
On disjoint crossing families in geometric graphs

Radoslav Fulek∗† Andrew Suk∗‡

November 10, 2018

Abstract

A geometric graph is a graph drawn in the plane with vertices represented by points and
edges as straight-line segments. A geometric graph contains a (k, l)-crossing family if there is
a pair of edge subsets E1, E2 such that |E1| = k and |E2| = l, the edges in E1 are pairwise
crossing, the edges in E2 are pairwise crossing, and every edges in E1 is disjoint to every edge in
E2. We conjecture that for any fixed k, l, every n-vertex geometric graph with no (k, l)-crossing
family has at most ck,ln edges, where ck,l is a constant that depends only on k and l. In this
note, we show that every n-vertex geometric graph with no (k, k)-crossing family has at most
ckn log n edges, where ck is a constant that depends only on k, by proving a more general result
which relates extremal function of a geometric graph F with extremal function of two completely
disjoint copies of F . We also settle the conjecture for geometric graphs with no (2, 1)-crossing
family. As a direct application, this implies that for any circle graph F on 3 vertices, every
n-vertex geometric graph that does not contain a matching whose intersection graph is F has
at most O(n) edges.

1 Introduction

A topological graph is a graph drawn in the plane with points as vertices and edges as non-self-
intersecting arcs connecting its vertices. The arcs are allowed to intersect, but they may not
pass through vertices except for their endpoints. Furthermore, the edges are not allowed to have
tangencies, i.e., if two edges share an interior point, then they must properly cross at that point.
We only consider graphs without parallel edges or self-loops. A topological graph is simple if every
pair of its edges intersect at most once. If the edges are drawn as straight-line segments, then the
graph is geometric. Two edges of a topological graph cross if their interiors share a point, and are
disjoint if they do not have a point in common (including their endpoints).

It follows from Euler’s Polyhedral Formula that every simple topological graph on n vertices
and no crossing edges has at most 3n − 6 edges. It is also known that every simple topological
graph on n vertices with no pair of disjoint edges has at most O(n) edges [10],[7]. Finding the
maximum number of edges in a topological (and geometric) graph with a forbidden substructure
has been a classic problem in extremal topological graph theory (see [1], [2], [15], [6], [20], [14],
[19], [18], [21]). Many of these problems ask for the maximum number of edges in a topological (or
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geometric) graph whose edge set does not contain a matching that defines a particular intersection
graph. Recall that the intersection graph of objects C in the plane is a graph with vertex set C,
and two vertices are adjacent if their corresponding objects intersect. Much research has been
devoted to understanding the clique and independence number of intersection graphs due to their
applications in VLSI design [8], map labeling [3], and elsewhere.

Recently, Ackerman et al. [4] defined a natural (k, l)-grid to be a set of k pairwise disjoint edges
that all cross another set of l pairwise disjoint edges. They conjectured

Conjecture 1.1. Given fixed constants k, l ≥ 1 there exists another constant ck,l, such that any
geometric graph on n vertices with no natural (k, l)-grid has at most ck,ln edges.

They were able to show,

Theorem 1.2. [4] For fixed k, an n-vertex geometric graph with no natural (k, k)-grid has at most
O(n log2 n) edges.

Theorem 1.3. [4] An n-vertex geometric graph with no natural (2, 1)-grid has at most O(n) edges.

Theorem 1.4. [4] An n-vertex simple topological graph with no natural (k, k)-grid has at most
O(n log4k−6 n) edges.

As a dual version of the natural (k, l)-grid, we define a (k, l)-crossing family to be a pair of edge
subsets E1, E2 such that

1. |E1| = k and |E2| = l,

2. the edges in E1 are pairwise crossing,

3. the edges in E2 are pairwise crossing,

4. every edge in E1 is disjoint to every edge in E2.

We conjecture

Conjecture 1.5. Given fixed constants k, l ≥ 1 there exists another constant ck,l, such that any
geometric graph on n vertices with no (k, l)-crossing family has at most ck,ln edges.

It is not even known if all n-vertex geometric graphs with no k pairwise crossing edges has O(n)
edges. The best known bound is due to Valtr [22], who showed that this is at most O(n log n) for
every fixed k. We extend this result to (k, k)-crossing families by proving the following theorem.

Theorem 1.6. An n-vertex geometric graph with no (k, k)-crossing family has at most ckn log n
edges, where ck is a constant that depends only on k.

