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Campus Nord, Edifici C2, C/ Jordi Girona 1 i 3 E-08034 Barcelona, Spain.

Abstract

The first known families of cages arised from the incidence graphs of generalized polygons

of order q, q a prime power. In particular, (q + 1, 6)–cages have been obtained from the

projective planes of order q. Morever, infinite families of small regular graphs of girth 5 have

been constructed performing algebraic operations on Fq.

In this paper, we introduce some combinatorial operations to construct new infinite fam-

ilies of small regular graphs of girth 7 from the (q + 1, 8)–cages arising from the generalized

quadrangles of order q, q a prime power.

Keywords: Cages, girth, generalized quadrangles, latin squares.

1 Introduction

All graphs considered are finite, undirected and simple (without loops or multiple edges). For

definitions and notations not explicitly stated the reader may refer to [13], [20] and [25].

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The girth of a graph

G is the number g = g(G) of edges in a smallest cycle. For every v ∈ V , NG(v) denotes the

neighbourhood of v, that is, the set of all vertices adjacent to v. The degree of a vertex v ∈ V

is the cardinality of NG(v). A graph is called regular if all the vertices have the same degree.
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A (k, g)-graph is a k-regular graph with girth g. Erdős and Sachs [15] proved the existence of

(k, g)-graphs for all values of k and g provided that k ≥ 2. Thus most work carried out has

focused on constructing a smallest one [2, 3, 4, 5, 6, 7, 9, 14, 16, 18, 19, 23, 24, 27, 28, 32].

A (k, g)-cage is a k-regular graph with girth g having the smallest possible number of vertices.

Cages have been studied intensely since they were introduced by Tutte [33] in 1947. Counting

the numbers of vertices in the distance partition with respect to a vertex yields a lower bound

n0(k, g) with the precise form of the bound depending on whether g is even or odd:

n0(k, g) =

{

1 + k + k(k − 1) + · · · + k(k − 1)(g−3)/2 if g is odd;

2(1 + (k − 1) + · · ·+ (k − 1)g/2−1) if g is even.
(1)

Biggs [11] calls the excess of a (k, g)-graph G the difference |V (G)| −n0(k, g). The construction

of graphs with small excess is a difficult task. Biggs is the author of a report on distinct methods

for constructing cubic cages [12]. More details about constructions of cages can be found in the

survey by Wong [36] or in the book by Holton and Sheehan [22] or in the more recent dynamic

cage survey by Exoo and Jajcay [17].

A (k, g)-cage with n0(k, g) vertices and even girth exist only when g ∈ {4, 6, 8, 12} [18]. If

g = 4 they are the complete bipartite graph Kk,k, and for g = 6, 8, 12 these graphs are the

incidence graphs of generalized g/2-gons of order k− 1. This is the main reason for (k, g)-cages

with n0(k, g) vertices and even girth g are called generalized polygon graphs [11]. In particular

a 3-gon of order k − 1 is also known as a projective plane of order k − 1. The 4-gons of order

k−1 are called generalized quadrangles of order k−1, and, the 6-gons of order k−1, generalized

hexagons of order k − 1. All these objets are known to exist for all prime power values of k − 1

[8, 20, 25], and no example is known when k − 1 is not a prime power.

In this article we focus on the case g = 8. Let q be a prime power. Our main objective is

to give an explicit construction of small (q + 1, 7)–graphs for k = q + 1. Next we present the

contributions of this paper and in the following sections we do the corresponding proofs.

2 Preliminaries

It is well known [30, 26] that Q(4, q) and W (3, q) are the only two classical generalized quad-

rangles with parameters s = t = q. The generalized quadrangle W (3, q) is the dual generalized

of Q(4, q), and they are selfdual for q even.

In 1966 Benson [9] constructed (q +1, 8)–cages from the generalized quadrangle Q(4, q). He

defined the point/line incidence graph Γq of Q(4, q) which is a (q + 1)–regular graph of girth

8 with n0(q + 1, 8) vertices. Hence, Γq is a (q + 1, 8)–cage. Note that, Γq is isomorphic to the

point/line incidence graph of W (3, q).

