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Abstract

A perfect matching M in an edge–colored complete bipartite graph Kn,n is rainbow if no pair

of edges in M have the same color. We obtain asymptotic enumeration results for the number of

rainbow matchings in terms of the maximum number of occurrences of a color. We also consider two

natural models of random edge–colored Kn,n and show that, if the number of colors is at least n,

then there is whp a random matching. This in particular shows that almost every square matrix of

order n in which every entry appears at most n times has a Latin transversal.

Keywords: Rainbow Matchings, Latin Transversals, Random Edge–colorings.

1 Introduction

A subgraph H of an edge–colored graph G is rainbow if no color appear twice in E(H). The study of
rainbow subgraphs has a large literature; see e.g. [1, 5, 9, 10, 8]. In this paper we deal with rainbow perfect

matchings of edge–colored complete bipartite graphs Kn,n. These are equivalent to latin transversals in
square matrices of order n, sets of n pairwise distinct entries no two in the same row nor the same column.
The following is a longstanding conjecture by Ryser [15] on the existence of latin transversals in latin
squares:

Conjecture 1 (Ryser) Every latin square of odd order admits a latin transversal.

For even size, there are some latin squares that have no rainbow matchings, such as the additive table
of Z2n. Nevertheless, it was also conjectured (see e.g. [16]) that every latin square of even size has a
partial latin transversal of length n− 1.

There are different approaches to address these conjectures. For instance, Hatami and Shor [6] proved
that every latin square has a partial transversal of size n − O(log n2). Another approach was given by
Erdős and Spencer [4] where they prove the following result:

Theorem 2 (Erdős, Spencer [4]) Let A be square matrix of order n. If every entry in A appears at

most n−1
4e times, then A has a latin transversal.

In order to get this result the authors developed the Lopsided version of the Lovász Local Lemma.
The main idea of this version is to set a different dependency graph called lopsidependency graph. In this
graph edges may no longer represent dependencies and the hypothesis of the Local Lemma are replaced
by a weaker assumption.

In this paper we address two problems related to rainbow matchings in edge–coloredKn,n: asymptotic
enumeration and existence in random edge–colorings. Our edge–colorings are non necessarily proper and
the results apply to proper edge–colorings as well.
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Previous results on enumeration of latin transversals have been obtained by McKay, McLeod and
Wanless [13], where the authors give upper and lower bounds on the maximum number of transversals
that a latin square can have. However there is still a large gap between these bounds. Here, we provide,
under some hypothesis, upper and lower bounds for the probability that a random matching in an edge–
colored Kn,n is rainbow, that are asymptotically tight.

The bounds are obtained by techniques inspired by the framework devised by Lu and Székely [11] to
obtain asymptotic enumeration results with the Local Lóvasz Lemma.

For an edge–coloring of the complete bipartite graph Kn,n, we let M denote the family of pairs of non
incident edges that have the same color. Let M be a random matching of Kn,n. For each (e, f) ∈ M,
we denote by Aef the event that the pair of edges e, f belongs to M . This is the set of bad events in the
sense that, if none of these events occur, then the matching M is rainbow.

Therefore, given a set of bad events A1, . . . , Am, we consider the problem of estimating the probability
of the event ∩m

i=1Ai. If the bad events are mutually independent, then the number of bad events that are
satisfied follows a Poisson distribution with parameter µ =

∑m
i=1 Pr(Ai). Hence,

Pr(∩m
i=1Aj) = e−µ.

It is natural to expect a similar behaviour if the dependencies among the events are rare. This is
known as the Poisson Paradigm (see e.g. [2]). Our objective is to show that

Pr(∩m
i=1Aj) → e−µ (n → ∞).

Let XM denote the indicator variable that a random perfect matching M is rainbow in a fixed edge–
coloring of Kn,n. Let M denote the set of pairs of independent edges that have the same color (bad
events.) Our first result is the following:

Theorem 3 Fix an edge–coloring of Kn,n such that no color appears more than n/k times, where k =
k(n). Let µ = |M|/n(n− 1).