Let F denote a geometric graph. We say that a geometric graph G contains F as a geometric
subgraph if G contains a subgraph F ′ isomorphic to F such that two edges in F ′ cross if and only
if the two corresponding edges cross in F .

We define ex(F, n) to be the extremal function of F , i.e. the maximum number of edges a
geometric graph on n vertices can have without containing F as a geometric subgraph. Similarly,
we define exL(F, n) to be the extremal function of F , if we restrict ourselves to the geometric graphs
all of whose edges can be hit by one line.

Let F2 denote a geometric graph, which consists of two completely disjoint copies of a geometric
graph F . We prove Theorem 1.6 by a straightforward application of the following result.
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(a) 3 pairwise crossing. (b) 3 pairwise
disjoint.

(c) (2,1)-grid. (d) (2,1)-crossing
family.

Figure 1: Triples of segments corresponding to all circle graphs on three vertices.

Theorem 1.7. ex(F2, n) = O((exL(F, 2n) + n) log n + ex(F, n))

Furthermore, we settle Conjecture 1.5 in the first nontrivial case.

Theorem 1.8. An n-vertex geometric graph with no (2, 1)-crossing family has at most O(n) edges.

Note that Conjecture 1.5 is not true for topological graphs since Pach and Tóth [16] showed that
the complete graph can be drawn such that every pair of edges intersect once or twice.

Recall that F is a circle graph if F can be represented as the intersection graph of chords on a
circle. By combining Theorem 1.8 with results from [2], [4], and [20], we have the following.

Corollary 1.9. For any circle graph F on 3 vertices, every n-vertex geometric graph that does not
contain a matching whose intersection graph is F contains at most O(n) edges.

See Figure 1. We also conjecture the following.

Conjecture 1.10. For any circle graph F on k vertices, there exists a constant ck such that every
n-vertex geometric graph that does not contain a matching whose intersection graph is F , contains
at most ckn edges.

As pointed out by Klazar and Marcus [9], it is not hard to modify the proof of the Marcus-Tardos
Theorem [19] to show that Conjecture 1.10 is true when the vertices are in convex position.

For simple topological graphs, we have the following

Theorem 1.11. An n-vertex simple topological graph with no (k, 1)-crossing family has at most
n(log n)O(log k) edges.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.7. In Section
3 we establish Theorem 1.8. Finally, the result of Theorem 1.11 about topological graphs is proved
in Section 4.

2 Relating extremal functions

First, we prove a variant of Theorem 1.7 when all of the edges in our geometric graph can be hit
by a line. As in the introduction let F2 denote a geometric graph, which consists of two completely
disjoint copies of a geometric graph F . We will now show that the extremal function exL(F2, n) is
not far from exL(F, n).
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Theorem 2.1. exL(F2, n) ≤ O((n + exL(F, 2n)) log n).

Proof. Let G denote a geometric graph on n vertices that does not contain F2 as a geometric
subgraph, and all the edges of G can be hit by a line. By a standard perturbation argument we
can assume that the vertices of G are in general position. As in [5], a halving edge uv is a pair of
the vertices in G such that the number of vertices on each side of the line through u and v is the
same.

Lemma 2.2. There exists a directed line ~l such that the number of edges in G that lies completely
to the left or right of ~l is at most 2exL(F, n/2) + 5n.

Proof. If n is odd we can discard one vertex of G, thereby loosing at most n edges. Therefore we
can assume n is even, and it suffices to show that there exists a directed line ~l such that the number
of edges in G that lies completely to the left or right of ~l is at most 2exL(F, n/2) + 4n.

Let uv be a halving edge, and let ~l denote the directed line containing vertices u and v with
direction from u to v. Let e(~l, L) and e(~l, R) denote the number of edges on the left and right side
of ~l respectively. Without loss of generality, we can assume that e(~l, L) ≤ e(~l, R). We will rotate
~l such that it remains a halving line at the end of each step, until it reaches a position where the
number of edges on both sides of ~l is roughly the same.

We start by rotating ~l counterclockwise around u until it meets the next vertex w of G. If
initially w lies to the right of ~l, then in the next step we will rotate ~l around u (again). See Figure
2(a). Otherwise if w was on the left side of ~l, then in the next step we will rotate ~l around vertex
w. See Figure 2(b). Clearly after each step in the rotation, there are exactly n/2 vertices on each
side of ~l.

u

v

−→
l

w

(a) w lies to the right

of ~l.

u

v

−→
l

w

(b) w lies to the left of
~l.

