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Abstract

We characterize which systems of sign vectors are the cocircuits of an oriented
matroid in terms of the cocircuit graph.
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1 Introduction

The cocircuit graph is a natural combinatorial object associated with an ori-
ented matroid. In the case of spherical pseudoline-arrangements, i.e., rank 3
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oriented matroids, its vertices are the intersection points of the lines and two
points share an edge if they are adjacent on a line. More generally, the Topo-
logical Representation Theorem of Folkman and Lawrence [9] says that every
oriented matroid can be represented as an arrangement of pseudospheres. The
cocircuit graph is the 1-skeleton of this arrangement. Cordovil, Fukuda and
Guedes de Oliveira [5] show that a a cocircuit graph does not uniquely de-
termine an oriented matroid. But Babson, Finschi and Fukuda [1] show that
uniform oriented matroids are determined up to isomorphism by their cocir-
cuit graph. Moreover they provide a polynomial time recognition algorithm for
cocircuit graphs of uniform oriented matroids. In [11], Montellano-Ballesteros
and Strausz give a characterization of uniform oriented matroids in view of
sign labeled cocircuit graphs. This characterization is strengthened by Felsner,
Gómez, Knauer, Montellano-Ballesteros and Strausz [8] and used to improve
the recognition algorithm of [1].

In this paper we present a generalization and strengthening of the charac-
terization of sign labeled cocircuit graphs of uniform oriented matroids of [8]
to general oriented matroids. After introducing the necessary preliminaries in
the next section, we prove the main theorem in the last section.

2 Preliminaries

Here we will only introduce the terminology necessary for proving our result,
for a more general introduction, see [3]. A signed set X on a ground set E is
pair X = (X+, X−) of disjoint subsets of E. For e ∈ E we write X(e) = +
and X(e) = − if e ∈ X+ and e ∈ X−, respectively, and X(e) = 0, otherwise.
The support X of a signed set X is the set X+ ∪X−. The zero-support of X
is X0 := E\X. By −X we denote the signed set (X−, X+). Given signed sets
X, Y their separator is defined as S(X, Y ) := (X+ ∩ Y −) ∪ (X− ∩ Y +).

Definition 2.1 A pair M = (E, C∗) is called oriented matroid with cocircuits
C∗ if C∗ is a system of signed sets with ground set E, satisfying the following
axioms:

(C0) ∅ /∈ C∗

(C1) C∗ = −C∗

(C2) if X, Y ∈ C∗ and X ⊆ Y then X = ±Y

(C3) for all X, Y ∈ C∗ with X 6= ±Y and e ∈ S(X, Y ) exists Z ∈ C∗ with
Z(e) = 0, Z+ ⊆ X+ ∪ Y + and Z− ⊆ X− ∪ Y −

The composition of signed sets X, Y is the signed set X ◦ Y := (X+ ∪



(Y +\X−), X− ∪ (Y −\X+)). Given a system C∗ of signed sets we denote by
L(C∗) := {X1 ◦ . . . ◦Xk | X1, . . . , Xk ∈ C∗} the set of all (finite) compositions
of C∗. Note that the empty set is considered as the empty composition of
cocircuits, and so ∅ ∈ L(C∗). If C∗ are the cocircuits of an oriented matroid
M, then the elements of L(C∗) are called the covectors of M. One can endow
L(C∗) with a partial order relation where Y ≤ X if and only if S(X, Y ) = ∅
and Y ⊆ X . Adding a global maximum L̂ := L(C∗) ∪ 1̂ it is easy to see
that one obtains a lattice Fbig(L) := (L̂,≤). If C∗ is the set of cocircuits of
an oriented matroid, then Fbig(L) is graded lattice with rank function h. In
this case Fbig(L) is called the big face lattice of M. The rank r(M) of M is
h(1̂)− 1, i.e., one less than the rank of Fbig(L).

There are two important undirected graphs associated to Fbig(L) – one on
its atoms and one on its coatoms. So the first is a graph on C∗. In the case
of C∗ being the cocircuits of an oriented matroid M it is called the cocircuit
graph of M. Define G(C∗) on C∗ such that two signed sets X, Y ∈ C∗ are
connected by an edge if and only if there is Z ∈ L̂ such that X, Y are the only
elements of C∗ with X, Y ≤ Z.

The other graph induced by Fbig(L) is defined on the set T of coatoms
of Fbig(L) the poset. Elements of T are called topes. Topes S, T ∈ T are

contained in an edge if and only if there is Z ∈ L̂ such that S, T are the only
elements of T with X, Y ≥ Z. This graph called the tope graph is denoted by
G(T ).

If G is a graph on a system S of signed sets with ground set E. For
X1, . . . , Xk ∈ S we denote by [X1, . . . , Xk] the subgraph of G induced by
{Z ∈ S | Z(e) ∈ {0, X1(e), . . . , Xk(e)} for all e ∈ E}. We call [X1, . . . , Xk]
the crabbed hull of X1, . . . , Xk. An (X, Y )-path in G is called crabbed if it is
contained in [X, Y ].

