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Abstract

We introduce and study a partial order on graphs — lift-contractions. A graph
H is a lift-contraction of a graph G if H can be obtained from G by a sequence
of edge lifts and edge contractions. We give sufficient conditions for a connected
graph to contain every n-vertex graph as a lift-contraction and describe the struc-
ture of graphs with an excluded lift-contraction.
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1 Introduction

All graphs in this paper are undirected, loopless, and without multiple edges (unless
mentioned otherwise). V(G) and E(G) denote the vertex and edge set of a graph G,
respectively. The degree of a vertex v € V(G) is the number of edges incident with
it. K, is the complete graph on n vertices. Given an edge e of a graph G, the result
of the contraction of e in G is the graph obtained by removing e from G and then
identifying its endpoints to a single vertex ve. For notions and notations not defined
here, we refer the reader to the monograph [5].

Given two edges e; = {x,x1} and e3 = {z, z2} of G, incident with the same vertex
x, and such that x1 # x9, we define the lift of e; and ez in G as the graph obtained
by removing e; and ey from G and then adding the edge {z1,z2}. If a contraction
or lift creates multiple edges, we reduce their multiplicity to one and keep the graph
simple.
Partial orders. The study of partial orders on graphs is one of the basic research
avenues in graph theory. One of the most comprehensive studies of partial orders is
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the theory of Graph Minors by Robertson and Seymour [11] (see also the last chapter
of [5]). A graph H is a minor of another graph G (H <,, G) if H can be obtained
from G by a sequence of vertex deletions, edge removals, and edge contractions. Some
more restricted graph containment relations than graph minors, like contractions [3]
or induced minors [9] have also been studied.

Graph immersions form another partial order that has been considered in the lit-
erature [4]. A graph H is an immersion of G if H can be obtained from G by a
sequence of vertex deletions, edge removals, and lifts. The last operation was intro-
duced by Lovéasz under the name of splitting as a reduction method to maintain edge
connectivity [§].

In this paper, we introduce and study lift-contractions. We say that a graph H is
a lift-contraction of a graph G if H can be obtained from G by a sequence of lifts and
edge contractions. We also define lift-minors. We say that a graph H is a [lift-minor
of a graph G if H can be obtained from G by a sequence of vertex and edge deletions,
lifts and contractions.

Being a lift-contraction (lift-minor) is a partial relation between graphs and we
denote it by H <. G (H <j, G). If a graph H can be obtained from G by a sequence
of contractions, we say that H is a contraction of G and we denote this by H <. G.
Clearly, H <. G = H <. G=H<,Gand H <, G = H <, G.

Forcing complete graphs. When studying a partial order < on graphs, it is inter-
esting to know under what conditions on G, for a fixed graph H, H < G. Kostochka [7]
and Thomason [13] independently proved that if the average degree of G is at least
cny/logn, then G contains K, as a minor (for some constant ¢ > 0). Bollobés [2]
showed that if the average degree of G is at least cn?, then G contains K, as a topo-
logical minoxﬂ (for some constant ¢ > 0). Recently, DeVos et al. [4] proved that if the
minimum degree of G is at least 200n, then G contains K,, as an immersion. For all
these three partial orders, containing K,, implies containing any n-vertex graph.

In this paper, we identify three conditions on a connected graph G that force any
n-vertex graph as a lift-contraction of G.

Theorem 1.1. There exists a constant c¢ such that every connected graph G of
treewidth at least ¢ -n* contains every n-vertex graph as a lift-contraction.

Theorem 1.2. There exists a function f : N — N such that every 2-connected graph
of pathwidth at least f(n) contains every n-vertex graph as a lift-contraction.

Theorem 1.3. There exists a function f : N — N such that every connected graph
with at least f(n) vertices and minimum degree at least 3 contains every n-vertex
graph of as a lift-contraction.

We note that none of the three conditions above is alone enough to force all n-
vertex graphs as a lift or as a contraction. In order to see this, consider a complete
graph K with an arbitrarily large number of vertices. Because a lift does not change

LH is a topological minor of G, when some subdivision of H is a subgraph of G.



the number of vertices, we cannot obtain a graph with fewer vertices than K by taking
lifts only. Because contracting an edge in K yields a new complete graph, we cannot
obtain any non-complete graph by performing edge contractions only.

Structural theorem. Another point of focus, when studying partial orders on
graphs, is to understand the structure of nontrivial ideals in this order. The best
known example is the structural theorem on graphs with an excluded minor by Robert-
son and Seymour [11]. Recently, a structural description of graphs with an excluded
topological minor was discovered by Grohe and Marx [6] and with an excluded im-
mersion by Wollan [14].