For any generalized quadrangle Q of order (s, t) and every point x of Q, let x⊥ denote the

set of all points collinear with x. Note that in the incidence graph x⊥ = N2(x), with an abuse
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of notation supposing that x ∈ Γq corresponds to the point x ∈ Q

If X is a nonempty set of vertices of Q, then we define X⊥ :=
⋂

x∈X x⊥. The span of the

pair (x, y) is sp(x, y) = {x, y}⊥⊥ = {u ∈ P : u ∈ z⊥∀z ∈ x⊥ ∩ y⊥}, where P denotes the set of

points in Q. If x and y are not collinear, then {x, y}⊥⊥ is also called the hyperbolic line through

x and y. If the hyperbolic line through two noncollinear points x and y contains precisely t+ 1

points, then the pair (x, y) is called regular. A point x is called regular if the pair (x, y) is regular

for every point y not collinear with x. It is important to recall that the concept of regular also

exists for a graph to avoid confusion. Hence we will emphasize when regular refers to a point or

a graph.

Remark 2.1 [31] Every point in W (q) is regular.

There are several equivalent coordinatizations of these generalized quadrangles (cf. [29], [34],

[35], see also [26]) each giving a labeling for the graph Γq. Now we present a further labeling

of Γq, equivalent to previous ones (cf. [1]), which will be central for our constructions since

it allows us to keep track of the properties (such as regularity and girth) of the small regular

graphs of girth 7 obtained from Γq.

Definition 2.2 Let Fq be a finite field with q ≥ 2 a prime power. Let Γq = Γq[V0, V1] be a

bipartite graph with vertex sets Vr = {(a, b, c)r , (q, q, a)r : a ∈ Fq ∪ {q}, b, c ∈ Fq}, r = 0, 1, and

edge set defined as follows:

For all a ∈ Fq ∪ {q} and for all b, c ∈ Fq :

NΓq((a, b, c)1) =







{(x, ax+ b, a2x+ 2ab+ c)0 : x ∈ Fq} ∪ {(q, a, c)0} if a ∈ Fq;

{(c, b, x)0 : x ∈ Fq} ∪ {(q, q, c)0} if a = q.

NΓq((q, q, a)1) = {(q, a, x)0 : x ∈ Fq} ∪ {(q, q, q)0}.

Note that, in the labeling introduced in Definition 2.2, the second q in Fq ∪ {q}, usually

denoted by ∞, is meant to be just a symbol and no operations will be performed with it.

To finish, we define a Latin square as an n × n array filled with n different symbols, each

occurring exactly once in each row and exactly once in each column.

In the following two sections we present our results only for (q + 1, 8)-cages, but all prelim-

inary results are valid for all (k, 8)-cages with any number k given that they have the required

combinatorial properties.
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3 Constructions of small (q + 1; 7)–graphs, for an even prime

power q

In this section we will consider a (q+1, 8)-cage Γq with q+1 ≥ 5 an odd integer, since the only

known (q+1, 8)-cages are obtained as the incidence graph of a Generalized Quadrangles, we let

q ≥ 4 a power of two.

Let x ∈ V (Γq) and let N(x) = {x0, ...., xq}, label N(xi) = {xi0, xi1, ..., xiq = x}, for all

i ∈ {0, ...q}, in the following way. Take x0j and x1j arbitrarily for j = 0, . . . , q − 1 and let

N2(x0j)∩N2(x1j)−x = Wj, note that |Wj | = q. Let xij = (
⋂

w∈Wj

N2(w))∩N(xi), these vertices

exist and are uniquely labeled since the generalized quadrangle W (q) is regular.

Let H = x ∪N(x) ∪ {xq−1, xq} ∪

q−2
⋃

0

N(xi) ⊂ V (Γq).

We will delete the set H of vertices of Γq and add matchings MZ between the remaining

neighbors of such vertices in order to obtain a small regular graph of girth 7. In order to define

the sets MZ , we denote Xi = N(xi) \ {x} and Xij = N(xij) \ {xi}, for i ∈ {0, ..., q} and

j ∈ {0, ..., q − 1}.

Let Z be the family of all Xq−1Xq,Xij for i ∈ {0, ..., q − 2} and j ∈ {0, ..., q − 1}. For each

Z ∈ Z, MZ will denote a perfect matching of V (Z), which will eventually be added to Γq.

Definition 3.1 Let Γq be a (q + 1, 8)-cage, with odd degree q + 1 ≥ 5.

Let Γq1 be the graph with: V (Γq1) := V (Γq −H) and E(Γq1) := E(Γq −H) ∪
⋃

Z∈Z

MZ .

Observe that the graph Γq1 has order |V (Γq)|− (q2+2) and all its vertices have degree q+1.

Next proposition states a condition for the graph Γq1 to have girth 7, for this it is useful to

state the following remark.

Remark 3.2 Let u, v ∈ V (Γq) a graph of girth 8, such that there is a uv-path P of length t < 8.

Then every uv-path P ′ such that E(P ) ∩ E(P ′) = ∅ has length |E(P ′)| ≥ 8− t.

