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PARTITIONING BASES OF TOPOLOGICAL SPACES

DANIEL T. SOUKUP AND LAJOS SOUKUP*

ABsTrRACT. We investigate whether an arbitrary base for a dense-in-itself
topological space can be partitioned into two bases. We prove that every base
for a T3 Lindelof topology can be partitioned into two bases while there exists a
consistent example of a first-countable, 0-dimensional, Hausdorff space of size
2% and weight w1 which admits a point countable base without a partition to
two bases.

1. INTRODUCTION

At the Trends in Set Theory conference in Warsaw, Barnabéas Farkad] raised the
natural question whether one can partition any given base for a topological space
into two bases; we will call this property being base resolvable. Note that every
space with an isolated is not base resolvable; hence, from now on by space we mean
a dense-in-itself topological space. The aim of this paper is to present two streams
of results: in the first part of the article, we will show that certain natural classes
of spaces are base resolvable. In the second part, we present a method to construct
non base resolvable spaces.

The paper is structured as follows: in Section 2] we will start with general obser-
vations about bases and we prove that metric spaces and weakly separated spaces
are base resolvable. This section also serves as an introduction to the methods that
will be applied in Section [3] where we prove one of our main results in Theorem 3.7t
every T3 (locally) Lindelof space is base resolvable.

In Section ] we investigate base resolvability from a purely combinatorial view-
point which leads to further results: every hereditarily Lindelof space (without
any separation axioms) is base resolvable and any base for a T topology which is
closed under finite unions can be partitioned into two bases, see Theorem and
respectively.

Next in Theorem 5.5, we prove that every base B for a space X (resolvable or
not) contains a large negligible portion, i.e. there is U € [B]®l such that B\ U is
still a base for X.

The second part of the paper starts with Section [6} here, we isolate a partition
property, denoted by P — (I,)3}, of the partial order P = (B, D) associated to a
base B which is closely related to base resolvability. We will construct a partial
order P with this property in Theorem and deduce the existence of a Ty non
base resolvable topology (in ZFC) in Corollary [6.15
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Next, in Section [7] we present a ccc forcing (of size wq) which introduces a first-
countable, 0-dimensional, Hausdorff space X of size 2% and weight w; such that X
is not base resolvable. The main ideas of the construction already appear in Section
however the details here are much more subtle and the proofs are more technical.

The paper finishes with a list of open problems in Section 8l We remark that
Section [7] was prepared by the second author and the rest of the paper is the work
of the first author.

The first author would like to thank his PhD advisor, William Weiss, the long
hours of useful discussions. Both authors are grateful for the help of all the people
they discussed the problems at hand, especially Allan Dow, Istvan Juhész, Arnie
Miller, Assaf Rinot, Santi Spadaro, Zoltan Szentmiklossy and Zoltan Vidnyénszky.
Finally, we thank Barnabas Farkas for the excellent question!

2. GENERAL RESULTS

In this section, we prove some basic results concerning partitions of families of
sets and partitions of bases; these proofs will introduce us to the more involved
techniques of the upcoming sections.

Definition 2.1. We say that a family of sets A is well-founded iff the poset
(A, D) is well-founded, i.e. there is no strictly decreasing infinite chain Ao 2 A1 2
A is weakly increasing iff there is a well order < of A such that A < B implies
that B\ A # 0.
Proposition 2.2. Fvery family of sets A contains a weakly increasing, and so
well-founded subfamily B with
Ua=Us

Proof. Fix an arbitrary well-ordering < of A and let
B={BeA: B\ A#( forall A< B}. (2.1)

If C < B for C, B € B, then B\ C # (), so < witnesses that B is weakly increasing.
To verify |J A = |J B pick an arbitrary p € A and let

B :min{A eA:pe A} (2.2)
Then pe B\ A forall A< B, so Be B. Thus |JA=JB. O

Definition 2.3. A base B for a space X is resolvable iff it can be decomposed
into two bases. A space X is base resolvable if every base of X is resolvable.