Figure 2: Halving the vertices of G

After several rotations, ~l will eventually contain points u and v again, with direction from v to
u. At this point we have e(~l, L) ≥ e(~l, R). Since the number of edges on the right side (and left
side) changes by at most n after each step in the rotation, at some point in the rotation we must
have

|e(~l, L)− e(~l, R)| ≤ 2n.

Since G does not contain a F2 as a geometric subgraph, this implies that
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l

l′

V1

V2

V11(l
′)

V21(l
′)

V12(l
′)

V22(l
′)

l′

Figure 3: The final partition of the vertex set of G

e(~l, L) ≤ exL(F, n/2) + 2n

and

e(~l, R) ≤ exL(F, n/2) + 2n.

Therefore for any n, there exists a directed line ~l such that the number of edges in G that lies
completely to the left or right of ~l is at most 2exL(F, n/2) + 5n.

By Lemma 2.2 we obtain a line l, which partition the vertices of G into two equal (or almost
equal if n is odd) sets V1 and V2. Let E′ denote the set of edges between V1 and V2. By the
Ham-Sandwich Cut Theorem [11], there exists a line l′ that simultaneously bisects V1 and V2. Let
V11(l

′) and V12(l
′) denote the resulting parts of V1, and let V21(l

′) and V22(l
′) denote the resulting

parts of V2.
Observe that we can translate l′ along l into a position where the number of edges in E′ that

lie completely to the left and completely to the right of l′ is roughly the same. In particular, we
can translate l′ along l such that the number of edges in E′ that lies completely to its left or right
side is at most exL(F, n) + exL(F, n/2 + 1) + n (see Figure 2). Indeed, assume that the number of
edges in E′ between, say, V12(l

′) and V22(l
′) is more than exL(F, n/2 + 1). As we translate l′ to the

right, the number of edges that lie completely to the right of l′ changes by at most n as l′ crosses
a single vertex in G. Therefore we can translate l′ into the leftmost position where the number
of edges in E′ between V12(l

′) and V22(l
′) drops below exL(F, n/2 + 1) + n + 1. Moreover, at this

position the number of edges in E′ between V11(l
′) and V21(l

′) still cannot be more than exL(F, n)
since G does not contain F2 as a geometric subgraph.

Thus, all but at most 3exL(F, n/2+1)+exL(F, n)+6n edges of G are the edges between V11(l
′)

and V22(l
′), and between V12(l

′) and V21(l
′). Notice that there exists k, −1/4 ≤ k ≤ 1/4, such that

|V11(l
′)|+ |V22(l

′)| = n(1/2+k), and |V12(l
′)|+ |V21(l

′)| = n(1/2−k). Finally, we are in the position
to state the recurrence, whose closed form gives the statement of the theorem.

exL(F2, n) ≤ exL(F2, n(1/2 + k)) + exL(F2, n(1/2− k)) + 3exL(F, n/2 + 1) + exL(F, n) + 6n.
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By a routine calculation which is indicated below, we have

exL(F2, n) ≤ log 4
3

(
n

(
1

2
+ k

))(
6n

(
1

2
+ k

)
+ 4exL

(
F2, 2n

(
1

2
+ k

)))
+

log 4
3

(
n

(
1

2
− k

))(
6n

(
1

2
− k

)
+ 4exL

(
F2, 2n

(
1

2
− k

)))
+

4exL(F, n) + 6n

≤ log 4
3
n(4exL(F, 2n) + 6n)

Finally, we show how Theorem 2.1 implies Theorem 1.7.

Proof of Theorem 1.7. Let G = (V,E) denote the geometric graph not containing F2 as a subgraph.
Similarly, as in the proof of Lemma 2.2 we can find a halving line l that hits all but 2ex(F, n/2)+5n
edges of G. Now, the claim follows by using Theorem 2.1.

Theorem 1.6 follows easily by using Theorem 1.7 with a result from [22], which states that
every n-vertex geometric graph whose edges can be all hit by a line and does not contain k pairwise
crossing edges has at most O(n) edges and at most O(n log n) edges if we do not require a single
line to hit all the edges.

3 Geometric graphs with no (2,1)-crossing family

In this section we will prove Theorem 1.8. Our main tool is the following theorem by Tóth and
Valtr

Theorem 3.1. [21] Let G = (V,E) be an n-vertex geometric graph. If G does not contain a
matching consisting of 5 pairwise disjoint edges, then |E(G)| ≤ 64n + 64.