If k ≥ 12 then there exist constants c1 < 1 < c2 depending only in k, such that

e−c2µ ≤ Pr(XM = 1) ≤ e−c1µ.

In particular, if k = ω(1) then
Pr(XM = 1) = e−(1+o(1))µ.

Moreover, if k = ω(n1/2) then
Pr(XM = 1) = e−µ(1 + o(1)).

In the proof of Theorem 3 we obtain c1 = 1−2/k−12/k2 and c2 = 1+16/k. Note that the probability
of having a rainbow matching only depends on the number of bad events that the given coloring defines.
Perhaps surprisingly, this probability does not depend on the structure of the set of bad events in the
coloring.

The results in Theorem 3 require the condition k ≥ 12, which is one unit more than the one given by
Erdős and Spencer [4] for the existence of rainbow matchings. This prompts us to analyze the existence
of rainbow matchings in random edge–colorings of Kn,n in the more general setting when k ≥ 1 (we can
not use less than n colors.) For the existence of rainbow matchings in random edge–colorings of Kn,n

we restrict ourselves to colorings with a fixed number s = kn of colors. We define two natural random
models that fit with this condition.

In the Uniform random model, URM, each edge gets one of the s colors independently and uniformly
at random. In this model, every possible edge coloring with at most s colors appears with the the same
probability. In the Regular random model, RRM, we choose an edge coloring uniformly at random among
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all the equitable edge colorings, where each color class has prescribed size n
k . Although they have the

same expected behaviour, both models are interesting. A result analogous to the one in Theorem 3 can
be proven for these two models.

Theorem 4 Let c be a random edge coloring of Kn,n in the model URM with s ≥ n colors. Then,

Pr(XM = 1) = e−c(k)µ

where µ ∼ n2

2s and

c(k) = 2k

(

1− (k − 1) log

(

k

k − 1

))

Let c be a random edge-coloring of Kn,n in the RRM model with s ≥ n colors. Then

Pr(XM = 1) = e−(c(k)+o(1))µ

Observe that both models lead to similar results. In particular, if k = ω(1)

Pr(XM = 1) = e−(1+o(1))µ

The RRM behaves as expected since, as we have observed, just the number of bad events is relevant,

and in this case it is approximately n3

2k .
Since the colorings are random, we have a stronger concentration of the rainbow matching probability

than in the case of fixed colorings. By using the random model URM we show that with high probability

(whp, meaning with probability tending to one as n → ∞), for any constant k ≥ 1, every random coloring
has a rainbow matching.

Theorem 5 Every random edge–coloring of Kn,n in the URM with s ≥ n colors has whp a rainbow

matching.

To prove the Theorem 5 we use the second moment method on the random variable that counts the
number of rainbow matchings in the URM model. Observe that the same result can be proven using the
same idea for the RRM model.

The paper is organized as follows. In Section 2 we provide a proof for Theorem 3. The random
coloring models are defined in Section 3, where we also prove Theorem 4. In the Subsection 4 we display
a prove for Theorem 5. Finally on Section 5 we discuss about open problems about rainbow matchings
that arise from the paper.

2 Asymptotic enumeration

In this section we prove Theorem 3. When k = ω(1) for n → ∞, it gives an asymptotically tight
estimation of the probability that a random matching is rainbow. For constant k the theorem provides
exponential upper and lower bounds for this probability.

2.1 Lower bound

One of the standard tools to give a lower bound for Pr(∩m
i=1Aj) is the Local Lemma. In particular, as it

is shown in [4], it is convenient in our current setting to use the Lopsided version of it.
Given a set of events A1, . . . , Am, a graph H with vertex set V (H) = {1, . . . ,m} is a lopsidependency

graph for the events if, for each i and each subset S ⊆ {j | ij 6∈ E(H), j 6= i}, we have

Pr(Ai | ∩j∈SAj) ≤ Pr(Ai).

3



Following Lu and Szekely [11], we adopt the more explanatory term negative dependency graph for this
notion. We next recall the statement of the Lóvasz Local Lemma we will use. It includes an intermediate
step, that appears in its proof, which will also be used later on.