Recall that by space we will mean a dense-in-itself topological space throughout
the paper.

Partitioning sets with additional structure is a highly investigated theme in math-
ematics; let us cite a classical result of A. H. Stone which is relevant to our case:

Theorem 2.4 (A. H. Stone, [2]). Every partially ordered set (P, <) without maximal
elements can be partitioned into two cofinal subsets.
Proposition 2.5. Suppose that (X, 7) is a topological space and p € X.

(1) Every neighborhood base at p can be partitioned into two neighborhood bases.
(2) Every m-base can be partitioned into two w-bases.
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(3) If B is a neighborhood base at p and B = By U By then either By or By is a
neighborhood base at p.

(4) If B is a base and U C B is well founded then B\ U is a base.

(5) Every base can be partitioned into a cover and a base.

Proof. (1) and (2) follow from Theorem 24

Indeed, write 7, = {U € 7 : € U} for x € X and observe that B C 7,
is a neighborhood base at z iff B is cofinal in (7., D). By Theorem [Z4] every
neighborhood base at p can be partitioned into two cofinal subsets of (7, D), i.e.
into two neighborhood bases at p. So (1) holds.

To prove (2), observe that B C 7 is a m-base iff U is cofinal in (7, D). By Theorem
24 every m-base can be partitioned into two cofinal subsets, i.e. into two m-bases.
(3) If By is not a neighborhood base at p then there is an element V' € 7, which does
not contain any element of 5. Thus BNP(V) = B NP (V), so By is a neighborhood
base at p.

(4) Let z € X. Then 7, N B is a neighborhood base at . Since 7, NU is well-
founded, 7, NU is not a neighborhood base at x. Thus, by (3), 7, N (B\U) is a
neighborhood base at x.

Since z was arbitrary, we proved that B\ U is a base.

(5) Every base B contains a well-founded cover U by Proposition 22 while B\ U is
still a base of X by (4). O

A family B of open subset of a space (X, 7) is a base iff every nonempty open
set is the union of some subfamily of B. This fact implies the following;:

Observation 2.6. Suppose that (X, 7) is a topological space, B; C T for i < 2 and
By is a base.
(1) If for every U € By there is U C By with U = UU then By is a base as well.
(2) If X is Ty and for every U,V € By with U C V there is U C By with
UCUUCYV then By is a base as well.

Now we prove our first general result.

Proposition 2.7. Fvery space with a o-disjoint base is base resolvable; in partic-
ular, every metrizable space is base resolvable.

Proof. Fix a space X with a base U{E,, : n € w} where E,, is a disjoint family of
open sets for each n € w; fix an arbitrary base B as well which we aim to partition.

By induction on n € w, construct B; , € B for ¢ < 2 such that
(1) B;,, is well founded for i < 2, n € w,

(2) BinNBjm =01if i, <2, n,m € wand (i,n) # (j,m),
(3) for every V € E,, and ¢ < 2 there is i C B, ,, such that L/ = V.

Assume that {B; : ¢ < 2,k < n} was constructed. By Proposition 2.5(4)
property (1) assures that B\ U{B; : i < 2,k < n} is still a base of X. Thus,
by Proposition 2.2] for each E € E, we can choose a well-founded family Ur C
B\U{B; :i <2,k <n} such that E = JUg. Let

Bon = J{Ue : E € E,}.
Since the elements of E,, are pairwise disjoint, By ,, is well-founded as well.
To obtain By ,, repeat the construction of By, using B\ (U{B,x : ¢ < 2,k <
n} UBy.,) instead of B\ U{B; ; : i < 2,k < n}.
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Let B; = U{B;,, : n € w} for i < 2; property (3) and Observation 2:6(1) implies
that B; is a base for 7 < 2. O

Note that every o-disjoint base is point countable, on the other hand our example
of an irresolvable base constructed in Section [{lis point countable.

A somewhat similar technique, which will be used later as well, gives the following
result:

Proposition 2.8. Suppose that a regular space X satisfies L(X) < k = w(X) =
min{x(z,X) :x € X}. Then X is base resolvable.

