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Abstract

We consider multifacility Huff location problems on networks. The mixed integer
nonlinear optimization problem is solved using Variable Neighborhood Search and
Multi-Start Local Search metaheuristics. Computational experience is reported.
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1 Introduction

Location optimization problems on a network in a competitive environment
have been extensively studied in OR. The problem was first presented by
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Hakimi [2]. He formulated the competitive problem under the assumption
that consumers deterministically choose the nearest store. In the real world,
however, this assumption is not always acceptable, because consumers do not
always choose the nearest store. Rather, consumers probabilistically choose
among several stores. This probabilistic choice behavior is modeled by Huff,
known as the Huff model. Huff formulated a model for capturing market share
assuming that the probability that a consumer patronizes a shopping center is
proportional to the attractiveness of the center and inversely proportional to
a power of the distance to it. Although the original Huff model was based on
an assumption that a market area is represented by a continuous plane with
Euclidean distance, the model was extended to the network Huff model by
Okabe and Kitamura [6] which was defined on a network with the shortest-
path distance. Ghosh and McLafferty [1] considered their problem under the
same assumption of discrete demand (nodal demand). Okunuki and Okabe
[7] considered link based demand with slightly changed objective function.

In this paper we apply the network Huff model to a competitive location
problem optimizing new facility locations on a network. We apply Variable
Neighborhood Search and Multi-Start Local Search metaheuristics to solve
this problem assuming that new facilities can be located at any point on the
network and demand generated in the nodes.

1.1 Problem definition

We assume that customers are located in the vertices of a network N = (V,E),
V = {v1, . . . , vn}, n ∈ N, E ⊆ V 2. The customers raise demand. We also
assume that there arem facilities already located on the network. The facilities
provide service and hence satisfy the raised demand. They are located at
points y1, . . . , ym on network N . The demand w(vi) = wi associated with the
vertex vi, i ∈ {1, . . . , n}, has the following properties:

w(vi) ≥ 0 and
∑

vi∈V
w(vi) = 1 .

The demand w may vary from vertex to vertex. For instance, it can be dis-
tributed uniformly to each vertex.

Our goal is to locate p new facilities x1, . . . , xp on the network which will
respond to the customers’ demand so that the captured demand is maximal.

To state the above location optimization problem more explicitly, let us
formulate the network Huff model on N . Firstly, let us introduce facility at-
tractiveness, a property of each facility in the system. Facility attractiveness
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of a specific facility may be measured by the floor area, by the number of ser-
vices/items that specific facility offers or in any other predefined way. There-
fore, let us denote with ay1 , . . . , aym and ax1, . . . , axp the attractiveness of the
existing and new facilities, respectively. In order to unify the notations and
simplify formulas, let us denote with afj the attractiveness of

• the existing facility when f ≡ y, j ∈ {1, . . . , m} and

• the new facility when f ≡ x, j ∈ {1, . . . , p}
located at point fj. Let d(vi, fj) be the distance from the customer located in
vertex vi to the facility at fj on network N . Let us now introduce distance
deterrence function F (d(vi, fj)) of the customer in vi from the facility at fj.
The distance deterrence function is a monotonically decreasing function with
respect to d(vi, fj). In his original model, Huff specified the distance deterrence
function F as a power function, i.e.

F (d(vi, fj)) = d(vi, fj)
−λ, λ > 0 .

Eventually, let P (vi, fj) be the probability of customer in vi choosing facility
at fj among the m + p possible facilities. In these terms, the network Huff
model is as follows

P (vi, fj) =
afjd(vi, fj)

−λ

∑
fk
afkd(vi, fk)

−λ
.

Using the network Huff model, we proceed with formulating a problem for
obtaining the demand D(fj) captured by facility at fj . Let D(vi, fj) be the
demand in vi captured by facility at fj . Since the Huff model gives us the
choice probability of customer in vi choosing the facility at fj, D(vi, fj) is
obtained from multiplying the probability P (vi, fj) by w(vi), i.e.

D(vi, fj) = P (vi, fj)w(vi) =
afjd(vi, fj)

−λ

∑
fk
afkd(vi, fk)

−λ
w(vi) . (1)

To obtain the demand D(fj) captured by facility at fj we need to sum the
equation (1) over all vertices vi ∈ V , i.e.

D(fj) =
∑

vi∈V
D(vi, fj) =

∑

vi∈V

afjd(vi, fj)
−λ

∑
fk
afkd(vi, fk)

−λ
w(vi) .