Theorem 1.8 immediately follows from the following theorem.

Theorem 3.2. Every n-vertex geometric graph with no (2, 1)-crossing family has at most 64n+ 64
edges.

Proof. For sake of contradiction, let G = (V,E) be a vertex-minimal counter example, i.e. G is
a geometric graph on n vertices which has more than 64n + 64 edges and G does not contain a
(2,1)-crossing family. Hence every vertex in G has degree at least 65. Let M denote the maximum
matching in G consisting of pairwise disjoint edges and let VM denote the vertices in M . Since
|E(G)| > 64n + 64, Theorem 3.1 implies that |M | ≥ 5. We say that two edges intersect if they
cross or share an endpoint. The following simple observation is crucial in the subsequent analysis.

(*) An edge e ∈ E that crosses an edge of M must intersect every edge in M .

Indeed, otherwise we would obtain a (2,1)-crossing family. We call an endpoint v of an edge in M
good if every ray starting at v misses at least one edge in M . See Figure 4(b).

6



Lemma 3.3. For |M | ≥ 4, at least |M | − 2 of the endpoints in M are good.

Proof. We proceed by induction on |M |. Assume |M | = 4. If every triple in M has a good
vertex, then clearly we have at least two good vertices. Otherwise the only matching consisting
of three pairwise disjoint edges with no good vertices is the one in Figure 4(a). By a simple case
analysis, adding a disjoint edge to this matching creates two good vertices (see Appendix A). For
the inductive step when |M | > 4, we choose an arbitrary 4-tuple of edges in the matching. By the
above discussion, the 4-tuple has at least one good endpoint. By removing the edge incident to
this good vertex, the statement follows by the induction hypothesis.

(a)

�
�
�
�

��

��
��
��
��

�
�
�
�

�
�
�
�

��

v

(b)

Figure 4: (a) Special case in Lemma 3.3, (b) Matching M of size 3 with one good vertex v

Thus by (*), a good endpoint cannot be incident to an edge that crosses any of the edges in M .
Let

1. Vg ⊆ VM denote the set of good endpoints in M .

2. V1 ⊂ V \ VM be the subset of the vertices such that for v ∈ V1, every edge incident to v does
not cross any of the edges in M ,

3. and V2 = V \ (VM ∪ V1). Hence for v ∈ V2, there exists an edge incident to v that intersects
every edge in M .

See Figure 5(a). By Lemma 3.3, |Vg| ≥ |M | − 2 = |VM |/2 − 2. By maximality of M , there are no
edges between V1 and V2 and V1 is an independent set. Now notice the following observation.

Observation 3.4. There exists a good vertex in Vg that has at least three neighbors in V2.

Proof. For sake of contradiction, suppose that each vertex in Vg has at most two neighbors in V2.
Then let G′ = (V ′, E′) denote a subgraph of G such that V ′ = VM ∪ V1 and E′ consists of the
edges that do not cross any of the edges of M and whose endpoints are in V1 ∪ VM . Since |M | ≥ 5,
G′ must be a planar graph since otherwise we would have a (2, 1)-crossing family. Therefore
E′ ≤ 3(|V1|+ |VM |).

7



On the other hand, by minimality of G, each vertex in V1 has degree at least 65 in G′, and each
vertex in Vg has degree at least 63 in G′. Therefore by applying Lemma 3.3, we have

1

2

(
65|V1|+ 63

( |VM |
2
− 2

))
≤ |E′| ≤ 3|V1|+ 3|VM |.

This implies

59|V1|+ 25|VM | ≤ 126

which is a contradiction since |VM | ≥ 10 (|M | ≥ 5).
�

Let v ∈ Vg be a good vertex such that v has at least 3 neighbors in V2. Let e = vv1, f = vv2,
g = vv3, and m be edges in G such that v1, v2, v3 ∈ V2, m ∈ M , and v is a good vertex incident
to m. Furthermore, we will assume that g, e,m, f appear in clockwise order around v. By (*)
there is an edge e′ incident to v1 having non-empty intersection with every edge in M . Similarly,
we can find such an edge f ′ incident to v2 (possibly f ′ = e′). The edges e′ and f ′ must have
non-empty intersection with f and e, respectively (see Figure 5(b)). Otherwise we would obtain a
(2,1)-crossing family in G consisting of e, f ′ and an edge from M , or e′, f and an edge from M .

