
Computer Science Department, University of Buenos Aires
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

Buenos Aires, Argentina

Abstract

In this paper we study the (k, c)-coloring problem, a generalization of the well
known Vertex Coloring Problem (VCP). We propose a new formulation and com-
pare it computationally with another formulation from the literature. We also
develop a diving heuristic that provides with good quality results at a reasonable
computational effort.

Keywords: (k, c)-coloring, column generation, diving heuristic

1 Introduction

In the Vertex Coloring Problem (VCP), one is required to assign a color to
each vertex of an indirected graph in such a way that adjacent vertices re-

1 Email: enrico.malaguti@unibo.it
2 Email: (imendez,jmiranda,pzabala)@dc.uba.ar
3 This work was partially supported by UBACYT 20020100100666, PICT 304 and 817

E. Malaguti 1

DEI, University of Bologna
Bologna, Italy

I. Méndez-Dı́az 2,3

Computer Science Department, University of Buenos Aires
Buenos Aires, Argentina

J. J. Miranda-Bront and P. Zabala 2,3

(k, c)− coloring via Column Generation

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 41 (2013) 447–454

1571-0653/$ – see front matter © 2013 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2013.05.124

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2013.05.124
http://dx.doi.org/10.1016/j.endm.2013.05.124
http://www.sciencedirect.com

ceive different colors, and the objective is to minimize the number of the used
colors. Several problems where a resource (color) has to be shared among
conflicting users (vertices connected by an edge in the graph) can be modeled
as VCPs. Some problems can be represented as generalizations of the VCP.
In the multicoloring problem, for example, users require more than one copy
of the resource (see, e.g., [4]). In some applications the resource cannot be
duplicated more than a fixed amount of times, and it is acceptable to have the
resource partially shared among conflicting users (this happens in frequency
assignment, see, e.g., Aardal et al., [1]). In this paper we consider a general-
ization of the VCP where each vertex has to receive more than one color, and
each pair of conflicting vertices can share a limited number of colors.

Formally, the (k, c)-coloring problem is defined as follows. Let G = (V,E)
be an undirected graph, with V = {1, . . . , n} the set or vertices and E = {uv :
u, v ∈ V, u �= v} the set of edges, and R = {1, . . . , |R|} the set of available
colors. Each vertex v ∈ V is required to be assigned exactly k different colors
and each pair of adjacent vertices u, v cannot share more than c colors. The
objective is to minimize the total number of colors used. The problem is
NP − hard and reduces to the VCP when k = 1 and c = 0 (see Garey and
Johnson [2] for complexity results on VCP, and Malaguti [6] and Malaguti and
Toth [8] for other NP − hard generalizations of the VCP).

In this paper, we propose a new formulation for (k, c)-coloring problem.
Based on the results recently achieved by Malaguti et al. [7], Gualandi and
Malucelli [3] and Held et al. [5] for the VCP using set covering formulations, we
propose a model for the (k, c)-coloring following these ideas. We experimen-
tally evaluate and compare it with another model from the related literature,
and develop a diving heuristic, which produces good quality solutions.

The rest of the paper is organized as follows. In Section 2 we describe the
model from Méndez-Dı́az and Zabala [9] and propose a new formulation for
the (k, c)-coloring. In Section 3 we describe the diving heuristic and in Section
4 we present some preliminary computational results, making a comparison
of both formulations and evaluating the diving heuristic. Finally, in Section
5 we present some conclusions and propose future lines of research regarding
the (k, c)-coloring.

2 Models

We begin by showing the model proposed by Méndez-Dı́az and Zabala [9],
slightly modified for the particular case of the (k, c)-coloring problem. They
consider three different sets of variables. The first one regards binary variables

E. Malaguti et al. / Electronic Notes in Discrete Mathematics 41 (2013) 447–454448

xvj, for v ∈ V and j ∈ R, taking value 1 if and only if color j is assigned to
vertex v. Secondly, for each arc u, v ∈ E and a color j ∈ R, binary variable
yuvj = 1 iff color j is assigned to both u and v. Finally, binary variables wj,
j ∈ R, take value 1 iff color j is used by some vertex. The (k, c)-coloring
problem is formulated as:

min
∑

j∈R
wj(1)

s.t.:
∑

j∈R
xvj = k v ∈ V(2)

∑

j∈R
yuvj ≤ c uv ∈ E(3)

xuj + xvj − yuvj ≤ 1 uv ∈ E, j ∈ R(4)

xvj ≤wj v ∈ V, j ∈ R(5)

xvj ∈ {0, 1} v ∈ V, j ∈ R(6)

yuvj ∈ {0, 1} uv ∈ E, j ∈ R(7)

wj ∈ {0, 1} j ∈ R(8)

The objective function (1) minimizes the number of colors used. Con-
straints (2) establish that exactly k colors are assigned to vertex v and con-
straints (3) restrict the number of colors that can be shared by two adjacent
vertices. Constraints (4) impose yuvj = 1 if color j is assigned to both u and
v, and constraints (5) set wj = 1 if color j is used by some vertex. Finally,
constraints (6) - (8) establish that all variables must be binary.