Recall that L(X), the Lindeldf number of X, is the minimal cardinality x such
that every open cover of X contains a subcover of size k. The weight of X is

w(X) = min{|B| : B is a base of X}
and the character of a point x € X is

Xx(x, X) = min{|U| : U is a neighbourhood base of z}.

Proof. Tt is well known that any base contains a base of size w(X); therefore it
suffices to show that any base B of size w(X) can be partitioned into two bases.
Let us fix an enumeration {(U,, Vo) : @ < K} of all pairs of elements U, V' € B such
that U C V.

By induction on a < k construct pairwise disjoint families

{Bo,a;B1,a : < K} C [B]SL(X)

such that
U, C UB; ,, CV, for every i < 2. (2.3)
Since the cardinality of the family B«, = U{Bip : 8 < «,i < 2} is at most
L(X)-|al and L(X) - |a] < min{x(z, X) : € X}, the family B.,, can not contain
a neighborhood base at any point x € X.
Thus, by Proposition 2.8 B\ B, is still a base for X for every a < s. It follows
that the induction can be carried out as we can select disjoint B, o and B, ¢ from

[B\ Bea] <Y 5o that
U_a g UBa,i g Va
for i < 2.
Thus the disjoint families B; = U{B; o : & < s} form a base for X by property
[23) above and Observation 26(2); thus X is base resolvable. O

We end this section by a simple observation; recall that a space X is weakly
separated if there is a neighborhood assignment {U, : € X} (meaning that U, is
a neighbourhood of z) so that = # y € X implies that = ¢ U, or y ¢ U,. Note that
left-or right separated spaces are weakly separated as well as the Sorgenfrey line.

Observation 2.9. Fvery weakly separated space is base resolvable.

Proof. Recall that every neighborhood base at some point x can be partitioned
into two neighbourhood bases by Proposition [Z5[1). Thus, if B is a base of X
and there is a disjoint family {B, : « € X} of subsets of B such that B, is a
neighbourhood base at x for any z € X then by partitioning B, for each z € X
into two neighbourhood bases of x we get a partition of B into two bases of X.
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Now, let us fix a base B we wish to partition and a neighbourhood assignment
{U, : x € X} witnessing that X is weakly separated. Define

B,={UeB:2eUCU,}

for x € X; clearly, B, is neighbourhood base at x. Furthermore, if x # y and say
x ¢ Uy then U € B, implies U ¢ B,; that is, B, NB, = 0 if 2 # y € X which
finishes the proof. O

We thank the referee for pointing out this last observation for us.

3. LINDELOF SPACES ARE BASE RESOLVABLE

Our aim in this section is to prove that T3 Lindel6f spaces are base resolvable;
we start with a definition and some observations while the most important part of
the work is done in the proof of Lemma

Definition 3.1. Let A, B families of open sets in a space X. We say that A weakly
fills B iff for every U,V € B such that U C V there is W C A such that

UCuUWcV.

A, B is called a weakly good pair iff A, B are disjoint, A weakly fills B and B
weakly fills A.

We remark that in the next section we introduce stronger notions called fill-
ing and good pairs. The first part of the following observations basically restates
Observation 2:6(2) with our new terminology:

Observation 3.2. Suppose that X is a reqular space.

(1) If (A, B) is a weakly good pair in X then A contains a neighborhood base at x
iff B contains a neighborhood base at x, for any x € X.

(2) If {Aa : a < Kk} and {By : o < K} are increasing chains and (Aq, Bo) is a
weakly good pair in X then (Up<rAa, UacsBa) i a weakly good pair as well.

We say that the weakly good pair (A’, B') extends the weakly good pair (A, B)
iff AC A" and B C B'. A family of pairs {(Ag, Be) : £ < ©} is pairwise disjoint
iff Ae N B¢ =0 for each &, < O.

Next, we prove that weakly good pairs can be nicely extended in Lindeldf spaces.