Proposition 3.3 Let Γq be a (q+1, 8)-cage, with odd degree q+1 ≥ 5 and Γq1 as in Definition

3.1. Then Γq1 has girth 7 if given u1v1 ∈ MXij
and u2, v2 ∈ Xkl such that d(u1, u2) = 2 and

d(v1, v2) = 2, it holds u2v2 6∈ MXkl
, for i 6= k ∈ {0, ..., q − 2} and j, l ∈ {0, ..., q − 1}.

Proof

Let us consider the distances (in Γq −H) between the elements in the sets Z ∈ Z. There are

five possible cases:
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(1) Two vertices in the same set u, v ∈ Z have a common neighbor w in Γq, therefore

dΓq−H(u, v) ≥ 6.

(2) If u ∈ Xq−1 and v ∈ Xq, then dΓq−H(u, v) ≥ 4, since xq−1, xq have x as a common

neighbor in Γq.

(3) If u ∈ Xi for i ∈ {q − 1, q} and v ∈ Xkj for k ∈ {0, ..., q − 2} and j ∈ {0, ..., q − 1} then

dΓq (u, xi) = 1, dΓq (v, xk) = 2, and xi, xk have a common neighbor x ∈ V (Γq), hence there

is a uv-path of length 5 in Γq, concluding from Remark 3.2 that dΓq (u, v) ≥ 3.

(4) If u ∈ Xij and v ∈ Xik for i ∈ {0, ..., q − 2} and j, k ∈ {0, ..., q − 1}, then uxijxixikv is a

path of length 4 and from Remark 3.2 dΓq−H(u, v) ≥ 4.

(5) If u ∈ Xij and v ∈ Xlk for i 6= l, i, l ∈ {0, ..., q − 2} and j, k ∈ {0, ..., q − 1}, then it is

possible that there exist w ∈ Γq −H such that u, v ∈ N(w), that is dΓq−H(u, v) ≥ 2.

Let us consider C a shortest cycle in Γq1. If E(C) ⊂ E(Γq − H) then |C| ≥ 8. Suppose C

contains edges in M =
⋃

Z∈Z

MZ . If C contains exactly one such edge, then by (1) |C| ≥ 7. If C

contains exactly two edges e1, e2 ∈ M , the following cases arise.

. If both e1, e2 lie in the same MZ then by (1) |C| ≥ 14 > 7.

. If e1 ∈ MXq−1
and e2 ∈ MXq then by (2) |C| ≥ 10 > 7.

. If e1 ∈ MXi
and e2 ∈ MXkj

then by (3) |C| ≥ 8 > 7.

. If e1 ∈ MXij
and e2 ∈ MXik

then by (4) |C| ≥ 10 > 7.

. If e1 ∈ MXij
and e2 ∈ MXlk

, for i 6= l, by hypothesis |C| ≥ 7.

If C contains at least three edges of M , since d(u, v) ≥ 2 for all u, v ∈ {Xq−1,Xq,Xij} with

i ∈ {0, ..., q − 2} and j ∈ {0, ..., q − 1}, |C| ≥ 9 > 7.

Hence Γq1 has girth 7 and we have finished the proof.

The following lemma gives sufficient conditions to define the matchings MXij
for the sets

Xij , for i ∈ {0, ..., q − 2} and j ∈ {0, ..., q − 1}, in order to fulfill the condition from Proposition

3.3.

Lemma 3.4 There exist q2− q matchings MXij
, for each i ∈ {0, ..., q− 2} and j ∈ {0, ..., q − 1}

with the following property:

Given u1v1 ∈ MXij
and u2, v2 ∈ Xkj such that d(u1, u2) = 2 and d(v1, v2) = 2 then u2v2 6∈

MXkj
.
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Proof By definition

q−2
⋂

i=0

N(Xij) = Wj . Let Wj = {wj1, . . . , wjq}. Note that every vertex wjh is

adjacent to exactly one vertex in N(Xij) that we will denote as xijh, for each i ∈ {0, ..., q − 2}

and j ∈ {0, ..., q − 1}.

Observe that xijh is well defined, because if xijh had two neighbors wh, wh′ ∈
⋂q−2

i=0 N(Xij),

Γq would contain the cycle xijhwjh′xi′jh′xi′jxi′jhwjh of length 6.

Therefore, take the complete graph Kq label its vertices as h = 1, . . . , q. We know that it has

a 1-factorization with q − 1 factors F1, . . . , Fq−1. For each i = 0, . . . , q − 2, let xijhxijh′ ∈ MXij

if and only if hh′ ∈ Fi.