Similarly as with the VCP, this formulation allows symmetric solutions. To
eliminate some symmetries, the authors propose to include in the formulation
inequalities wj ≤ wj+1, for 1 ≤ j ≤ |R| − 1.

In this paper, we propose a new formulation which does not suffer from
symmetry issues. Let S = 2V be the power set of V , and define integer
variables xs, s ∈ S, representing the number of colors assigned to all vertices
in s. Regarding the standard formulation for the VCP, it is important to note
that in our model any subset of vertices can be feasibly colored by one color
when c > 0. The (k, c)-coloring problem can be formulated as follows:

min
∑

s∈S
xs(9)

s.t.
∑

s∈S:v∈s
xs ≥ k, v ∈ V(10)

E. Malaguti et al. / Electronic Notes in Discrete Mathematics 41 (2013) 447–454 449

∑

s∈S:uv∈s
xs ≤ c, uv ∈ E(11)

xs ∈ Z
+, s ∈ S(12)

The objective function (9) minimizes the number of colors used. Con-
straints (10) establish that a vertex must receive at least k colors. It is im-
portant to note that these constraints modify slightly the definition (k, c)-
coloring, where each vertex is required to have assigned exactly k colors, in
order to be able to consider maximal sets s ∈ S and therefore speed up the
column generation algorithm. In this context, we let a set s ∈ S to be max-
imal if no vertex v can be included into the set without adding new edges.
Furthermore, any solution obtained by this formulation can be easily trans-
formed into one having exactly k colors. Finally, constraints (11) restrict the
number of colors assigned to pairs of adjacent vertices in G and constraints
(12) require variables xs, s ∈ S, to be nonnegative integers.

Model (9) - (12) has an exponential number of variables and therefore it
cannot be formulated explicitly, even for medium size instances (i.e., having a
few hundreds of nodes). Branch-and-Price algorithms have been proven to be
quite effective in solving this kind of models, using column generation to solve
the LP relaxation (usually called master problem). The main idea behind this
technique is to start with a restricted set of columns, obtaining as a result a
restricted master problem, and iteratively add columns with negative reduced
cost until the master problem is solved to optimality. For this purpose, let
(π, ρ) be the optimal values of the dual variables associated with constraints
(10) and (11), respectively. To account for variables xs with negative reduced
costs, we formulate the following slave problem where binary variables zv,
v ∈ V , take value one if and only if vertex v is in the set and, for each uv ∈ E,
yuv is forced to 1 when both u and v belong to the set.

max
∑

v∈V
πvzv −

∑

uv∈E
ρuvyuv(13)

s.t. zu + zv − yuv ≤ 1, uv ∈ E(14)

zv ∈ {0, 1}, i ∈ V(15)

yuv ∈ {0, 1}, uv ∈ E(16)

If the objective value of the optimal solution of the slave problem is less
than or equal to one, then the master problem has been solved to optimality.
Otherwise, the optimal solution represents a feasible set with negative reduced
cost, we add the column to the restricted master problem and iterate again.

E. Malaguti et al. / Electronic Notes in Discrete Mathematics 41 (2013) 447–454450

3 Diving heuristic

Aiming to obtain good solutions for the (k, c)-coloring, in this section we
present a diving heuristic developed using model (9) - (12). The algorithm
iteratively tries to fix variables and updates the lower and upper bounds using
the information provided by the LP relaxation, expecting to obtain at the end
a feasible solution for the problem.

In order to solve the LP relaxation of model (9) - (12), we initialize the
restricted master problem with the following columns:

• Sets s = {i}, for i = 1, . . . , n, and

• sets s represented by the solution obtained by the greedy heuristic proposed
in Méndez-Dı́az and Zabala [9]. This heuristic starts with an initial color
list L = {1, . . . , k} and iteratively selects a vertex to be colored with the
first k compatible colors in L. In case this is not possible, L is expanded by
including new colors.