Here we obtain, as a consequence of Theorem a structural description of
graphs with a forbidden lift-contraction. Informally, for a fixed graph H, any graph
G that does not contain H as a lift-contraction contains a set of vertices R whose
size depends only on the excluded graph H such that every connected component of
G[V \ R] is of treewidth at most 2 and has at most two neighbors in R. A simple
corollary of our structural result is that graphs with an excluded lift-contraction are
of bounded treewidth and thus of bounded chromatic number.

Paper structure. We start with some preliminary results in Section [2] which also
includes the proofs of Theorems [T.1] and The proof of Theorem [1.3]is presented in
Section[3] In Section[d]we describe the structure of graphs with an excluded lift-minor.

2 Preliminary results

We prove below auxiliary results that will be useful later in the next sections, give
some definitions and prove Theorems [I.1] and [I.2]

Lemma 2.1. For every n-vertex graph H, H <. Ko,.

Proof. We prove that every n-vertex graph H is a lift-contraction of Ks,. Let H" =
Ky x H. First we prove that H' is a lift of Ks,. Let V(H) = {v1,...,v,} and
V(HT) ={v],...,v,,v],...,v'}. Let us assume that V(Ks,) = V(H™) and observe
that HT is a spanning subgraph of K»,,. Let R be the set of non-edges of H, i.e., R =
{{u,v} |u,v € V(H),u # v}\ E(H). Notice that each {v;,v;} € R corresponds to the
vertices vz,vj,v;/,v;/ € V(H™) such that the edges {v},v]}, {v},v}}, {v],v}}, {v], 0]

are present in Ko, but not in H*. We use lifts to remove those edges. For every
{vi,vj} € R, we lift the pairs of edges {v, v}, {v7,v]} and {vz, vi}, {v}, v} The
result is H+. Now we contract edges {v}, v/} for all i = 1,...,n and obtain H as

claimed. ]
The following observation can be easily proved by induction on 7.

Observation 2.2. For every r > 2, the complete r-partite graph, where each of its
parts has r — 1 vertices, has a perfect matching M such that for every two of its parts
there is exactly one edge in M intersecting both of them.



Py

Figure 1: The graph Fy

For an integer £k > 1, the k-fan is the graph obtained from the path P on k
vertices by adding a dominating vertex v.. We denote the k-fan by F} and say that
Py, is its spine and v, is its center (see Figure [l|). The extreme vertices of a k-fan are
the endpoints of the path (i.e., the vertices z and y in Figure .

Lemma 2.3. For any connected graph G andn > 2, iof F,(,_1) <im G, then Ky, <)c G.

Proof. It Fy,(,—1) <im G, then it is possible to obtain F;,,_) from G by a sequence of
vertex deletions, edge removals, edge contractions and lifts. We modify this sequence
as follows:

e a removal of an edge e such that e is a bridge in the already constructed graph
is replaced by the contraction of e, all other edge removals are deleted from the
sequence;

e a removal of a vertex v is replaced by the contraction of an edge incident with
v;

e a lift operation for edges {u, v}, {v,w} such that v has degree two in the already
constructed graph is replaced by the contraction of {u,v}.

By the resulting sequence of contractions and lift operations, we obtain a graph G’ <j.
G such that G’ contains F(n—1) as a spanning subgraph. Let the spine of this n(n—1)-
fan in G’ be a path P with Vp = {vl,...,0} |, v ... 02 (... 00, ... 00 4} Let

J be an n-partite graph with Vp as its vertex set and let M be a perfect matching
of J as in Observation We choose an arbitrary edge {v!,v%} € M. For each

§7 7s
edge {vf,vg,/} € M, where {vi,v},} # {vf,vg,l}, we lift the pair of edges {v],v.} and
{Uf,,, ve} in G'. Then we contract {v%, v.}. In the resulting graph, we contract, for each
i € {1,...,n}, all the edges in {{v},vj 1} [j € {1,...,n —2}} to a single vertex u".
Observe that the resulting graph is a complete graph with the vertex set {u', ..., u"}.
Hence, K,, <j. G’ <i. G as claimed. O



A tree decomposition of a graph G is a pair (X,T) where T is a tree and X =
{Xi]ieV(T)} is a collection of subsets of V(G) (called bags) such that:

L. UieV(T) Xi =V(G);
2. for each edge {z,y} € E(G), {z,y} C X, for some i € V(T'), and
3. for each z € V(G) the set {i | x € X;} induces a connected subtree of T'.

The adhesion if a tree decomposition ({X; | i € V(T')},T) is max{|X; N X,| | i,j €
V(t),i # j} and its width is max{|X;| — 1 | i € V(T')}. The treewidth of a graph G
is the minimum width over all tree decompositions of G. A path decomposition of a
tree decomposition where the tree T is a path. The pathwidth of a graph G is the
minimum width of a path decomposition of it.