Lemma 6 (LLLL) Let {A1, . . . , Am} be events and let H = (V,E) be a graph on {1, . . . ,m} such that,

for each i and each S ⊆ {j | ij 6∈ E(H), j 6= i},

Pr(Ai| ∩j∈S Aj) ≤ P (Ai).

Let x1, . . . , xm ∈ (0, 1). If, for each i,

Pr(Ai) ≤ xi

∏

ij∈E(H)

(1− xj), (1)

then, for each T ⊂ [m] we have

Pr(Ai| ∩j∈T Aj) ≤ xi. (2)

In particular, for each S ⊂ [m] disjoint from T we have

Pr(∩i∈SAi| ∩j∈T Aj) ≥
∏

i∈S

(1 − xi), (3)

and

Pr(∩j∈[m]Aj) ≥
∏

j∈[m]

(1− xj). (4)

Recall that M denotes the family of pairs of independent edges that have the same color and, for each
such pair {e, f} ∈ M, we denote by Ae,f the event that the pair belongs to a perfect random matching
M . We identify M with this set of events. We consider the following dependency graph:

Definition 7 The rainbow dependency graph H has the family M as vertex set. Two elements in M
are adjacent in H whenever the corresponding pairs of edges share some end vertex in Kn,n.

It is shown in Erdős and Spencer [4] that the graph H defined above is a negative dependency graph.
The following lower bound can be obtained in a similar way to Lu and Szekely [11, Lemma 2]. Recall
that we consider edge–colorings of Kn,n in which each color appears at most n/k times.

Lemma 8 With the above notations, if k ≥ 12 then

Pr(∩{e,f}∈MAe,f ) ≥ e−(1+16/k)µ,

where µ =
∑

{e,f}∈M Pr(Ae,f ).

In particular, if k = k(n) = ω(
√
n), then

Pr(∩{e,f}∈MAe,f ) ≥ (1 + o(1))e−µ.

Proof Set M = {A1, . . . , Am}. The size of M depends on the configuration of the colors in E(Kn,n).
In the worst case all the colors appear repeated in exactly n/k disjoint edges. Thus,

|M| ≤ kn

(

n/k

2

)

∼ n3

2k

Since we are taking a random perfect matching, p = Pr(Ai) =
1

n(n−1) for each i. Then

µ =
|M|

n(n− 1)
=

1

2

(

1 +
1

n− 1

)

(n

k
− 1

)

≤ n

2k
(5)
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Set t = 4/k. Since n ≥ k ≥ 12 we have t ≤ 1/3 and p ≤ 1/35. It can be checked that, for 4/n < t < 7/50
and 0 < p < 1/35, we have

pe(1+4t)t < 1− e−(1+4t)p.

Choose xi in the interval (pe(1+4t)t, 1− e−(1+4t)p). For each 1 ≤ i ≤ m we have

Pr(Ai) = p < xie
−(1+4t)t < xi

∏

ij∈E(H)

e−(1+4t) Pr(Aj) < xi

∏

ij∈E(H)

(1− xj). (6)

Thus, by Lemma 6,

Pr(∩Ai∈MAi) ≥
m
∏

i=1

(1− xi) ≥ e−(1+16/k)µ.

This proves the first part of the Lemma. In particular, since µ ≤ n/2k,

Pr(∩Ai∈MAi) ≥ e−µ

(

1− 16µ

k

)

≥ e−µ

(

1− 8n

k2

)

.

so that, if k = k(n) = ω(
√
n), then

Pr(∩Ai∈MAi) ≥ e−µ(1 + o(1)).

�

2.2 Upper bound

Lu and Szekely [11] propose a new enumeration tool using the Local Lemma. Their objective is to
find an upper bound for the non occurrence of rare events comparable with the Janson inequality. In
order to adapt the Local Lemma, they define a new type of parametrized dependency graph: the ε-near
dependency graph.

Let A1, . . . , Am a set of events. A graph H with vertex set {A1, . . . , Am} is an ε-near-positive depen-
dency graph (ε-NDG) if,

i) if Ai ∼ Aj , then Pr(Ai ∩ Aj) = 0.

ii) for any set S ⊆ {j : Aj ≁ Ai} it holds Pr(Ai | ∩j∈SAj) ≥ (1 − ε) Pr(Ai).