To prove that the matchings MXij
defined in this way fulfill the desired property suppose

that xijhxijh′ ∈ MXij
and xi′jhxi′jh′ ∈ MXi′j

for i′ 6= i, then Fi and Fi′ would have the edge hh′

in common contradicting that they are a factorization.

Therefore, there exist q2 − q matchings MXij
with the desired property.

To finish, notice that for u1v1 ∈ MXij
and u2, v2 ∈ Xi′j′ with j 6= j′ and possibly i = i′, the

distances d(u1, u2) and d(v1, v2) are at least 4. Then, counting the number of vertices of Γq1

and using the Proposition 3.3 we have the following theorem.

Theorem 3.5 Let q ≥ 4 be a power of two. Then there is a (q+1)-regular graph of girth 7 and

order 2q3 + q2 + 2q.

4 Constructions of small (q + 1; 7)–graphs for and odd prime

power q.

In this section we will consider cages of even degree, that Γq is a (q + 1, 8)-cage with q an odd

prime power. We proceed as before, but as will be evident from the proofs, the result is not as

good as in the previous section.

We will delete a set H of vertices of Γq and add matchings MZ between the remaining

neighbors of such vertices in order to obtain a small regular graph of girth 7. The sets H and

MZ are defined as follows.

Let V = {x, y} ∪ {s0, . . . , sq} be the vertices of K2,q+1.

Let K̂2,q+1 be the graph obtained subdividing each edge of K2,q+1.

Let Γq be a graph containing a copy of K̂2,q+1 as a subgraph and label its vertices as

H ′ = {x, y, s0, . . . , sq}∪N(x)∪N(y) where N(x) = {x0, . . . , xq} and N(y) = {y0, . . . , yq}. Note
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that N(xi) ∩N(yi) = si for i = 0, . . . , q. Define:

H = {x, y, s3, s4 · · · , sq} ∪N(x) ∪N(y) ⊂ V (Γq);

Xi = N(xi) ∩ V (Γq −H), i = 0, . . . , q;

Yi = N(yi) ∩ V (Γq −H), i = 0, . . . , q;

Si = N(si) ∩ V (Γq −H), i = 3, . . . , q.

Notice that the vertices of Γq −H have degrees q − 1, q and q + 1. The vertices s0, s1, s2 of

degree q − 1, those in Xi ∪ Yi ∪ Si of degree q and all the remaining vertices of Γq − H have

degree q + 1. Therefore, in order to complete the degrees to such vertices its necessary to add

edges to Γq −H, we define such edges next.

Let Z be the family of all Xi, Yi, Si. For each Z ∈ Z, MZ will denote a perfect matching of

V (Z), which will eventually be added to Γq.

x

x0

x1

x2

x3

xq

s0

s1

s2

s3

sq

y0

y1

y2

y3

yq

y

Definition 4.1 Let Γq be a (q + 1, 8)-cage, with even degree q + 1 ≥ 6.

• Let Γq1 be the graph with: V (Γq1) := V (Γq −H) and E(Γq1) := E(Γq −H) ∪
⋃

Z∈Z

MZ .

• Define Γq2 as V (Γq2) := V (Γq1) and

E(Γq2) := (E(Γq1) \ {u0v0, u1v1, u2v2}) ∪ {s0u0, s0v0, s1u1, s1v1, s2u2, s2v2},

where si ∈ H ′ −H, the deleted edges uivi belong to MXi
in Γq1 and they are replaced by

the paths of length two uisivi, i = 0, 1, 2.

By an immediate counting argument we know that the graph Γq1 has order |V (Γq)| − 3(q +

1)+ 1, and observe that all vertices in Γq1 have degree q+1 except for s0s1, s2 which remain of

degree q − 1. Hence, by the definition of E(Γq2), all vertices in Γq2 are left with degree q + 1.
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Proposition 4.2 Let Γq be a (q + 1, 8)-cage, with even degree q ≥ 5 and Γq1, Γq2 be as in

Definition 4.1.

(i) Γq1 has girth 7 if the matchings MSi
,MXi

and MYi
have the following properties:

(a) Given u1v1 ∈ MSi
and u2, v2 ∈ Sj such that d(u1, u2) = 2 and d(v1, v2) = 2, it holds

that u2v2 6∈ MSj
.

(b) Given u1v1 ∈ MXi
and u2, v2 ∈ Yj such that d(u1, u2) = 2 and d(v1, v2) = 2, it holds

that u2v2 6∈ MYj
.

(ii) If conditions (a) and (b) hold then the graph Γq2 also has girth 7.