Lemma 3.3. Suppose that X is a T3 Lindeldf space with a base B. Given a weakly
good pair (A, B) from elements of B and a single pair of open sets {U,V} such that
U C V there is a weakly good pair (A’, B') formed by elements of B extending (A, B)
such that both A" and B’ weakly fills {U,V'}.

Proof. We will show this essentially by induction on the size of A and 5 however
we need to prove something significantly stronger (and more technical) than the
statement of the lemma itself.

Let A, stand for the following statement: for each pairwise disjoint family of
weakly good pairs {(A;, B;), (Cj,D;) : i < n,j < k}, each a subfamily from B, such
that |A;|, |B;] < k and arbitrary family of open sets £ of size at most « there is a
weakly good pair (A, B) from B of size at most x such that

(1) Uz<nA'L C A and Uz<nBz C B,
(2) A and B weakly fill £,
(3) {(A,B),(C;,D;) : j < k} is still pairwise disjoint.
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We prove that A, holds for every infinite x by induction on k.
Claim 3.4. A, holds.

Proof. Fix {(Ai,B:),(C;,D;) : i < n,j < k} and £ as above. By induction on
m € w we build increasing chains {A™ : m € w} and {B™ : m € w} from subsets of
B such that

(1) AO = Ui<n~’4ia BO = Ui<n8ia

(2) AmTE\ A™ and B™*T1\ B™ are countable well-founded families,

(3) the family of pairs {(A™,B™),(C;,D;) : j < k} is pairwise disjoint

for each m € w. Furthermore, we want to make sure that A = U<, A™ and
B = UnewB™ form a weakly good pair and they both weakly fill £. Therefore, we
partition w into infinite sets w = U{D,, : m € w} and at the m*® step

(4) we fix a surjective map
fm :Dm\ (m+1) = {(U, V)€ (A" UB™UE?: U C V)
(5) if m € Dy \ (£ +1) and fo(m) = (U, V) then both A™*! and B™*! weakly fill
{U,V}.
In particular, it suffices to construct disjoint A™*+! and B™*+! from A™ and B™

such that they satisfy (2), (3) and (5) above, especially they both weakly fill a given
(U, V). We construct A™*1, the proof for B™*! is analogous.

Subclaim 3.4.1. B\ (B™ U, Dj) is a base of X.

Proof of the Subclaim. Let x € X be arbitrary.

If B™ U U, D; does not contain a neighborhood base at x, then B\ (8™ U
U, <1 D;) should contain a neighborhood base at z by Proposition 2.5(3).

Assume know that B™ UJ,;_,, D; contains a neighborhood base at z. Since

B"U|JD;=B"\B)ulJBiU|]D;
i<k i<n i<k
applying Proposition [Z5(3) again, one of the sets
B™\ B Bo,...,B,_1,Dq,...,Dp_1 (3.1)
contains a neighborhood base at x. Since B™ \ B° is well-founded, it can not
contain a neighborhood base. If B; (or Dj, respectively) contains a neighborhood
base at x, then A; (or C;, respectively) also contains a neighborhood base at = by

Observation B.2(1). In both cases, B\ (B™ UJ,.;, D;) contains a neighborhood
base, which proves the Subclaim. ([

Since X is Lindel6f, using the Subclaim above and Proposition we can find
a countable well-founded cover Q@ C B\ (B™ U, D;) of U with UQ C V. Now
define A™* = A™ U Q. Since Q and (B™ U U< Dj) are disjoint, (3) holds. (2)
and (5) are clear from the construction. O

Claim 3.5. Suppose that Ay holds for every w < XA < k. Then A, holds.

Proof. Fix {(A;,B:),(C;,D;) :i <mn,j <k} and &, let cf(k) = p and fix a cofinal
sequence of ordinals (k¢)¢<, in £. Take a chain of elementary submodels (M¢)¢<,
of H(8) (where 6 is large enough) such that everything relevant is in My, ke C M;
and |M¢| = |ke| for £ < p. The following is an easy consequence of Mg being
elementary and X being Lindel6f:
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Subclaim 3.5.1. (A;NM¢, B;NM¢) is a weakly good pair and |A;NMe|, |B;N M| <
|ke| for all i < n.