With m existing facilities located at points y1, . . . , ym of network N we are
supposed to locate p new facilities at points x1, . . . , xp in order to compete
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them and capture maximal demand. The total demand captured only by new
facilities is given by formula

p∑

j=1

D(xj) =

p∑

j=1

∑

vi∈V

axj
d(vi, xj)

−λ

∑
fk
afkd(vi, fk)

−λ
w(vi) ,

where f ∈ {y, z}; j ∈ {1, . . . , m} if f = y, and j ∈ {1, . . . , p} if f = z. Since
it has to be maximal, problem we have to solve is

max
x1,...,xp∈N

p∑

j=1

∑

vi∈V

axj
d(vi, xj)

−λ

∑
fk
afkd(vi, fk)

−λ
w(vi) .

2 Variable Neighborhood Search and the application to
Huff location problem

2.1 Variable Neighborhood Search concept

Variable Neighborhood Search (VNS) ([3],[5]) is a well known metaheuristic
method. It is designed for solving various combinatorial optimization prob-
lems. It uses local search procedure as one of its basic tools. Moreover,
it involves systematic change of neighborhoods in the search. Unlike meta-
heuristics based on local search methods, VNS does not follow a trajectory,
but explores increasingly distant neighborhoods of the current incumbent so-
lution. Then, a local search routine is applied repeatedly to find local optima
starting from these neighboring solutions. The search is re-centered around
a new solution if and only if an improvement has been made with respect to
global best solution.

Therefore, to construct different neighborhood structures and to perform a
systematic search, we need to have a way for finding the distance between any
two solutions, i.e., one needs to supply the solution space with some metric
(or quasi-metric) and then induce neighborhoods from it. In the following
sections we answer this problem-specific question for our particular problem.

The basic idea of VNS metaheuristic is to use more than one neighborhood
structure and to proceed to a systematic change of them within a local search.
The algorithm remains in the same solution until another solution better than
the incumbent is found and then jumps there. Neighborhoods are usually
ranked in such a way that intensification of the search around the current
solution is followed naturally by diversification. The level of intensification or
diversification can be controlled by a few easy to set parameters. We may view
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the VNS as a ”shaking” process, where a movement to a neighborhood fur-
ther from the current solution corresponds to a harder shake. Unlike random
restart, the VNS allows a controlled increase in the level of the shake.

2.2 The application to the Huff network model

In order to implement VNS for the specific variant of the Huff location prob-
lem, we need to define solution representation as well as neighborhood struc-
tures and local search strategy. A particular solution consists of the location
set for the new facilities on the given network. The location of each facility is
uniquely determined by the edge, i.e. by the pair of vertices, and the position
on the edge. The position on the edge is given by 1-dimension coordinate
belonging to the [0, 1] interval with respect to one of the vertices of the edge.
Therefore, the location of the particular facility is given by the ordered pair
(x, (u, v)), where the first entry refers to the position on the edge given by the
second entry of the pair. The position x is calculated with respect to the first
vertex of the pair related to the edge. As the particular solution consists of p
facility locations, it will be presented as a list [(x1, (u1, v1)), . . . , (xp, (up, vp))]
of p ordered pairs where the ith pair corresponds to the ith facility location.

Let us now define a neighborhood structure in the solution space we in-
troduced. If s = [(x1, (u1, v1)), . . . , (xp, (up, vp))] is a solution, we may chose
at random one of the p facilities and move it to one of the adjacent edges.
Then we perform local search on the new edge by some of the well known
techniques (line search, Fibonacci search, etc.) in order to reach the location
which influences the objective function the most. We call this operation the
rank 1 stepping. If we repeat this operation k times, k <= p, we call it the
rank k stepping. We say that a solution s′ is at the step-distance k from the
solution s if s can be transformed into s′ by applying the rank k stepping.

In order to improve the implementation performances, we have introduced
another type of neighborhood structures. If s = [(x1, (u1, v1)), . . . , (xp, (up, vp))]
is a solution, we may chose at random two of the p new facilities of the solution
and swap their locations. We call this operation the rank 1 swapping. If we
repeat this operation k times, k < �p/2�, we call it the rank k swapping. We
say that a solution s′ is at the swap-distance k from the solution s if s can
be transformed into s′ by applying the rank k swapping. The best results are
obtained combining these two types of neighborhood structures.

To complete the VNS implementation, we have to define local search strat-
egy. A first improvement local search strategy is performed: starting from a
solution s we move a new facility to each of the adjacent edges until the first
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improvement of the objective function value is found. After repeating this for
each of the p new facilities, the best of the obtained p locations is kept.