Proof To prove (i) let us consider the distances (in Γq −H) between the elements in the sets

Z ∈ Z. There are six possible cases:

(1) Two vertices in the same set u, v ∈ Z have a common neighbor w in Γq, therefore

dΓq−H(u, v) ≥ 6.

(2) If u ∈ Xi and v ∈ Xj then dΓq−H(u, v) ≥ 4, given that xi, xj have x as a common

neighbor in Γq.

(3) If u ∈ Yi and v ∈ Yj then dΓq−H(u, v) ≥ 4, as before.

(4) If u ∈ Si and v ∈ Sj then it is possible that there exist w ∈ Γq−H such that u, v ∈ N(w),

that is, dΓq−H(u, v) ≥ 2.

(5) If u ∈ Si and v ∈ Xj ∪ Yj then dΓq−H(u, v) ≥ 3, since si ∈ N(xi) ∩N(yi).

(6) If u ∈ Xi and v ∈ Yj then dΓq−H(u, v) ≥ 2.

Let us consider C a shortest cycle in Γq1. If E(C) ⊂ E(Γq − H) then |C| ≥ 8. Suppose C

contains edges in M =
⋃

Z∈Z

MZ . If C contains exactly one such edge, then by (1) |C| ≥ 7. If C

contains exactly two edges e1, e2 ∈ M , the following cases arise:

. If both e1, e2 lie in the same MZ , then by (1) |C| ≥ 14 > 7.

. If e1 ∈ MXi
and e2 ∈ MXj

for i 6= j, by (2) |C| ≥ 10 > 7.

. If e1 ∈ MYi
and e2 ∈ MYj

for i 6= j, by (3) |C| ≥ 10 > 7.

. If e1 ∈ MSi
and e2 ∈ MXj

∪MYj
, by (5) |C| ≥ 8 > 7.

. If e1 ∈ MSi
and e2 ∈ MSj

for i 6= j, by the first hypothesis in item (i)(b) |C| ≥ 7.

. If e1 ∈ MXi
and e2 ∈ MYj

, by the second hypothesis in item (i)(b) |C| ≥ 7.

8



If C contains at least three edges of M , since d(u, v) ≥ 2 for all u, v ∈ {Xi ∪ Yi}
k
i=1 ∪ {Si}

k
i=4,

|C| ≥ 9 > 7.

Hence Γq1 has girth 7, concluding the proof of (i).

To prove (ii), let C be a shortest cycle in Γq2. If E(C) ⊂ E(Γq −H) ∪M then |C| ≥ 7.

. If C contains exactly one edge siui or sivi then |C| ≥ 7 since dΓq (si, ui) = dΓq (si, vi) = 2

which implies dΓq1(si, ui) ≥ 6 and dΓq1(si, vi) ≥ 6.

. If C contains a path uisivi then (C \ uisivi) ∪ uivi is a cycle in Γq1 with one less vertex

than C, therefore |C| ≥ 8.

. If C contains two edges siui, sjuj, for i 6= j. Their distances dΓq1(si, uj) ≥ 4, dΓq1(si, sj) ≥

4, and dΓq1(ui, uj) ≥ 4, therefore in any case C has length greater than 7 concluding the proof.

The following lemma gives sufficient conditions to define the matchings MSi
for the sets Si,

in order that they fulfill condition (a) from Proposition 4.2 (i). Notice that in the incidence

graph of a generalized quadrangle {x, y}⊥⊥ =
⋂

s∈N2(x)∩N2(y)
N2(s), thus Remark 2.1 implies

that |

q
⋂

i=0

N(Si)| = q − 1, recalling that {si}
q
i=0 = N2(x) ∩N2(y). Since |

q
⋂

i=0

N(Si)| is contained

in |

q
⋂

i=3

N(Si)|, and |

q
⋂

i=3

N(Si)| ≤ |Si| = q − 1 then the condition for the following lemma holds.

Lemma 4.3 If |

q
⋂

i=3

N(Si)| = q − 1 then there exist matchings MSi
, for i = 3, . . . , q, such that:

- Given u1v1 ∈ MSi
and u2, v2 ∈ Sj such that d(u1, u2) = 2 and d(v1, v2) = 2, it holds that

u2v2 6∈ MSj
.

Proof Let us suppose that
⋂q

i=3 N(Si) = {w1, . . . , wq−1}, and since Si has q− 1 vertices, every

vertex wj is adjacent to exactly one vertex in sij ∈ Si.