Proof of the Subclaim. If U,V € A; N Mg, U C V then A;, B;, A € M implies that
M;E3Be [B]Y Tcl|BcV.

because X is Lindel6f. So there is B € Mg N [Bi]w such that U ¢ UB C U.
Since B is countable, B € M; implies B C M¢. So we have B C B; N M, with
U c UB c V. This shows that B; N M fills A; N M and the other direction of
the proof is completely analogous. O

By induction on ¢ < p construct weakly good pairs {(A%, B¢) : € < u} so that

A8 C AS, BS C BC for £ < ¢ < pand

(1) Ui<n(-/4i n Mg) c A¢ ¢ B and Ui<n(Bi n Mg) c B¢ C B,

(ii) A® and B¢ has size < |rg,

(iii) AS and B¢ weakly fills £ N Mk,

(iV) AS N B; 2@,./45 ND; = () and BEﬁAi 2@78506]‘ = .
This can be done using A, | at stage £. First note that A<¢ = U{AS : ¢ < ¢} and
B<¢ = U{B" : { < &} are of size at most |k¢| and (A<¢, B<¢) is a weakly good pair.
Also, the family

{(A<E,B<£), (.Al N Mg,Bi N Mg); (Ai,Bi), (Cj,Dj) 1 <n,g < k}

is pairwise disjoint. Hence A, implies that there is a weakly good pair (AS, B%)
from B of size at most |k¢| which fills ENM, and is pairwise disjoint from {(A;, B;), (Cj, D;) :
i <n,j <k} while
AU (AN M) € A
i<n
and
B=¢U | J(B; N M) C B
i<n
Note that A, was used to find the common extension of n + 1 weakly good pairs

such that this extension is disjoint from n + k given weakly good pairs. Now define
A=U{A%: ¢ <} and B = U{B* : £ < (}; (A, B) is the desired extension. O

This finishes the proof the lemma.
O

Recall that a space is locally Lindeldf if every point has a neighbourhood with
Lindel6f closure.

Proposition 3.6. Suppose that X is a T3 locally Lindeldf space. Then X embeds
into a T3 Lindeldf space X* with | X*\ X|=1.

Proof. Construct X* on the set X U {z*} where neighborhoods of the point z* are
of the form {2*} U X \ U with U C X open such that there is an open V C X with
U C V and V is Lindel6f. It is clear that X* is Hausdorff and Lindel6f.

Note that if U,V are open in X, U C V and V is Lindeldf, then V is normal as
well, so there is an open W C V so that U C W C W C V. So X* is regular at the
point x*, so X* is regular. (I
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Corollary 3.7. FEvery Ts locally Lindeldf space is base resolvable. In particular,
every T3 locally countable or locally compact space is base resolvable.

Proof. Fix a base B for a T3 Lindel6f space X and consider the set P of all weakly
good pairs (A, B) from B partially ordered by extension. Note that we can apply
Zorn’s lemma to P by Observation part (2); pick a maximal weakly good pair
(A,B) € P. Lemma implies that a maximal weakly good pair must weakly fill
every pair of open sets {U,V} with U C V, hence both A and B are bases of X.

Given a T3 locally Lindelof space X with a base B consider it’s one-point Lin-
deldfization X* = X U {z*} with the base

B* =BU{U C X" : U is an open neighbourhood of 2™ in X*}.
X* is T Lindelo6f hence base resolvable; thus B* can be partitioned into two bases,

Bj; and B}, which clearly gives a partition of B: B; NB and B} N B. (Il

4. COMBINATORICS OF RESOLVABILITY

In this section, we will prove a combinatorial lemma which will be our next tool
in showing that further classes of space are base resolvable.