Proof of Theorem[I.1} From Lemmas and G does not contain Fy,2 o, as a
minor; otherwise we are done. A graph with no Ky x C} minor, where C}, is a cycle
on k vertices, has treewidth at most 60k? — 120k +63 [1]. As F is a minor of K x C,
the same bound holds for graphs with no Fj minor. The result follows by taking
k=2n?—2n. O

Proof of Theorem[I.3 According to a result mentioned in [12], for any pair of graphs
G and H such that G is an outerplanar graph and H has a vertex whose removal
leaves a tree, there is a constant cq, g such that every 2-connected graph of pathwidth
at least cp, contains G or H as a minor. By taking both G and H to be a k-fan,
we conclude that there is a function f : N — N such that every 2-connected graph
of pathwidth at least f(k) contains Fj as a lift-minor. Then Lemma yields the
result. O

base vertices of K,

Figure 2: The graphs Wi, K35, and K .



3 Proof of Theorem

Let Wi be the graph obtained from Fj, by adding an edge between its extreme vertices
(assuming that £ > 3). Let K3 be the complete bipartite graph whose parts have
exactly 3 and k vertices. We denote by K, the graph obtained from K4 by removing
an edge, and we call the vertices of degree 2 in it base vertices. Examples of these
graphs are shown in Figure We let I', = K3 x P,. We denote by M, the graph
obtained if we take r copies of Ky, pick a vertex in each of them, and then identify
all chosen vertices to a single vertex. We denote by NV, the graph obtained as follows.
We take r copies of K, . In each copy we choose an arbitrary base vertex and call it
a left base vertex, and say that another base vertex is right. Then we identify all left
vertices and all right vertices. Finally, we denote by L, the graph obtained if we take
r copies of K, pick a left and right base vertices in each copy, and then identify the
right base vertex of the (i — 1)-th copy and the left base vertex of the i-th copy for
i€{2,...,r}. See Figure 3| for examples.
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Mg Ny Ly

Figure 3: The graphs Mg, Ny, I'g, and Ly.

We need the following lemmas.

Lemma 3.1. For each k > 1, it holds that Fk <im Wk, Fk <im K37k, Fk <im Mk,
Fy, <im Nk, F <im Ik, and Fy <y Ly

Proof. Clearly, Fy, <jm Wi. Because I'y consists of two paths on k vertices joined by
a matching, it is straightforward to see that we obtain F} by contracting all the edges
of one path.

For K3 1, denote by w1, us,u3 and vy, ..., v the vertices of the respective partition
sets. For ¢ € {1, |k/2]}, we lift the edges {vo;—1,u1}, {u1,ve;}, and for i € {1, [k/2] —
1}, {vai,ue}, {ua,vai41} are lifted. Now Fj with the center ug is a subgraph of the
obtained graph.

Recall that Mj, is obtained from k copies of Ky by identifying vertices chosen in
each copy. Let z;,y;, z; and v be the vertices of the i-th copy (v is a common vertex) for
i€ {l,...,k}. Weobtain Fj, as follows: fori € {1,...,k—1}, we lift {z;, v}, {v,yit1},

and then x;,y;, z; are contracted to a single vertex for all i € {1,...,k}.
Consider now N}, obtained from k copies of K, . Let x;,y;,v;, v, be the vertices
of the i-th copy where v, v, are the common base vertices for ¢ € {1,...,k}. For



ie{l,....k—1}, we lift {z;,v},{v, yit1} and observe that F} is a subgraph of the
obtained graph.

Finally, assume that Lj consists of k£ copies of K, with the vertices z;, y;, u;, v;
where u;, v; are base vertices and v; = u;41 for i € {1,...,k — 1}. We lift the edges
{xi,vi}, {ui+1,a:i+1} and also the edges {yi,vi}, {UH_l, yi+1} for i € {1, ok — 1} It
remains to observe that Lj is a subgraph of the obtained graph and Fj <, Lr. O

Lemma 3.2. Let G be a 3-connected graph with at least four vertices, {u,v} € E(G).
Then G can be contracted to Ky in such a way that {u,v} is an edge of the obtained
graph.

Proof. The graph G has at least three internally vertex disjoint (u,v)-paths. Hence,
there are at least two vertex disjoint (u,v)-paths Py, P> that avoid the edge {u,v}.
The set {u,v} does not separate V(Py) \ {u,v} and V(P) \ {u,v}. Therefore, there
is a path that joins these sets, and the claim follows. ]

We also need the following proposition.