Condition i) implies that only incompatible events can be connected. Condition ii) says that this set
of non connected events can not shrink the probability of Ai too much.

Theorem 9 (Lu and Szekely [11]) Let A1, . . . , Am be events with an ε–near–positive dependency graph
H. Then we have,

Pr(∩Ai) ≤
∏

i

(1− (1− ε) Pr(Ai)).

Observe that this upper bound gives an exponential upper bound of the form e(1−ε)µ.
Lu and Szekely [11] show also that an ε–near–positive dependency H can be constructed using a

family of matchings M. Unfortunately the conditions of [11, Theorem 4] which would provide the upper
bound in our case do not apply to our family M of matchings. We give instead a direct proof for the
upper bound which is inspired by their approach.

Lemma 10 The graph H is an ε–near-positive dependency graph with ε = 1− e−(2/k+32/k2).
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Proof Set M = {A1, . . . , Am}. The graph H clearly satisfies condition i) in the definition of ε-NDG.
For condition ii) we want to show that, for each i and each T ⊆ {j | ij 6∈ E(H), j 6= i}, we have the
inequality

Pr(Ai|B) ≥ (1 − ǫ) Pr(Ai),

where B = ∩j∈TAj . This is equivalent to show

Pr(B|Ai) ≥ (1− ǫ) Pr(B).

Let {a1, . . . , an} and {b1, . . . , bn} be the vertices of the two stable sets of Kn,n. We may assume that
Ai consists of the two edges an−1bn−1, anbn. Then {Aj : j ∈ T } consists of a set of 2–matchings in
Kn,n − {an−1, an, bn−1, bn}. This is the complete bipartite graph Kn′,n′ , n′ = n − 2, with an edge–
coloring in which each color appears at most n′/k′ times, where k′ = k(1 + 2/(n − 2)). Let us call B′

the event B viewed in Kn′n′ (dashes in notation indicate changing the probability space from random
matchings in Kn,n to random matchings in Kn′n′), so that

Pr(B|Ai) = Pr(B′). (7)

Let Cr,s denote the 2–matching an−1br, anbs, where r 6= s. Define Tr,s ⊂ T in such a way that {Aj : j ∈
Tr,s} are the 2–matchings in {Aj : j ∈ T } which meet none of the two vertices br, bs. Set Br,s = ∩j∈Tr,s

Aj .
Let us show that

Pr(B) =
1

n(n− 1)

∑

r 6=s

Pr(B′
r,s), (8)

where, as before, B′
r,s denotes the event Br,s in the probability space of random matchings in Kn′,n′ .

We have
Pr(B) =

∑

r 6=s

Pr(B ∩ Cr,s) =
∑

r 6=s

Pr(Br,s ∩ Cr,s),

Note that, since none of the matchings involved in B meets vertices in {an−1, an, bn−1, bn}, we have, for
all r, s, r 6= s,

Pr(Br,s|Cr,s) = Pr(Br,s|Cn−1,n).

Moreover, observe that Pr(Br,s|Cn−1,n) = Pr(B′
r,s). Therefore

Pr(B) =
∑

r 6=s

Pr(Br,s|Cr,s) Pr(Cr,s) =
1

n(n− 1)

∑

r 6=s

Pr(Br,s|Cn−1,n) =
1

n(n− 1)

∑

r 6=s

Pr(B′
r,s),

giving equality (8).
From inequality (6) we know that x′

j = 1−e−(1+16/k′)p′

fulfills the hypothesis (1) of the Local Lemma.
We can now use the intermediate inequality (3) of the Lemma with S = T \ Tr,s to obtain

Pr(B′
r,s) =

Pr(B′)

Pr(∩j∈SAj)
≤ Pr(B′)

∏

j∈S

(1− x′
j)

−1. (9)

By combining (7) with (8) and (9) we get

Pr(B|Ai) ≥ Pr(B)
∏

j∈S

(1− x′
j). (10)

Recall that S = T \ Tr,s is the set of 2-matchings in M′ that are incident to br or bs. The size of this
set can be bounded independently from r and s by

|S| ≤ 2n′

(

n′

k′
− 1

)

≤ 2
n2

k

6



With our choice of x′
j = 1− e−(1+16/k′)p′ ≤ 1− e−(1+16/k)p (where p = 1/n(n− 1)) we have

∏

j∈S

(1− x′
j) ≥ e−(1+16/k)p|S| ≥ e−(2/k+32/k2).