Observe that sij is well defined, because if sij had two neighbors wj, wj′ ∈
⋂q+1

i=1 N(Si), Γq

would contain the cycle (sijwjskjskskj′wj′) of length 6.

Therefore, take the complete graph Kq−1, label its vertices as j = 1, . . . , q−1. We know that

it has a 1-factorization with q− 2 factors F1, . . . , Fq−2. For each i = 3, . . . , q+1, let sijsil ∈ MSi

if and only if jl ∈ Fi−3.

To prove that the matchings MSi
defined in this way fulfill the desired property suppose that

sijsil ∈ MSi
and si′jsi′l ∈ MS′

i
for i′ 6= i. Then Fi and Fi′ would have the edge jl in common

contradicting that they were a factorization.
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So far, the steps of our construction have been independent from the coordinatization of

the chosen (q + 1, 8)-cage, however, in order to define MXi
and MYi

satisfying condition (b) of

Lemma 4.2, we need to fix all the elements chosen so far.

We will distinguish two cases, when q is a prime or when q is a prime power.

Choose x = (q, q, q)1, y = (0, 0, 0)1 .

When q is a prime then xi = (q, q, i)0, yi = (i, 0, 0)0 for i = 0, . . . , q.

Therefore, N(xi) = {(q, t, i)1 : t = 0, . . . , q−1}∪x andN(xq) = {(q, q, t)1 : t = 0, . . . q−1}∪x;

N(yi) = {(t,−it, i+ t2)1 : t = 0, . . . q − 2} ∪ (q, 0, i)1 and N(yq) = {(0, t, 0)1 : t = 0, . . . q − 1} ∪

(q, q, 0)1.

Thus, the corresponding vertices si are: si = (q, 0, i)1 for i = 0, . . . q − 1 and sq = (q, q, 0)1;

N(si) = {(i, 0, t)0 : t = 1, . . . , q − 1, i = 0, . . . , q} ∪ {xi, yi}. Hence, Si = {(i, 0, t)0 : t =

1, . . . , q − 1, i = 0, . . . , q}.

Then N(Si) = {(a, b, c)1 : b = −ia, c = t+ a2i, i = 0, . . . , q− 1}, and N(Sq) = {(q, 0, t)1 : t =

0, . . . , q − 1}.

Solving the equations we obtain N(Si) ∩ N(Sj) = {(0, 0, t)1 : t = 0, . . . , q − 1}, moreover

N(i, 0, t)0∩N(j, 0, t)0 = (0, 0, t)1, for each j 6= i and t = 0, . . . , q−1, or equivalently, N(0, 0, t)1 =

{(x, 0, t)0 : t = 0, . . . , q − 1, x = 0, . . . , q}. Hence the sets Si satisfy the hypothesis of Lemma

4.3, yielding that there exist the matchings MSi
with the desired property.

Notice that the sets Xi and Yi are naturally defined as the sets Xi = {(q, t, i)1 : t = 1, . . . , q−

1, i = 0, . . . , q−1}, X0 = {(q, t, 0)1 : t = 1, . . . , q−1} and Xq = {(q, q, t)1 : t = 1, . . . , q−1}. The

sets Yi = {(t,−it, it2)1 : t = 1, . . . , q− 1, i = 0, . . . , q− 1}, and Yq = {(0, t, 0)1 : t = 1, . . . , q − 1}.

In this way we have defined all the sets in Lemma 4.2, and from Lemma 4.3 we know that

the matchings MSi
have the property that:

- If u1v1 ∈ MSi
and u2, v2 ∈ Sj are such that d(u1, u2) = 2 and d(v1, v2) = 2 then u2v2 6∈

MSj
.

It remains to define the matchings MXi
and MYi

and prove they have property (b) from

Proposition 4.2 (i).

For this we must analyze the intersection of the second neighborhood of an Xj with an Yi,

N2(Xj) ∩ Yi. For each w ∈ Yi, we know there is exactly one z ∈ Xq such that w ∈ N2(z).

This allows us to define the following sets of latin squares: For each j, let the coordinate iℓ

of the j-th latin square to have the symbol siℓj if there is a wiℓj = (a, b, c)1 such that

wiℓj ∈ N((i, 0, 0)0) ∩N2((q, ℓ, j)1) ∩N2((q, q, siℓj)1),

where (i, 0, 0)0 = yi, (q, ℓ, j)1 ∈ Xj and (q, q, siℓj)1 ∈ Xq.
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Since N((i, 0, 0)0) = {(t,−it, i+ t2)1 : t = 0, . . . q − 2} ∪ (q, 0, i)1, then a = t, b = −it, and

c = i+ t2.