Definition 4.1. Let A,B C P(X). We say that A fills B iff
U=U{VeA:VCU)}

for every U € B. A, B is called a good pair iff A,B are disjoint, A fills B and B

fills A. A is self-filling if A fills A.

Note that if A C P(X) fills {NB: B € [A]<“} and A covers X then A is a base
for a topology on X.

Definition 4.2. A self-filling family A is resolvable iff there is a partition Agy, A;
of A such that A; fills A fori < 2.

The importance of the following lemma is that it shows that resolvability is a
local property:

Theorem 4.3. Suppose that B C P(X) is self-filling. Then the following are
equivalent:

(1) for every U € B there is a good pair (BY ,BY) from B such that
U =UBY =uBY,
(2) B is resolvable.

Proof. (2) implies (1) is trivial.

To see that (1) implies (2), let P be the set of all good pairs (Bg,B1) formed by
elements of B; P is partially ordered by (Bo,B1) < (B, B)) iff B; C B} for i < 2.
It is clear that every chain in (P, <) has an upper bound hence, by Zorn’s lemma,
we can pick a <-maximal element (By,B;) € P.

We claim that B; fills B for ¢ < 2. Pick any U € B and consider the good pair
B, BY with U = UBY = UBY. Define

B, =B, UBY \ B;_,;)

for i < 2.
The second statement of the following lemma yields immediately that (Bf,B})
forms a good pair which fills {U}.
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Lemma 4.4. (1)If a family of sets A fills a family of sets B and A’ fills B’ then
AU (A'\ B) fills B'.

(2) If (A,B) and (A',B') are good pairs then (AU (A" \ B),BU (B'\ A)) is also a
good pair which fills UB’.

Proof of the Lemma. (1) Pick U € B'. Since A’ fills B’, there is AT c A"\ {U}
with U = UAT. For each B € AT N B choose Ag C A with B = UAg. Finally let

A" = (AT\B)U| J{4p: Be A" nB}.
Then A* ¢ AU (A" \ B)\ {U} and

UA*:U((AJF\B)UU{AB:BeA*ﬁB}) -

UA\Bu{B:Be At nB}) = JAt =U.

(2) The families AU (A" \ B) and BU (B’ \ A) are clearly disjoint, AU (A" \ B) fills
BU(B\A)U{JA} and BU(B'\ A) fills AU (A" \ B) U{lJB} by (1) which was

to be proved. O
Also, (Bo,B1) < (B{,B}) thus by the maximality of (Bg,B;) we have that B} =
B;. This finishes the proof. ([

The first corollary is a direct application and shows that resolvability is preserved
by unions.

Corollary 4.5. Suppose that B, is a resolvable self-filling family for each o < k.
Then U{B, : a < K} is a resolvable self-filling family as well.

Corollary 4.6. Suppose that a self-filling family B has the property that
(1) for every U € B there is U € [B\ {U}|=¥ such that U = UU.

Then B is resolvable.
Proof. We need the following Claim.

Claim 4.7. If A C B is well-founded then for every W € B there is a countable
well-founded family B(W, A) C B\ A with UB(W, A) =W.

Proof. We can assume that W € A. By (f) there is a countable self-filling family
C C B with W € C. Let

V={VeC\A:VCW}L
Since A is well-founded, for each © € W the family {Z € ANC : x € Z} has a
C-minimal element Z. Since C is self-filling, there is V € C with x € V C Z. Then
Vevy.

Thus JVY = W. Now, by Proposition [Z2] there is a well-founded family
B(W,A) CcV with UV =B(W, A). O

By Theorem [£3] it suffices to prove that for every U € B there is a good pair
(Bo,Bl) from B such that U = UBO = UBl.

