = 4, there are sixteen vertices of degree four. Let ni denote the number of vertices of
degree i; we have

112 = km =
∑

x∈X

deg(x) = 12n12 + 6n6 + 4n4 = 36 + 6n6 + 64

so n6 = 2, which is impossible.
If k = 6, then ǫ ∈ {1, 2} by Theorem 3.1. Let ni denote the number of vertices of

degree i. If ǫ = 2, then n1 = 2, n4 = 9, and n10 = 4 by a result of Vanstone [15]. Using
(3.17), we see that F is uniquely determined and must be the family

{{1, 2, 3, 5, 6, 7}, {1, 2, 3, 8, 9, 10}, {1, 2, 3, 11, 12, 13}, {1, 2, 4, 5, 8, 11}, {1, 2, 4, 6, 9, 12},

{1, 2, 4, 7, 10, 13}, {1, 3, 4, 5, 10, 12}, {1, 3, 4, 6, 8, 13}, {1, 3, 4, 7, 9, 11}, {2, 3, 4, 5, 9, 13},

{2, 3, 4, 6, 10, 11}, {2, 3, 4, 7, 8, 12}, {1, 2, 3, 4, 14, 15}}. (4.28)

Hence, |∂2F| = 87 >
(

13

2

)

. If k = 6 and ǫ = 1, then either n1 = 2, n3 = 3, n4 = 6, n9 = 3,
and n10 = 1 or n4 = 9 and n9 = 4 by a result of Vanstone [15]. Again using (3.17), we
can conclude that F is uniquely determined in both cases. In the first case, F must be

{{1, 2, 4, 5, 6, 11}, {1, 2, 4, 7, 8, 12}, {1, 2, 4, 9, 10, 13}, {1, 3, 4, 7, 9, 11},

{1, 3, 4, 5, 10, 12}, {1, 3, 4, 6, 8, 13}, {2, 3, 4, 8, 10, 11}, {2, 3, 4, 6, 9, 12},

{2, 3, 4, 5, 7, 13}, {1, 2, 3, 5, 8, 9}, {1, 2, 3, 6, 7, 10}, {1, 2, 3, 4, 14, 15}}; (4.29)

hence, |∂2F| = 84 >
(

12

2

)

. In the latter case, F is the complement of a projective plane

of order 3 with respect to a line; hence |∂2F| = 78 >
(

12

2

)

.
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