Observe that wiℓj ∈ N2((q, ℓ, j)1) is equivalent to (j, ℓ, t)0 ∈ N((a, b, c)1), since N((q, ℓ, j)1) =

{(j, ℓ, t)0 : t = 0, . . . q − 1} ∪ {(q, q, j)0}. Hence, aj + b = ℓ.

And wiℓj ∈ N2((q, q, siℓj)1) implies a = siℓj.

Therefore we obtain the following equation for siℓj.

siℓj(j − i) = ℓ

Notice that this equation is undefined for j = i, otherwise it would mean that yi has a

neighbor at distance 3 from xj and this would imply the existence of a cycle of length 6 in Γq.

Also from the equation we deduce that −siℓj = si−ℓj, and si+1ℓj+1 = siℓj. This means that

the i + 1-th row of the j + 1-th latin square is equal to the i-th row of the j-th latin square,

hence all the set of latin squares have the same rows. This also implies that if we put an edge

between two vertices on Yi, (siℓj ,−isiℓj, is
2
iℓj)1 and (−siℓj, isiℓj , is

2
iℓj)1, it will have at distance

two in Xj only the vertices (q, ℓ, i)1 and (q,−ℓ, i)1.

Therefore, the matchings MXi
= {(q, ℓ, i)1(q,−(ℓ+ 2), i)1 : i = 0, . . . q − 1, ℓ = 1, ..., q − 3} ∪

{(q,−2, i)1(q,−1, i)1 : i = 0, . . . q − 1}, MXq = {(q, q, ℓ)1(q, q,−(ℓ + 2))1 : ℓ = 1, . . . , q − 3} ∪

{(q, q,−2)1(q, q,−1)1}, and MYi
= {(t,−it, it2)1(−t, it, it2)1 : i = 0, . . . , q − 1, t = 1, . . . , q − 1},

have the property (b) from Proposition 4.2 (i).

When q is a prime power, let α a primitive root of unity in GF (q). Then, xi = (q, q, αi−1)0,

yi = (αi−1, 0, 0)0 for i = 1, . . . q − 1, x0 = (q, q, 0)0, and y0 = (0, 0, 0)0 . Moreover, xq = (q, q, q)0

and yq = (q, 0, 0)0.

Therefore, N(xi) = {(q, αt, αi−1)1 : t = 0, . . . q−2}∪(q, 0, αi−1)1∪x andN(x0) = {(q, αt, 0)1 :

t = 0, . . . q − 2} ∪ (q, 0, 0)1 ∪ x; N(yi) = {(αt,−αi−1+t, αi−1+2t)1 : t = 0, . . . q − 2} ∪ (q, 0, αi−1)1

and N(y0) = {(αt, 0, 0)1 : t = 0, . . . q − 2} ∪ (q, 0, 0)1; N(xq) = {(q, q, αt)1 : s = 0, . . . q − 2} ∪

(q, q, 0)1 ∪ x; and N(yq) = {(0, αt, 0)1 : t = 0, . . . q − 2} ∪ (q, q, 0)1 ∪ y.

Thus, the corresponding vertices si are: si = (q, 0, αi−1)1, for i = 1, . . . q − 1, s0 = (q, 0, 0)1

and sq = (q, q, 0)1; N(si) = {(αi−1, 0, αt)0 : t = 0, . . . q − 2, i = 1, . . . , q − 1} ∪ {xi, yi}, and

N(s0) = {(0, 0, αt)0 : t = 0, . . . q − 2} ∪ {x0, y0}. Hence Si = {(αi−1, 0, αt)0 : t = 0, . . . q − 2, i =

0, . . . , q} and S0 = {(0, 0, αt)0 : t = 0, . . . q − 2}.

Then N(Si) = {(a, b, c)1 : b = −αi−1a, c = αt+a2αi−1, i = 1, . . . , q−1}, N(S0) = {(a, b, c)1 :

b = 0, c = αt} and N(Sq) = {(q, 0, αt)1 : t = 0, . . . , q − 2} ∪ (q, 0, 0)1.

Solving the equations we obtain N(Si) ∩N(Sj) = {(0, 0, αt)1 : t = 0, . . . , q − 2}. Moreover,

N(αi−1, 0, αt)0∩N(αj−1, 0, αt)0 = (0, 0, αt)1, for each j 6= i and t = 0, . . . , q−2, or equivalently,

N(0, 0, αt)1 = {(αx, 0, αt)0 : x = 0, . . . , q − 2} ∪ (0, 0, αt)0 ∪ (q, 0, αt)0, for each t = 0, . . . , q − 2.