Therefore, by (10),

ε = 1− e−(2/k+32/k2),

satisfies the conclusion of the Lemma. �

Now we are able to prove Theorem 3.

Proof of Theorem 3 Set M = {A1, . . . , Am}. By Lemma 10, the graph H is an ε–near–positive

dependency graph with ε = 1 − e−(2/k+32/k2). It follows from Theorem 9 that the probability of having
a rainbow matching is upper bounded by

Pr(∩i∈[m]Ai) ≤
∏

i∈[m]

(1− (1− ε) Pr(Ai)) ≤ e−(1−ǫ)µ.

By plugging in our value of ε and by using e−(2/k+32/k2) ≥ 1− 2
k − 32

k2 we obtain

Pr(∩i∈[m]Ai) ≤ e−(1−2/k−12/k2)µ.

Combining this upper bound with the lower bound obtained in Lemma 8 we obtain

exp

{

−
(

1 +
16

k

)

µ

}

≤ Pr(∩Ai) ≤ exp

{

−
(

1− 2

k
− 12

k2

)

µ

}

.

This proves the first part of the Theorem.
In particular, since µ ≤ n/2k, if k = ω(n1/2) we get

Pr(∩i∈[m]Ai) ≤ e−µ(1 + o(1)),

which matches the lower bound obtained in Lemma 8, thus proving the second part of the Theorem. �

3 Random colorings

In this section we will analyze the existence of rainbow matchings when the edge coloring of Kn,n is given
at random.

Recall that, in the uniform random model URM, each edge of Kn,n is given a color uniformly and
independently chosen from a set C with s colors, i.e. every possible coloring with at most s colors appears
with the same probability.

In the regular random model RRM a coloring is chosen uniformly at random among all colorings of
E(Kn,n) with equitable color classes of size n2/s. In order to construct a coloring in the RRM we use
a complete bipartite graph H = (A,B), where A contains s blocks, each of size n2/s, representing the
colors and B is the set of edges of Kn,n. Every perfect matching in H gives an equitable coloring of
E(Kn,n). Moreover, every equitable coloring of E(Kn,n) corresponds to the same number of perfect
matchings. Therefore, by selecting a random perfect matching in H with the uniform distribution, all
equitable colorings have the same probability.

We established these two models since they simulate the worst situation in all the possible colorings
admitted in Theorem 3: the probability for a matching of being rainbow only depends on the size of |M|,
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and this set has its largest cardinality when there are few colors with a maximum number of occurrences.
This means that we have s = nk colors with n/k occurrences each. Observe that in both models the
expected size of each color class is also n/k, and in this sense, they are contiguous to the hypothesis of
Theorem 3. One can draw an analogy between the URM and the Erdős-Rényi model G(n, p) for random
graphs, and also between the RRM and the regular random graph G(n, d).

Proof of Theorem 4 In the URM it is easy to compute the probability of having the rainbow property
for a matching. Let M be a random perfect matching, and Kn,n provided with a random edge coloring
with s ≥ n colors. For the indicator variable XM that M is rainbow we have:

Pr(XM = 1) =
s

s
· s− 1

s
· s− 2

s
· . . . · s− (n− 1)

s

=

n−1
∏

i=0

(

1− i

s

)

. (11)

For s = n we can get directly from (11)

Pr(XM = 1) =
n!

nn
∼ e−2µ.