However, a third edge g cannot have a non-empty intersection with both e′ and f ′. Hence, we
obtain a (2,1)-crossing family in G consisting of g, e′ and an edge from M , or g, f ′ and an edge
from M . Thus, there is no minimal counter example and that concludes the proof.
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V2

V1

M

(a)

v

v2v1

e′
f ′

g

(b)

Figure 5: (a) M , V1, and V2, (b) Situation around the vertex v

We note that by a more tedious case analysis, one could improve the upper bound in Theorem 3.2
to 15n.

4 Simple topological graphs with no (k, 1)-crossing family

In this section, we will prove Theorem 1.11 which will require the following two lemmas. The first
one is due to Fox and Pach.

Lemma 4.1. [6] Every n-vertex simple topological graph with no k pairwise crossing edges has at
most n(log n)c1 log k edges, where c1 is an absolute constant.
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As defined in [17], the odd-crossing number odd-cr(G) of a graph G is the minimum possible
number of unordered pairs of edges that crosses an odd number of times over all drawings of
G. The bisection width of a graph G, denoted by b(G), is the smallest nonnegative integer such
that there is a partition of the vertex set V = V1 ∪̇V2 with 1

3 · |V | ≤ Vi ≤ 2
3 · |V | for i = 1, 2,

and |E(V1, V2)| = b(G). The second lemma required is due to Pach and Tóth, which relates the
odd-crossing number of a graph to its bisection width.

Lemma 4.2. [16] There is an absolute constant c2 such that if G is a graph with n vertices of
degrees d1, . . . , dn, then

b(G) ≤ c2 log n

√√√√odd-cr(G) +

n∑
i=1

d2i .

Since all graphs have a bipartite subgraph with at least half of its edges, Theorem 1.6 immediately
follows from the following Theorem.

Theorem 4.3. Every n vertex simple topological bipartite graph with no (k, 1)-crossing family has
at most c3n logc4 log k n edges, where c3, c4 are absolute constants.

Proof. We proceed by induction on n. The base case is trivial. For the inductive step, the proof
falls into two cases.

Case 1. Suppose there are at least |E(G)|2/((2c2)
2 log6 n) disjoint pair of edges in G. Then by

defining D(e) to be the set of edges disjoint from edge e, we have

2|E(G)|
(2c2)2 log6 n

≤

∑
e∈E(G)

|D(e)|

|E(G)|
Hence there exists an edge that is disjoint to at least 2|E(G)|/((2c2)

2 log6 n) other edges. By
Lemma 4.1 we have

2|E(G)|
(2c2)2 log6 n

≤ n(log n)c1 log k,

which implies |E(G)| ≤ c3n logc4 log k n for sufficiently large constants c3, c4.

Case 2. Suppose there are at most |E(G)|2/((2c2)
2 log6 n) disjoint pair of edges in G. Since G is

bipartite, let Va and Vb be its vertex class. By applying a suitable homeomorphism to the plane,
we can redraw G such that

1. the vertices in Va are above the line y = 1, the vertices in Vb are below the line y = 0,

2. edges in the strip 0 ≤ y ≤ 1 are vertical segments,

3. we have not created nor removed any crossings.

Now we reflect the part of G that lies above the y = 1 line about the y-axis. Then erase the edges
in the strip 0 ≤ y ≤ 1 and replace them by straight line segments that reconnects the corresponding

9
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Figure 6: Redrawing procedure

pairs on the line y = 0 and y = 1. See Figure 4, and note that our graph is no longer simple. Since
there are at most

∑
v∈V (G)

d2(v) ≤ 2|E(G)|n pair of edges that share a vertex in G, this implies

odd-cr(G) ≤ |E(G)|2
(2c2)2 log6 n

+ 2|E(G)|n.

By Lemma 4.2, there is a partition of the vertex set V = V1 ∪̇V2 with 1
3 · |V | ≤ Vi ≤ 2

3 · |V | for
i = 1, 2 and

b(G) ≤ c2 log n

√
|E(G)|2

(2c2)2 log6 n
+ 4n|E(G)|.

If

|E(G)|2
(2c2)2 log6 n

≤ 4n|E(G)|

then we have |E(G)| ≤ c3n logc4 log k n and we are done. Therefore we can assume

b(G) ≤ c2 log n

√
2|E(G)|2

(2c2)2 log6 n
≤ |E(G)|

log2 n
.