Proposition 3.3 ([10]). There ezists a function g : N — N such that every graph
excluding Wy, and Kz, as a minor has a tree-decomposition of width at most g(k) and
adhesion at most two.

Recall that for two vectors of integers = (24, ..., z1) and y = (Y, ..., 91), £ < Y
lexicographically, if there is k € {1,...,w —1} such that z; = y; fori € {k+1,...,w}
and x < yi. For a tree decomposition (X, T) of width w, denote by b; the number of
bags of size i for i € {1,...,w + 1}. We say that such a three decomposition (X,T)
with adhesion at most two is minimal, if the vector b = (b, ...,b1) is lexicographi-
cally minimal, where the minimum is taken over all tree decompositions of width at
most w and adhesion at most two. We need the following property of minimal tree
decompositions.

Lemma 3.4. Let X = {X; | i € V(T')} be a minimal tree decomposition of a connected
graph G of minimum degree at least three. For a bag X; denote by G[X;] the graph
obtained from G[X;] by the addition of (non-existing) edges {u,v} for the pairs if
vertices u,v € X; such that there is another bag X; with X; N X; = {u,v}. Then the
following holds.

a) No bag is a subset of another bag.

b) For each bag Xi, either i) G[X;] is a bridge in G and i is not a leaf of T, or
ii) G[X;] is a triangle and for each u € V(X;), there is another bag X; with
u € X;, or iii) G[X;] is a 3-connected graph with at least four vertices.

c) If X;, X; are distinct bags, X; N X; = {x,y}, then there is a (x,y)-path in G
that avoids the vertices of X; \ {x,y}.



Proof. The first statement follows directly from the minimality. Notice that it implies
that there are no bags of size one, since GG is a connected graph of minimum degree
at least three.

Let X; = {u,v} be a bag of size two. We claim that v and u are adjacent. To
see this, assume to the contrary that v and v are not adjacent. Let also e, and e,
be the first and the last edge of a path in the connected graph G starting from v
and finishing at u. Let also X, (resp. X;,) be a bag where the edge e, (resp. ey)
is contained. As G is connected, ¢ cannot be in the path of T' connecting 4, and i,.
Therefore, we may assume that either 7, is in the path of T connecting ¢ and i, or
that i, is in the path of T" connecting 7 and 4,. In both cases, the third condition of
the definition of a tree decomposition implies that either v € X;, or that v € X, a
contradiction to a).

Hence, u,v are adjacent, and because u,v are not included in another bag, {u, v}
is a bridge. Clearly, i cannot be a leaf of T', as G has no vertices of degree one. Let
X; = {u,v,w} be a bag of size three. Since the minimum degree of G is at least
three, each vertex of X; is included to another bag. We have to prove that G[X;] is
a triangle. To obtain a contradiction, assume that v and v are not adjacent. Then
there is no bag Xj;, j # ¢, with u,v € X;. We modify the tree decomposition as
follows. The node i is replaced by two adjacent nodes i’,i”. Let Xy = {u,w} and
X = {v,w}. For each j such that X; N X; # 0, we join j with ¢ by an edge if
X; N X; C {u,w}, and we join j with ¢ if X; N X; = {v} or X; N X; = {v,w}. We
obtain a tree decomposition, where a bag of size tree is replaced by two bags of size
two, but it contradicts the minimality of the original tree decomposition.

Suppose now that X; = {u1,...,z,} is a bag of size p > 4. To obtain a contradic-
tion, assume that H = G[X;] is not 3-connected. Then it has a cut set S of size at
most two. Let X be the set of vertices of a component of the graph obtained from H
by the removal of S. Let Y = X US and Z = V(H) \ X. Notice that for any bag X,
X;NX; CYor X;NX; CZ. We modify the tree decomposition as follows. The node
7 is replaced by two adjacent nodes i',7”. Let X; =Y and X;» = Z. For each j such
that X; N X; # (), we join j with ' by an edge if X; N X; CY and X; N X; N X # 0,
and we join j with i’ if X; N X; C Z. We obtain a tree decomposition, where a bag of
size p is replaced by two bags of size at most p — 1, but it contradicts the minimality
of the original tree decomposition.