Assume s > n. We have, for 0 < x < 1,

(1 − x) = exp {log (1− x)} (12)

Therefore,

Pr(XM = 1) =

n−1
∏

i=1

exp

{

log

(

1− i

s

)}

= exp

{

n−1
∑

i=1

log

(

1− i

s

)

}

∼ exp

{
∫ n

0

log
(

1− x

s

)

dx

}

.

We use
∫ t

0

log (1− x) dx = (t− 1) log (1− t)− t

By writing k = s/n

Pr(XM = 1) = exp

{(

(k − 1) log

(

k

k − 1

)

− 1

)

n

}

∼ exp

{

−2k

(

1− (k − 1) log

(

k

k − 1

))

µ

}

.

since µ ∼ n
2k .

It must be stressed that this result is consistent with the ones in Theorem 3. When k = 1 we have
Pr(XM = 1) = e−2µ, while limk→∞ Pr(XM = 1) = e−µ. Observe that, in this case, E(|M|) is not exactly
the same as for a given coloring. This is due to the variance on the number of occurrences of each color,
but does not have a significant importance.

To study the property that a random selected matching is rainbow in the RRM we express the equitable
edge colorings through permutations σ ∈ Sym(n2). Then, probability for a matching M of being rainbow
is,

8



Pr(XM = 1) =
n2

n2
· n

2 − n2

s

n2 − 1
· n

2 − 2n2

s

n2 − 2
· . . . · n

2 − (n− 1)n
2

s

n2 − (n− 1)

=

n−1
∏

i=0

(

1− i(n2 − s)

s(n2 − i)

)

= exp

{

n−1
∑

i=0

log

(

1− i(n2 − s)

s(n2 − i)

)

}

(by (12))

∼ exp

{
∫ n

0

log

(

1− x(n2 − s)

s(n2 − x)

)

dx

}

.

If s = n we have
∫ n

0

log

(

1− x(n− 1)

(n2 − x)

)

dx = −n(n− 1) log

(

n

n− 1

)

,

which, by using the Taylor expansion of the logarithm, gives

Pr(XM = 1) = e−(1+o(1))2µ

In the case where s > n, and using k = s/n, we have

∫ n

0

log

(

1− x(n2 − s)

s(n2 − x)

)

dx =

(

(k − 1) log

(

k

k − 1

)

− (n− k) log

(

n

n− 1

))

n

=

(

(k − 1) log

(

k

k − 1

)

− 1 + o(1)

)

n.

Hence

Pr(XM = 1) = exp

{

−2k

(

1− (k − 1) log

(

k

k − 1

)

+ o(1)

)

µ

}

.

�

Note that, for both models of random edge colorings, the probability that a fixed perfect matching is
rainbow the same (up to a o(1) term). Thus, in spite of being different models, the probability of having
a rainbow matching is similar.

In general it is not true that Pr(XM = 1) = e−(1+o(1))µ but, if k = ω(1), then Pr(XM = 1) → e−µ for
both models since

2k

(

1− (k − 1) log

(

k

k − 1

))

= 1 +O

(

1

k

)

This is natural since, when k is large, the number of bad events decreases and the model behaves like in
the case they were independent.

Observe that for the two random models we obtain the exact asymptotic value of the probability, while
bounds provided by Theorem 3 (when the size |M| of the set of bad events is maximum) are not sharp,
although consistent with the values for the random models. Since the result proven for fixed colorings
does only depend on the size of M, the probability for the random model RRM should be exactly the
same.
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4 Existence of rainbow matchings

The aim of this Section is to prove that whp there exists a rainbow matching for a given random coloring of
E(Kn,n) with s ≥ n colors. We only consider the URM, but the results can be adapted to the RRM. The
number of rainbow matchings is counted by X =

∑

XM , which, according to Theorem 4, has expected
value

E(X) = n! Pr(XM = 1) ∼ n! exp

{

−2k

(

1− (k − 1) log

(

k

k − 1

))

µ

}

. (13)

In order to have a rainbow matching we just need that X 6= 0.
Given two perfect matchings M and N , the events that they are rainbow are positively correlated,

Pr(XM = 1 | XN = 1) ≥ Pr(XM = 1). (14)