Let us denote by Nk, k = 1, . . . , kmax a finite sequence of pre-selected neigh-
borhood structures, and by Nk(x) the set of feasible solutions corresponding
to neighborhood structure Nk at the point x, where x is an initial solution. Let
us note that most local search metaheuristics use one neighborhood structure,
i.e. kmax = 1. The algorithm presented here demonstrates the application of
the basic VNS heuristic to the multifacility Huff location model on a network.

Algorithm 1 VNS algorithm for Huff location model.
1. Find an initial solution
2. Choose a stopping criterion
3. repeat
4. k = 1
5. while (k <= kmax)
6. (Shaking) Choose at random either stepping or

swapping neighborhood type with equal probability.
Generate randomly a point x′ from Nk(x)

7. (Local search) Apply first improvement local search method
with x′ as the initial solution;
the obtained local minimum denote by x′′

8. (Move or not) if x′′ is better than the incumbent
9. move to x′′ (x = x′′)
10. k = 1
11. else k = k + 1
12. until the stopping criterion is met

Usually, the initial solution is determined by some constructive heuris-
tic and then improved by local search before the beginning of actual VNS
procedure. In this case the initial solution is generated randomly and then
improved by Fibonacci local search method. The stopping criterion may be
e.g. the predetermined maximal allowed CPU time, the maximal number of
all iterations or the iterations between two improvements. Here the stopping
criterion is maximal allowed CPU time. Often successive neighborhoods Nk

are nested, but it is not necessary to be always the case. Let us note that the
point x′ is generated at random in order to avoid cycling which might occur if
any deterministic rule was used. Basic VNS is a simple metaheuristic and its
only parameter is kmax the preselected number of neighborhoods. Although,
for each particular problem the solution representation, number and order of
neighborhoods, and stopping condition should be defined in a way to ensure
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Table 1
Computational results

Instance VNS MSLS

No. n q p best avg st.dev best.time best best.time

1 lin105.tsp 105 13 8 50.00 50.00 0.00 3077.89 20.77 102.06

2 pr124.tsp 124 15 10 49.71 49.65 0.07 3844.65 22.55 2599.89

3 pr136.tsp 136 17 11 41.50 41.22 0.30 4205.92 23.41 3572.44

4 kroA150.tsp 150 18 12 41.67 41.39 0.22 4783.25 19.68 2157.19

5 kroB200.tsp 200 25 16 47.64 47.28 0.21 14687.06 17.96 8959.79

efficient execution of the search.

3 Computational results

The VNS algorithm for the specific Huff location model is implemented in C
programming language on Linux platform. Test instances have been run on
the computer with the i686 Intel Core 2 Duo CPU E6750 at 2.66GHz and
8GB RAM.

Since there does not exists the set of benchmark problems for the Huff lo-
cation model, we have chosen small problems from the TSPLIB library where
network dimension varies from 100 to 200. The number q of existing facilities
is set to n/8 and the number of new ones to 2/3q. The locations of existing
facilities are created in the following way. Firstly, they have been chosen ran-
domly. Then the VNS method was applied with 10% of total running time
planned for the VNS algorithm execution for the particular test instance. In
the end, randomly chosen p out of q existing facility locations were switched
with the new facility locations obtained by the VNS algorithm. The attrac-
tiveness of each facility has been chosen randomly. Our experience shows that
the best results are obtained if the probability of choosing either stepping or
swapping shaking strategy is set to 0.5. kmax should be set to p/2. Maximal
running time depends on the size of the particular test instance and it varies
from 1 to 5 hours.

The results obtained by VNS are compared with the results obtained by
the Multi-Start Local Search metaheuristic (MSLS). It is an iterative approach
where a single iteration consists of generating a random solution and perform-
ing a local search strategy with the random solution as a starting point. In
case there was the improvement of the objective function value, the incum-
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bent is updated. We applied first improvement local search strategy. Initial
solution was generated randomly. The algorithm is implemented in C pro-
gramming language on Linux platform. The obtained results are presented in
the Table 1. Both of the algorithms were given the same total execution time,
although, only time when the best solution was reached is reported. Solutions
(either best or average) are expressed as the percentage of the total demand.

4 Conclusion

We may conclude that VNS behaves better than MSLS in all tested examples
in the sense of the objective function value, although for the same running
period MSLS reaches its best solution in less time.
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