Now we prove c¢). Suppose that X;, X; are distinct bags, X; N X; = {x,y} and
x,y are not adjacent. To obtain a contradiction, assume that there is no (x,y)-paths
in G that avoids the vertices of X; \ {x,y}. Let T be rooted in i. The root defines
the parent-child relation on V(T'). Clearly, j is a child of i. Denote by p the last
descendant of ¢ with the same property as i, i.e., p has a child ¢, X, N X, = {u, v} and
there is no (u,v)-paths in G that avoids the vertices of X, \ {u, v}, and no child of p
satisfies this condition. Then X, has at least three vertices, and the graph obtained
from G[X,] by the removal of the edge {u, v} is disconnected, but it contradicts b). [

Now we are in position to prove Theorem



Proof of Theorem[I.3 We set k = 2n(2n — 1) and assume that G does not contain
Fj. as a lift-minor. Also, keep in mind that £ > 2. From Lemmas and it is
enough to prove that |V(G)| cannot be bigger than f(k) where f is a function that
will be determined later in the proof.

Notice that by Lemma W}, and K3, both contain Fj, as a lift-minor. Hence,
by Proposition G has a tree-decomposition of width at most g(k) and adhesion
at most two. We assume that X = {X; | i € V(T)} is a minimal and, subject to this
condition, for a given X, a tree T" with the maximum number of leaves is chosen.

Let £ C X be the set of bags corresponding to the leaves of T'. Our strategy is to
observe that if the size of G is big enough, then either 1" has many leaves or there is
a long path in 7" with all vertices of degree two in T'. Then we construct a lift-minor
F}. using either the leaf-bags or the path-bags. For this, we first bound the number
of leaves in T'. Then we take the size of G to be sufficiently big so that, given that
both the treewidth of X and the number of leaves in T" are bounded, we can force the
existence of a path in T. We need the following claim.

Claim 1. There is a function f; such that if Fy, £, G, then |L]| < fi1(k).

Proof of Claim 1. Let us assume that |£| > f1(k) for some f; that will be determined
in the end of the proof of this claim and consider the graphs Ly = G[X], for each
X € L. There are at most two vertices in each Lx that have neighbors outside X
in G. Let Sx be the set of such vertices for each X € £. Denote by Lx the graph
obtained from Ly by joining vertices of Sy by an edge (if |Sx| =1, then Lx = Lx).
By Lemma X has at least four vertices and Ly is 3-connected for each X € L.
We set

Si={Sx|XeLand |Sx|=1}and So ={Sx | X € £ and |Sx| = 2}.

If Sx € &1, then the 3-connectivity of Lx implies that K4 is a contraction of
Lx = Lx by the Tutt’s theorem (see c.f. [5]). In case |Sx| = 2, we define L as
the graph taken from Lx by removing, if exists, the edge with endpoints in Sx. The
3-connectivity of Ly and Lemma imply that Ly can be contracted to K, in a
way that the two base vertices are the vertices of Sx.

We now construct an auxiliary graph J by taking G~ = G[Jx, e X ] and then,
for every S € Sy, adding an edge connecting the two vertices of S (if such an edge
already exists, then do not add it). Let us call essential the edges connecting in J
the two vertices of some S € S (notice that an essential edge of J is not necessarily
present in G).

We assign weights to the vertices and edges of J: each vertex v € V(J) receives
weight [{L € L | {v} = Sr}| and each edge e € E(J) receives weight [{L € L | e =
Sr}|. Observe that the essential edges are exactly those with positive weights and
recall that the sum of the weights of the edges and vertices of J is at least f1(k). We
prove a series of subclaims.

Subclaim 1.1. The sum of the weights of the vertices in J is less than k.



Proof of Subclaim 1.1. Suppose that is not correct. Then contract in G all edges that
do not belong to some of the graphs in {Lx | Sx € 81} and obtain a graph that, in
turn, can be contracted to M. But then, from Lemma G should contain Fj as a
lift-minor, a contradiction.

Subclaim 1.2. There is a function fs such that J does not have more than fa(k) blocks
with essential edges.

Proof of Subclaim 1.2. Notice that for each block B of J, there is a unique block
B’ of G such that V(B) C V(B’), and for different blocks By, Ba, V(Bj1) and V(Bz2)
are included in distinct blocks of G. Observe also that if B is a block of J with
at least one essential edge, then the corresponding block B’ in G can be contracted
to K4 by Lemma [3.4, That way, we have that G can be contracted to a bridgeless
graph W where each of its blocks is a K4 and such that the number of blocks in W
is equal to the number of blocks in J with essential edges. Notice that W cannot
contain a cut vertex w with the property that W — w has k& or more connected
components, otherwise W could be contracted to My and therefore Fj, <i, Mp <im G
by Lemma [3.1} a contradiction. Moreover, the diameter of W should be less than
k, otherwise W contains L as a minor. Then Fj <i, Li <im G by Lemma [3.1] a
contradiction. It is now easy to verify that the number of blocks in W is bounded by
some function fo of k. The subclaim follows.

From Subclaim 1.1, the sum of weights of the edges of J is more than fi(k) — k.