One important oriented matroid operation is the contraction. Let A ⊆
E, then M/A is an oriented matroid on the ground set E\A with C∗/A :=
{X\A | X ∈ C∗ and A ⊆ X0}. The set L(C∗/A) is easily seen to be {X\A |
X ∈ L(C∗) and A ⊆ X0}. It is easy to see that for U ∈ L(C∗) we have
r(M/U0) = h(U), where h(U) is the rank of U in Fbig(L).

3 Result

In order to prove Theorem 3.3 we need two lemmas. The first one is about
tope graphs of oriented matroids. Tope graphs of oriented matroids are a
special class of antipodal partial cubes [10]. We will make use of a particular
consequence of this:



Lemma 3.1 ([4]) Let M be an oriented matroid with topes U, V ∈ T . For
all U, V ∈ T there is a crabbed (U, V )-path in G(T ).

The second lemma establishes a connection between tope graph and co-
circuit graph. As an application of a theorem of Barnette [2] Cordovil and
Fukuda prove:

Lemma 3.2 ([5]) Let M be an oriented matroid of rank r and U ∈ T a
tope of M. The graph G(U) induced by {X ∈ C∗ | X ◦ U = U} in G(C∗) is
(r − 1)-connected.

Together this enables us to prove a graph-theoretical axiomatization of
oriented matroids:

Theorem 3.3 Let C∗ be a set of sign vectors satisfying (C0)–(C2) then the
following are equivalent

(i) C∗ is the set of cocircuits of an oriented matroid M,

(ii) the crabbed hull [X1, . . . , Xk] of any X1, . . . , Xk ∈ C∗ is an induced sub-
graph of connectivity h(X1 ◦ . . . ◦Xk)− 1 of G(C∗),

(iii) for all X, Y ∈ C∗ with X 6= ±Y there is a crabbed (X, Y )-path in G(C∗).

Proof. (i)=⇒ (ii): Let U := X1◦. . .◦Xk be a covector of rank r′ := h(X1◦. . .◦
Xk) and X, Y cocircuits in [X1, . . . , Xk]. Contract U

0 obtaining M′ := M/U0

of rank r′ and cocircuits X ′, Y ′. The contraction does not affect the crabbed
hull we are considering, i.e. [X1, . . . , Xk] ∼= [X ′

1, . . . , X
′

k
]. Now U ′ is a tope

of M′ and so are V ′ := X ′ ◦ U ′ and W ′ := Y ′ ◦ U ′. By Lemma 3.1 there is
a crabbed (V ′, U ′)-path P = (V ′ = T1, . . . , Tk = U ′) in G(T ′). The graphs
G(Ti) are all contained in [X ′

1, . . . , X
′

k
] and (r − 1)-connected by Lemma 3.2.

Consecutive G(Ti) and G(Ti+1) intersect in at least r′ − 1 vertices, because
their intersection is a tope of a one-element-contraction minor ofM′. Together
Menger’s theorem (see e.g. [7]) yields that the graph G(T1) ∪ . . . ∪ G(Tk) is
(r′ − 1)-connected. In particular there are (r′ − 1) internally disjoint paths
connecting X ′ and Y ′ in [X ′

1, . . . , X
′

k
] and thus the analogue holds for X and

Y in [X1, . . . , Xk]. Hence [X1, . . . , Xk] is (h(X1 ◦ . . . ◦Xk)− 1)-connected.

(ii)=⇒ (iii): IfX 6= ±Y then (h(X◦Y )−1) > 0. Hence [X, Y ] is connected
and there is a crabbed (X, Y )-path in G(C∗).

(iii)=⇒ (i): We have to show that (C3) holds for C∗. Let X, Y ∈ C∗ with
X 6= ±Y and e ∈ S(X, Y ). Let P be a crabbed (X, Y )-path. Since adjacent
cocircuits have empty separator, there must be Z ∈ P with Z(e) = 0. Since
P is crabbed Z also satisfies Z+ ⊆ X+ ∪ Y + and Z− ⊆ X− ∪ Y −. ✷



It shall be mentioned that the “(i)=⇒ (ii)”-part of the proof is only a slight
generalization of a result in [5]. But there the characterizing quality of (ii)
was not noted. Furthermore we remark that the connectivity in (ii) is best-
possible, since in uniform oriented matroids Xi has exactly h(X1 ◦ . . .◦Xk)−1
neighbors in [X1, . . . , Xk].

Even if the cocircuit graph does not uniquely determine the oriented ma-
troid, Theorem 3.3 might lead to an effective recognition algorithm for co-
circuit graphs of general oriented matroids, as its uniform specialization did
in [8]. In particular, if one is given G(C∗) with edge set E it is possible to
check (iii) in O(|C∗||E|), see part 5.C. of the algorithm in [8]. In contrast the
naive algorithm to check (C3) takes O(|C∗|3). So we have an advantage for
sparse cocircuit graphs, e.g., cocircuit graphs of uniform oriented matroids.

Another goal would surely be to characterize cocircuit graphs in purely
graph-theoretic terms, i.e., excluding any information about signed sets at all.
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