Proof of Theorem 5 To show that there exists some rainbow matching whp we will use the second
moment method. Let X be a random variable with expected value µ and variance σ2. Then, the
Chebyshev inequality asserts that

Pr(|X − µ| > ασ) ≤ 1

α2
(15)

In particular if α = µ
σ ,

Pr(X = 0) ≤ Pr(|X − µ| > µ) ≤ σ2

µ2
(16)

Observe that X = 0 is equivalent to the non existence of any rainbow matching. Therefore, we need
to compute σ2(X) and show that it is asymptotically smaller than E(X)2. Note that

E(X2) =
∑

M,N

E(XMXN )

Let M and N two fixed matchings, then

E(XMXN ) = Pr(XM ) Pr(XN\M )

Given a fixed matching M and a fixed intersection size t, we claim there are at most e−1
(

n
t

)

(n − t)!

matchings N , such that |M ∩ N | = t. There are
(

n
t

)

ways of choosing which edges will be shared and
once this edges have been fixed, at most e−1(n − t)! ways of completing the matching. Suppose that
τ = σN |N\M∈ Sn−t is the permutation for extending the matching in the disjoint part. Since N has
intersection exactly t with M , not any permutation is valid. We can assume wlog that M is given
by σM = Id, and therefore τ must be a derangement. Classical results state that the proportion of
derangements in permutations of any length is at most e−1. This concludes our claim.

Hence,

E(X2) = e−1n!

n
∑

t=0

(

n

t

)

(n− t)! Pr(XM ) Pr(XN\M )

Since σ2 = E(X2)− E(X)2,

σ2(X)

E(X)2
=

e−1n!
∑n

t=0

(

n
t

)

(n− t)! Pr(XM ) Pr(XN\M )

(n! Pr(XM ))2
− 1

= e−1
n
∑

t=0

1

t!

Pr(XN\M )

Pr(XM )
− 1
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Given XM , we know that the edges of M ∩N are rainbow. In the remaining n− t edges to color, we
must avoid the t colors that appear in M ∩N

Pr(XN | XM ) =

n−1
∏

i=t

(

1− i

s

)

Then,

f(s) =

n
∑

t=0

1

t!

Pr(XN\M )

Pr(XM )
∼

n
∑

t=0

1

t!
e(1+O(1/k))

t2

2s ∼
∞
∑

t=0

1

t!
e(1+O(1/k))

t2

2s

If the number of colors s = ω(1), then f(s) → e. Observe that s ≥ n. Otherwise, Pr(XM ) = 0 in the
Equation (11).

Hence σ2

µ2 → 0 and the theorem holds. �

Actually,

f(s) =
1

s
+O(s−2)

and Equation (16) also provides an upper bound estimation for the probability p that a random
coloring has no rainbow matchings of the type

p ≤ (1 + o(1))
1

n

Observe that the proportion of Latin squares among the set of square matrices with n symbols is of the
order of e−n2

(see e.g. [17]), so that this estimation falls short to prove an asymptotic version of the
original conjecture of Ryser.

5 Open Problems

On the ennumeration of Rainbow matchings, it would be interesting to prove exact upper and lower
bounds for the case where the number of occurences of each color is at most k, with constant k. Theorem 3
provides exponential upper and lower bounds as long as k ≥ 12, but both are asymptotically equal if and
only if k = ω(1).

A related problem is to improve the lower bound k ≥ 4e given by Erdős and Spencer [4, Theorem 2]
for the existence of rainbow matchings.

On the other hand, another really interesting problem is to prove that almost all latin squares have a
latin transversal, i.e. the asymptotic version of the Ryser conjecture. We have stablished a probabilistic
way to approach the problem. Unfortunately, as far as we know, there are no random models for latin
squares. Some results on generating random latin squares can be found in [14, 7]. Nevertheless, there are
some almost sure results on Latin squares (see e.g.[12, 3]).
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11



[3] Nicholas J. Cavenagh, Catherine Greenhill, and Ian M. Wanless, The cycle structure of two rows

in a random Latin square, Random Structures Algorithms 33 (2008), no. 3, 286–309. MR 2446483
(2009e:05053)
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