From Subclaim 1.2, one of the blocks of J denoted by B should have total-edge weight

fi(k)—k
at least AR

We now construct the graph B* from B by repetitively removing or contracting
non-essential edges: for a non-essential edge {u, v}, if {u, v} is a cut set in the already
constructed graph, then we remove the edge, else we contract the edge. Notice that a
non-essential edge can be identified with an essential one after one of these operations
(in such a case, such a new edge is essential). Observe also that these operations
maintain 2-connectivity. Hence, B* is 2-connected. If during such a contraction two
edges become one, the weight of the new edge is the sum of the weights of the two
edges. Notice that the total edge-weight of B* is the same as in B, that is at least

! }(Qﬁgk Notice also that at most two edges of zero weight may survive in of B*

and this may happen only when B* is a triangle where two or one of its edges have
positive weights. Clearly, none of the edges in B* may have weight at least k as, then,
the same sequence of edge contractions and removals in G would create a graph that
contains Ny as a minor. Then Fi <y N <im, G by Lemma [3.1} a contradiction. We
obtain that the total weight of the edges in B* is lower bounded by J;l(f]z)(;)k . In what
follows, we will take f to be big enough so that this lower bound is greater than 2
and therefore, we may assume that all edges of B* have positive weight. This implies

that

[E(BY)] =

k- fa(k
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Our next step is to observe that the maximum degree of B* is less than k. Suppose
towards a contradiction that some vertex y of B* is incident with at least k edges.
Recall that B* is 2-connected and thus B* — y is connected. Therefore, if we contract
in B* all edges that are not incident to y, we create a single edge with total weight
at least k. As before, this implies that Fj, <i, Ny <im G; a contradiction.

Our next observation is that every path in B* has length at most k£ — 1. Indeed,
a path of length at least k£ in B* would imply the existence in G of Lj as a minor, a
contradiction, since by Lemma [3.1] Fy, <j;, Ly <im G.

According to the two observations above, B* has at most f3(k) edges for some

function f3. This, combined with , implies that f3(k) > J;;(f?(;f for some specific

choice of the functions fo and f3. If we now take f; to be big enough so that this
inequality is violated, we have a contradiction and the claim follows.

Notice that the fact that each bag of X has at most g(n(n — 1)) vertices implies
that X has at least f(n)/g(k) bags. Therefore, the tree T has > f(n)/g(k) vertices
and from the above claim, less than fi(k) of them are leaves (recall that k = n(n—1)).
But then we can choose the function f such that 7" contains a path P of 24(k+1)3+3
vertices such that all internal vertices of P have degree two in 7. By the fact that
the minimum degree of G is at least three, we obtain that at most the half of the
graphs induced by the bags corresponding to the vertices of P are bridges. We call
the bags corresponding to these bridges of G bridge edges of G and we may assume
that this path P has at least 12(k + 1)3 internal vertices that correspond to bags that
are not inducing bridges in GG. Let H be the graph obtained from G[Uz‘eV(P) X;] by
contracting all bridge edges. Our aim is to arrive to a contradiction by showing that
H (and therefore G as well) contains either Ly, or Fj, or I'y as a minor. Notice that
X gives rise to a path decomposition X’ = {Xy,..., X, 11} of H containing at least
12(k + 1)2 + 2 bags (we first crop from & the bags corresponding to P and then we
suppress bridge bags). Recall that the number of leaves in T is maximum. Then each
bag X; of X’ can be of one of the following types:

1-1-type 1-2-type 2-2-type 2-1-type 1-2-type  2-2-type  2-2-type

SENPy <V

So S

Figure 4: The types of bags in X = {Xq,..., X, 41}.

e (1-1-type) @Q; = H[X,] is a 3-connected graph. Moreover, if i € {1,...,r} then
such a X; contains two vertices zj and z;. such that {z}} = X; N X;_; and
{xfn} = X; N Xiq1.

o (1-2-type) Q; = H[X;] contains three vertices z!, z%, and ', such that the

. U

addition in H[X;] of the edge {x%,,z’;} makes it 3-connected or a triangle (we
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denote this enhanced graph by Q;). Moreover, if i € {1,...,r}, then {z}} =
XinXi_1, {x), 20y = Xi N X1 and @] € {x.,,x.,}.

e (2-1-type) Q; = H[X;] contains three vertices z% , x{, and 2% such that the
addition in H[X;] of the edge {x},,z!;} makes it 3-connected or a triangle (we
denote this enhanced graph by Q;). Moreover, if i € {1,...,7}, then {x} , x!,} =
X;iNX;_q, {xfn} = X; N X;41 and a:;ﬁ ¢ {xfu,xid}

e (2-2-type) Q; = H[X,] contains the vertices z,, «i,, =%, and 2!, where z} #
Tigr Tru 7 Trgs 1T Tlgs Tr Trg} € {3,4}, and the addition in H[X;] of the
edges {z},,2,} and {z],,z];} makes it 3-connected (we denote this enhanced

graph by @Q;). Moreover, if i € {1,...,r}, then {xfu,az%d} = X; N X,;_1 and
{0 Trq) = Xi 0 Xig.