Hence the sets Si satisfy the hypothesis of Lemma 4.3 yielding that there exist the matchings
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MSi
with the desired property.

Notice that the sets Xi and Yi are naturally defined as the sets Xi = {(q, αt, αi−1)1 : t =

0, . . . , q − 2, i = 1, . . . , q − 1}, X0 = {(q, αt, 0)1 : t = 0, . . . , q − 2} and Xq = {(q, q, αt)1 : t =

0, . . . q − 2}. The sets

Yi = {(αt,−αi−1+t, αi−1+2t)1 : t = 0, . . . , q − 2}, Y0 = {(αt, 0, 0)1 : t = 0, . . . , q − 2} and

Yq = {(0, αt, 0)1 : t = 0, . . . , q − 2}.

In order to define the matchings MXi
and MYi

and prove that they have the property (b)

from Proposition 4.2 (i), we proceed as before, by defining the sets of latin squares:

For each j, let the coordinate iℓ of the j-th latin square to have the symbol siℓj ∈ {0, . . . , q−2}

if there is a wiℓj = (a, b, c)1 such that

wiℓj ∈ N((αi−1, 0, 0)0) ∩N2((q, α
ℓ, αj−1)1) ∩N2((q, q, α

siℓj )1) for i, j ≥ 1,

where (αi−1, 0, 0)0 = yi, (q, α
ℓ, αj−1)1 ∈ Xj and (q, q, αsiℓj )1 ∈ Xq.

Since N((αi−1, 0, 0)0) = {(αt,−αi−1+t, αi−1+2t)1 : t = 0, . . . q − 2} ∪ (q, 0, i)1, then a = αt,

b = −αi−1+t, and c = αi−1+2t.

Also wiℓj ∈ N2((q, α
ℓ, αj−1)1) is equivalent to (αj−1, αℓ, αt)0 ∈ N((a, b, c)1), since

N((q, αℓ, αj−1)1) = {(αj−1, αℓ, αt)0 : t = 0, . . . q − 2}. Hence aαj−1 + b = αℓ.

And wiℓj ∈ N2((q, q, α
siℓj )1) implies a = αsiℓj .

Therefore we obtain the following equation for siℓj.

αsiℓj (αj−1 − αi−1) = αℓ

Notice that this equation is undefined for j = i, otherwise it would mean that yi has a

neighbor at distance 3 from xj and this would imply the existence of a cycle of length 6 in Γq.

For i = 0, we obtain the equation αs0ℓj (αj−1) = αℓ, and for j = 0, we obtain αsiℓ0(−αi−1) =

αℓ. From the equation we obtain that siℓ+1j = siℓj + 1, and each latin square is the sum table

of the cyclic group Zq−1 with the rows permuted.

Multiplying by α the equation αsiℓ−1j (αj−1−αi−1) = αℓ−1, we obtain that si+1ℓj+1 = siℓ−1j.

This implies that the row i + 1 of the j + 1-th latin square is equal to the row i of the j-th

latin square subtracting 1 to each symbol (i.e., si+1ℓj+1 + 1 = siℓj). That is, all the set of latin

squares have the same rows but in a different order.

This also implies that if we put an edge between

two vertices on Yi, (αsiℓj ,−αi−1+siℓj , αi−1+2siℓj )1 and (αsiℓj+1,−αi−1+(siℓj+1), αi−1+2(siℓj+1))1,

it will have at distance two in Xj only the vertices, (q, αℓ, i)1 and (q, αℓ+1, i)1 and the other way

around.

Therefore, the matchings MXi
= {(q, α2ℓ, i)1(q, α

2ℓ+1, i)1 : i = 0, . . . q − 1, ℓ =
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1, ..., (q − 1)/2}, MXq = {(q, q, α2ℓ)1(q, q, α
2ℓ+1)1 : ℓ = 1, . . . , (q − 1)/2}, and MYi

=

{(α2t,−αi−1+2t, αi−1+4t)1(α
2t+3,−αi−1+(2t+3), αi−1+2(2t+3))1 : i = 0, . . . q−1, t = 1, ..., (q−1)/2}

have the property (b) from Proposition 4.2 (i), proving the theorem for q prime power.

Theorem 4.4 Let q ≥ 5 be a prime power. Then there is a q + 1-regular graph of girth 7 and

order 2q3 + 2q2 − q + 1.

Proof Finally, by applying Lemma 4.2(ii), we obtain a q + 1-regular graph of girth 7 with

2(q3 + q2 + q + 1)− (q − 3 + 2(q + 2)) = 2q3 + 2q2 − q + 1 vertices.
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