Another relevant aspect of the column generation algorithm is to be able
to determine whether the master problem has been solved to optimality or if
there exists a column with negative reduced cost. For this purpose, we solve
the slave problem (13) - (16) using a general purpose MIP algorithm. The
sketch of the diving heuristic is described in Algorithm 1.

Algorithm 1 (i) Initialize the master problem setting as columns sets s =
{i}, for i = 1, . . . , n and the solution provided by the heuristic. Set
bestUB with the number of colors used.

(ii) Solve the master problem of model (9) - (12). Let x∗ be the optimal
solution and z∗ the objective value. If �z∗� ≥ bestUB, then exit the
algorithm and return bestUB.

(iii) If x∗ is integer, exit the algorithm and return z∗. Otherwise, set in the
master problem lower bounds xs = x∗

s for all variables xs having integer
values in x∗.

(iv) Let s̄ be the index of the fractional variable which is closest to its rounded-
up value. Set xs̄ ≥ �x∗

s̄� and solve the modified restricted master problem.
If the problem is feasible, update the master problem with xs̄ ≥ �x∗

s̄� and
go to step (ii). Otherwise, Set xs̄ ≤ �x∗

s̄	 in the master problem and go
to step (ii)

E. Malaguti et al. / Electronic Notes in Discrete Mathematics 41 (2013) 447–454 451

4 Computational results

We conducted experiments in order to evalute the quality of the lower bounds
obtained by the linear relaxation of model (9) - (12) as well as the solutions
obtained by the diving heuristic.

The experiments were run on a workstation with an Intel(R) Core(TM) i7
CPU (3.40GHz) and 16 Gb of RAM. The algorithms are coded in C++ using
CPLEX 12.1 Callable Library as LP and MIP solver. We consider a set of
instances with random generated graphs having 20 vertices and varying the
density in terms of the number of edges, considering values of 10, 20, . . . , 90
percent of the edges. For each of these values we consider 10 instances, and
we group them in Low (10% - 30%), Medium (40% - 60%) and High (70% -
90%) density, considering increasing values for this parameter.

We evaluated 3 different methods: (i) the Branch and Cut algorithm from
Méndez-Dı́az and Zabala [9] (BC), (ii) the diving heuristic described in Section
3 (DH-GH), and (iii) the diving heuristic but without including the columns
obtained from the greedy heuristic (DH-noGH). We impose a time limit of
600 seconds for the three algorithms.

In Table 1 we present the average optimality gaps (100*(UB - LB)/LB)
and computational times obtained by each algorithm. The average compu-
tational times are calculated only over instances for which the corresponding
algorithm finishes before the time limit. A cell filled with ∗∗∗ means that the
algorithm was not able to solve any of the instances, and a number between
parenthesis stands for the number of instances effectively solved within the
time limit. We first observe that the diving heuristic obtains better results in
all cases when the columns provided by the greedy heuristic are considered
to initialize the master problem. As regards the comparison between BC and
DH-GH, the results are somehow mixed. BC produces the best results when
k and c are close, but when this difference tends to grow DH-GH outper-
forms BC (see, e.g., (4, 1), (5, 1) and (5, 2)) finding the optimal solution in
many cases. Furthermore, it also improves the initial solution provided by the
greedy heuristic in more cases than BC.

In terms of computational times, although not reported due to space lim-
itations, the behavior of DH-GH is reasonable and could be improved by
devolping an effective heuristic algorithm for finding columns with negative
reduced costs instead of solving the slave problem to optimality. Furthermore,
in several cases we observed that the quality of the lower bounds of the LP
relaxation of model (9) - (12) tends to be better than the one produced by BC
without a particular strengthening obtained by adding valid inequalities (see
[9]) and, on some instances, it also obtains similar values even considering it.

E. Malaguti et al. / Electronic Notes in Discrete Mathematics 41 (2013) 447–454452

(k, c) Density
BC DH-GH DH-noGH

Time %gap Time %gap Time %gap

(3, 1)
Low 0.28 0.00 3.03 1.11 3.04 0.56
Med. (29) 7.70 0.56 25.63 0.95 28.80 0.95
High (11) 138.53 12.14 (26) 177.75 22.92 (26) 181.10 104.58

(3, 2)
Low 0.04 0.00 0.87 0.00 1.11 0.00
Med. 0.40 0.00 5.93 2.67 6.96 4.67
High 40.30 0.00 108.83 22.00 112.38 27.33