Notice that for each i € {0,...,r}, if X; is of z-y-type and X;1; is of 2/-y/-type,
then y = 2/ and that y is the cardinality of the set S; = X; N X, 1. Observe also that
forany i € {1,...,7—1}, S;—1\S; # 0 and S; \ S;—1 # 0, since otherwise if S;_; C S;
or S; C S;_1, then the node ¢ of T" could be made a leaf, but this contradicts the
choice of T. Notice that each @, is either a triangle or 3-connected by Lemma
For 1 <i<j<r welet Hij = H[Up,ey;,. jy Xn]. We need some properties of Hij;
given in the next four claims.

Claim 2. Suppose that |S;_1| =1, |S;| = 1, and for h € {3,...,j —1}, |Si| = 2. Then
the graph H;; contains three paths P, Pp, P*, where Py, P, are internally vertex
disjoint (a:;, x7)-paths, P* joins an internal vertex of P; with some internal vertex of

P, and avoids z}, z7.

Proof of Claim 2. The graph H;; is 2-connected. Hence, there are two internally
vertex disjoint (%, xf;)—paths P, and P,. Notice that for each h € {i,...,j — 1}, each
of the paths P, and P» contains exactly one vertex of Sj.

If j =4, then H is 3-connected, and because the minimum degree of G is at least
three, H;; has at least four vertices. Moreover, as H is 3-connected we may assume
that P, P, have internal vertices. Observe also that {xf, xi} is not a cut set of H.
Hence, there is a path P* that joins an internal vertex of P; with some internal vertex
of PQ.

Suppose that j > 4. Notice that P, P> have internal vertices because xf ¢
{t,,2t,} and e {x{u,ac{d}. If for every h € {i,...,j}, | Xn| = 3, then there is
h € {i,...,j — 1} such that :n;‘u,x?d are adjacent in (G, since G has no vertices of
degree two. Then such an edge forms a path between an inner vertex of P; and an
inner vertex of P,. Assume that there is an h € {i,...,j} such that |X;| > 4. By
Lemma Q), is 3-connected. If h = i, then xffu,a:fd are joined in @, by at least
three internally vertex disjoint paths. At least one of these paths avoids z" and the
edge {z!,,2",} and we have P*. If h = j, then we find P* by the same arguments
using the symmetry. Let i < h < j. Then z” xf}d are joined in Q, by at least

W

12



three internally vertex disjoint paths, and at least one of these paths avoids the edges
{x?uv xlhd} and {xﬁu7 xﬁd}

Claim 3. Suppose that ¢ < r, [S;—1| = |S;| = [Si+1| =2 and Sp_1 N Sy, N Sp41 = {u}.
Then the graph H;;y1 contains two paths P, P*, where P joins the unique vertices
Si—1\ {u}, Si+1\{u} and avoids u, P* joins an internal vertex of P with u and avoids
vertices of S;—1 U Sit1 \ {u}.

i+1
Proof of Claim 3. Assume without loss of generaht}lf that v = a:l g = xr q= ;:l' and
Si1 \ (S U Sien) = {af, b, it \ (Si-1US,) = it 1.

The graph H;;41 obtained from H,;i1 by the addition of edges {z},u} and
{z;f", u} is 2-connected. Hence, there is a (zj,, z}5,")-path P in Hy;y; that avoids u.
Clearly, P is a path in H“H This path contains at least one internal vertex x
If |X;| = |X;41| = 3, then i, ¢, are adjacent in G, since z‘, has degree at 1east
three. Then this edge forms a path between an inner vertex of P and u. Assume that
|.X;| > 4. By Lemma @, is 3-connected. Then z,, 2%, are joined in Q; by at least
three internally vertex disjoint paths, and at least one of these paths avoids the edges
{},, x};} and {z},,,2.,}. We take this path as P*. If | X; 1| > 4, then we find P* by
symmetrically applying the same arguments.

Claim 4. Suppose that for h € {i —1,...,5}, |Sn| =2, and S;—1 N'S; = (). Then the
graph H;; contains two disjoint paths Py, P joining the vertices in {x},, ], } with the
vertices in {7, 27, }.