Let |V1| = n1 and |V2| = n2. By the induction hypothesis we have

|E(G)| ≤ b(G) + c3n1 logc4 log k n1 + c3n2 logc4 log k n2

≤ |E(G)|
log2 n

+ c3n logc4 log k(2n/3)

≤ |E(G)|
log2 n

+ c3n(log n− log(3/2))c4 log k,

which implies

|E(G)| ≤ c3n logc4 log k n
(1− log(3/2)/ log n)c4 log k

1− 1/ log2 n
≤ c3n logc4 log k n.
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�
For small values of k, one can obtain better bounds by replacing Lemma 4.1 with a Theorem of
Pach et. al. [14] and Ackerman [1] to obtain

Theorem 4.4. For k > 4, every n vertex simple topological graph with no (k, 1)-crossing family
has at most O

(
n log2k+2 n

)
edges. For k = 2, 3, 4, every n vertex simple topological graph with no

(k, 1)-crossing family has at most O
(
n log6 n

)
edges.

�
Appendix

A Four disjoint edges

(a) (b) (c) (d) (e)

(f) (g)

Figure 7: Possible configuration of 4 pairwise disjoint edges, the additional edge is bold, and good
vertices are marked by small discs

Suppose that we have three pairwise disjoint edges in the plane, whose combinatorial configura-
tion is that of the configuration in Figure 4(a). Let T denote the triangle we get by prolonging the
edges until they hit another edge. In what follows we show that by adding additional edge to this
configuration, so that all the edges remain pairwise disjoint, we obtain at least two good endpoints
(as defined in the proof of Theorem 1.8).

There are three cases to check:

1. The additional edge is completely inside of the triangle T (see Figure 7(a)). The two good
points are the endpoints of the additional edge.

2. The additional edge e has one endpoint in the inside the triangle T and the one outside of
it. Clearly, the endpoint of e inside of T is a good endpoint. If the other endpoint of e is not
good, we can easily see (see Figure 7(b), 7(c) and 7(d)), that one of the remaining endpoints
is good.

11



3. The additional edge is completely outside of the triangle T . There are three cases to be
checked (see Figure 7(e), 7(f) and 7(g)), according to where the lines through our segments
meet.

References

[1] E. Ackerman, 2006. On the maximum number of edges in topological graphs with no four pair-
wise crossing edges. In Proceedings of the Twenty-Second Annual Symposium on Computational
Geometry (Sedona, Arizona, USA, June 05 - 07, 2006). SCG ’06. ACM, New York, NY, 259-263.

[2] P.K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, Quasi-Planar Graphs Have a
Linear Number of Edges. In Proceedings of the Symposium on Graph Drawing (September 20 -
22, 1995). F. Brandenburg, Ed. Lecture Notes In Computer Science, vol. 1027. Springer-Verlag,
London, 1-7.

[3] P.K. Agarwal, M. van Kreveld, and S. Suri, Label placement by maximum independent set in
rectangles, Comput. Geom. Theory Appl. 11 (1998), 209–218.

[4] E. Ackerman, J. Fox, J. Pach, and A. Suk, On grids in topological graphs, Proc. 25th ACM
Symp. on Computational Geometry (SoCG), University of Aarhus, Denmark, June 2009, 403-412.

[5] T. Dey, Improved Bounds on Planar k-sets and k-levels, Discrete Comput. Geom, 1997, 19,
156–161

[6] J. Fox and J. Pach, Coloring Kk-free intersection graphs of geometric objects in the plane.
In Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry (College
Park, MD, USA, June 09 - 11, 2008). SCG ’08. ACM, New York, NY, 346-354.

[7] R. Fulek and J. Pach, A computational approach to Conway’s thrackle conjecture, Computa-
tional Geometry: Theory and Application, 2010, to appear.

[8] D. S. Hochbaum and W. Maass, Approximation schemes for covering and packing problems in
image processing and VLSI, J. ACM 32 (1985), 130–136.

[9] M. Klazar and A. Marcus,Extensions of the linear bound in the Fredi-Hajnal conjecture, Adv.
in Appl. Math. 38 (2006), 258–266.

[10] L. Lovász, J. Pach and M. Szegedy: On Conway’s thrackle conjecture, Discrete. Comput.
Geom. 18(4) (1997), 369376.
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