(4, 1)
Low (29) 0.68 0.33 2.50 0.00 3.02 0.33
Med. (10) 79.27 11.33 39.34 1.80 40.87 2.71
High ∗ ∗ ∗ 39.00 (28) 273.85 4.43 (28) 271.49 37.72

(4, 2)
Low 0.60 0.00 1.55 0.00 1.38 0.48
Med. 58.67 0.00 26.59 2.38 28.37 2.38
High (14) 165.26 7.86 (23) 194.69 16.67 (25) 225.22 151.67

(4, 3)
Low 0.12 0.00 0.62 0.00 0.88 0.67
Med. 23.15 0.00 5.38 0.00 5.89 0.00
High 12.76 0.00 54.74 11.11 55.92 15.00

(5, 1)
Low (28) 0.89 0.52 1.02 0.00 1.33 0.24
Med. (6) 15.26 12.62 39.81 0.43 41.61 0.82
High ∗ ∗ ∗ 44.64 (27) 223.63 4.67 (28) 243.99 30.59

(5, 2)
Low (29) 1.94 0.37 2.31 0.33 2.32 0.67
Med. (13) 74.01 6.67 44.04 5.58 42.45 5.88
High ∗ ∗ ∗ 33.00 (25) 239.38 10.05 (25) 234.75 129.39

Table 1
Percentage optimality gap and computational times (averages).

5 Conclusions

In this paper, we present a new formulation for the (k, c)-coloring problem and
a diving heuristic which obtains good quality results in a reasonable amount
of time. Furthermore, the diving heuristic outperforms one of the recent al-
gorithms proposed in the literature on instances where the difference between
k and c tends to grow.

As future research, and aiming to obtain a Branch-and-Price algorithm,
it is necessary to focus on two major aspects of the problem. Firstly, it is
important to develop a heuristic procedure for solving the slave problem (13)
- (16) efficiently in order to accelerate the overall time required by the column
generation algorithm.

Secondly, it would be intersting to obtain a deeper insight on the structure
of the (k, c)-coloring problem in order to derive a robust branching rule. For
the case where c = k− 1, one possibility is to consider a generalization of the
idea used for the VCP (see, e.g., [7], [3], [5]). Let i, j ∈ V be two non-adjacent
vertices, and consider splitting the original problem into two new subproblems

E. Malaguti et al. / Electronic Notes in Discrete Mathematics 41 (2013) 447–454 453

in the following fashion:

• i and j have share exactly k colors, so we can collapse them into one new
vertex, or

• i and j share at most k − 1 colors, so we can add an edge between i and j.

However, when c �= k − 1 this rule cannot be applied directly, since we
obtain as a result a subproblem where the number of maximum colors that
two adjacent vertices can share is not fixed. In this regard, further theoretical
and practical developments are required.

References

[1] Aardal, K., S. van Hoesel, A. Koster, C. Mannino and A. Sassano, Models and
solution techniques for the frequency assignment problem, 4OR 1 (2003), pp. 261–
317.

[2] Garey, M. and D. Johnson, “Computers and Intractability: A Guide to the
Theory of NP-Completeness,” DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Freedman, New York, 1979.

[3] Gualandi, S. and F. Malucelli, Exact solution of graph coloring problems
via constraint programming and column generation, INFORMS Journal on
Computing 24 (2012), pp. 81–100.

[4] Halldórsson, M. and G. Kortsarz, Multicoloring: Problems and techniques,
in: Mathematical Foundations of Computer Science 2004, Lecture Notes in
Computer Science 3153, 2004, pp. 25–41.

[5] Held, S., W. Cook and E. Sewell, Maximum-weight stable sets and safe lower
bounds for graph coloring, Mathematical Programming Computation 4 (2012),
pp. 363–381.

[6] Malaguti, E., The vertex coloring problem and its generalizations, 4OR 7 (2009),
pp. 101–104.

[7] Malaguti, E., M. Monaci and P. Toth, An exact approach for the vertex coloring
problem, Discrete Optimization 8 (2011), pp. 174–190.

[8] Malaguti, E. and P. Toth, A survey on vertex coloring problems, International
Transactions in Operational Research 17 (2010), pp. 1–34.

[9] Méndez-Dı́az, I. and P. Zabala, Solving a multicoloring problem with overlaps
using integer programming, Discrete Applied Mathematics 158 (2010), pp. 349–
354.

E. Malaguti et al. / Electronic Notes in Discrete Mathematics 41 (2013) 447–454454

	Introduction
	Models
	Diving heuristic
	Computational results
	Conclusions
	References