Proof of Claim 4. The graph H;; obtained from H;; by the addition of edges {iL‘ld, z )
and {z’ d,mru} is 2-connected. If we subdivide the edges {z!,, z%,}, {xrd,xm} and
denote the obtained vertices of degree two by u and v respectively, then the obtained
graph contains two internally vertex disjoint (u,v)-paths. The claim follows immedi-
ately.

Claim 5. Suppose that for t € {i+1,...,5 —1}, ;NS =0, SenNS; = 0 and for
he{i—1,...,5}, |Sh| = 2. Then the graph H;; contains paths P;, P>, P*, where
Py, P, are disjoint paths joining the vertices in {x},, 2} } with the vertices in {:L'id, mﬁu},
and P* joins a vertex of P; with some vertex of Ps.

Proof of Claim 5. The paths Py and P, exists by Claim 4. Without loss of generality
we assume that Py is a (z},, 27 ,)-path and P is a (z},, 27, )-path.

If for every h € {i,...,j}, |Xpn| = 3, then there is h € {i,...,j} such that xfu,x?d
are adjacent in G, since otherwise the vertices of S; would have degree two. Then
such an edge forms a path between P; and P». Assume that there isan h € {i,...,j}
such that | Xp| > 4. By Lemma H Q), is 3-connected. Then ! x ffd are joined in
Q), by at least three internally vertex disjoint paths, and at least one of these paths
avoids the edges {;Ulu,xld} and {z! f}d}. Clearly, this path joins Py and P> in H;j.

TU?

Now we are ready to complete the proof of Theorem Consider the sequence
S1,..., 8- Recall that r > 12(k + 1)3.
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First, we show that the sequence |S1|, ..., |S,| contains at most k£ 1’s. Suppose that
|Sh,| = ... = |Sh,,| for some 1 < hy < ... < hpyy <7 and for any by < h < hpg,
h # hi...,hgq1, |[Su| = 2. Then we apply Claim 2 for Hp,py, ..., Hpyny,, and
conclude that H contains L, as a minor which gives a contradiction because of

Lemma As a consequence of this, the sequence |Si|,...,|Sy| contains a sub-
sequence |S;l, ..., |S;| formed by at least 12(k + 1)? consecutive 2’s (in Figure {4} this

holds for i« = 1 and j = 2). This also means that for all h € {i +1,...,5}, X is a
2-2-type bag.

Now we prove that the sequence S;,...,5; does not contain any subsequence
Siry ..., 8y of more than 2k consecutive elements such that ﬂ?;:lSh = {u}. Otherwise,
we apply Claim 3 for Hyy 14490, Hirvgiraa ..., Hyvop_1512k, and it follows that Fj, is
a minor of H; a contradiction.

We have that the sequence S;,...,S; contains a subsequence Sj,,...,Sp,, of
3k pairwise disjoint (not necessarily consecutive) elements. We apply Claim 5 for
Hphys Hyghgs - s Hhgy o by, and Claim 4 for Hy,py, Hyghys ooy Hpgy ghg, , and ob-
serve that I'j is a minor of H, a contradiction. ]

4 On the structure of lift-contraction-free graphs

Given a graph G and a subset S of V(G), we denote by Ng(S) the set of vertices
not in S that are neighbors of vertices in S. We also define Ng(S) = Ng(S) U S.
Theorem implies the following structural theorem on the graphs excluding some
graph H as a lift-contraction. We call a vertex set R of a graph G 2-central if for

every connected component C' of G \ R, it holds that G[N¢(V(C))] has treewidth at
most two and |Ng(V(C))| < 2. We need the following observation.

Observation 4.1. Let G be a graph with a 2-central set R and let G be the graph
obtained from G by the consecutive application of the following operations: i) edge
subdivisions and i) additions of a new vertex adjacent to either a single vertex or two
adjacent vertices in the already constructed graph. Then R is a 2-central set in GT
as well.

Theorem 4.2. There exists a function f: N — N such that every connected graph G
that does not contain an h-vertex graph H as a lift-contraction contains a 2-central
set R of at most f(h) vertices.

Proof. Let f be the function that exists by Theorem Assume that there is a
minimum size counterexample G and let n = |[V(G)|. Clearly, n > f(h) as any graph
of at most f(h) vertices satisfies trivially the property of the theorem. However, from
Theorem a graph with more than f(h) vertices that does not contain H as a
lift-contraction, should contain some vertex v of degree at most two. We contract an
edge incident with v in the connected graph G, and denote by G’ the obtained graph.
Notice that the graph G’ also excludes H as a lift-contraction and, as |V (G’)| < n, G’
contains a 2-central set R of at most f(h) vertices. From Observation R is also
a 2-central set in G. O
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