Fix a U € B. Partition w into infinite sets w = U{D,, : m € w}. By induction
on m € w we build increasing chains {B* : m € w} and {B}* : m € w} from subsets
of B such that
(1) By =B} =0,

(2) BF* and BT are disjoint, well founded and countable families,
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(3) fix a surjective map
fm : Dm \ (m+1) > {U}U Bg" U BY",
(4) if m € Dy and fe(m) =V then
Byt =By U B(V,B) (4.1)

and
BT =B UB(V, B ). (4.2)

Let B, = U{B! : m € w} for i < 2. The (By,B;) is a good pair and U =
UBy = UB4. Indeed, if V € B; U{U} then V € B* U{U} for some m € w and so
fm(t) =V for some £ € D,, \ (m +1). Thus there is a family B ¢ B! ¢ B,_,

with JU = V. O

Corollary 4.8. Locally countable or hereditarily Lindeldf spaces are base resolvable
without assuming any separation axioms.

Our next corollary establishes that every reasonable space admits a resolvable
base.

Corollary 4.9. Suppose that B is a base closed under finite unions in a Ty topo-
logical space. Then B s resolvable.

Proof. We apply Theorem again: fix U € B and we construct a good pair
covering U. Fix an arbitrary strictly decreasing sequence {U,, : n € w} C B such
that Uy C U and fix y,, € Up—1 \ Uy, for n € w\ {0}. Let

BV ={VeBNPW): 3k cw\{0}:Uspy; CV but Usy 11 £V}

for i < 2. It should be clear that B NBY = 0.

Next we prove that U = UBY for i < 2. Fix i < 2 and note that {Uajy; :
ke w\{0}} C BY. Now fix x € U and we prove that z € UBY; without loss of
generality we can suppose that x ¢ Usy,;. Find any k € w so that yor+; # x and
take W € B so that € W C U \ {y2x+i}; here we used that B is a base of a T
topology. Note that V' = Uz, UW € B as B is closed under finite unions and that
reVe IBSlU .

Finally we show that (BY,BY) is a good pair; we will show that BY fills BY,
the other direction is completely analogous. Fix V € BY and fix a point 2z € V.
Find an [ € w so that Uy—1 C V and z # yo;. As B is a base, there is W € B so
that z € W C V \ {yx}. Let V! = Uy UW; as B is closed under finite unions we
have V/ € B, moreover V' € By as witnessed by U, C V' but Uy,—1 € V'. Finally,
2z € V' CV as we wanted. O

Corollary 4.10. The set of all open sets in a Ty topological space is resolvable.

Let MA(Cohen) denote Martin’s axiom restricted to the partial orderings of the
form Fn(k,2,w) for some k where, Fn(k,2,w) is the poset of functions from some
finite subset of x to 2 ordered by reverse inclusion.

Corollary 4.11. Under MA(Cohen) every space X of local size < 2% is base re-
solvable without assuming any separation axioms.
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Proof. Fix a base B of X; we may assume that |U| < 2% for all U € B. We apply
Theorem [4.3] to prove that B is resolvable as a self filling family which in turn will
imply that B is a resolvable base. Fix U € B and we construct a good pair covering
U. Let k = |U| and select By € [B]* which fills itself and UBy = U. Now consider
the ccc partial order P = Fn(By,2,w), i.e. the set of all finite partial functions
from By to 2. Now consider

Dyvi={f€P: thereis W e f~'(i):ze WCV}

for i < 2 and x € V € By; note that each D, y,; is dense in IP. Hence there is a
filter G C IP which intersects D, y,; fori < 2and x € V € By. Let B, ={V € By :
(UG)(V') =i} for i < 2 and note that (Bo,B;) is the desired good pair. O

5. THINNING SELF FILLING FAMILIES

Let B be a self filling family; note that B is redundant in the sense that B \ U
still fills B for a finite or more generally, a well founded family U.

Definition 5.1. We say that U C B is negligible iff B\ U still fills B.

Our aim in this section is to show that every self filling family B contains a
negligible subfamily of size |B|. Note that a base B for a space X is resolvable iff it
contains a negligible subfamily &/ C B such that U is a base of X as well. We will
make use of the following definitions:

Definition 5.2. If B fills itself then let
L(U,B) =min{|V|: V CB\{U},U = UV}
for U € B.

Observation 5.3. Suppose that B fills itself and U C B.
(1) If B\ U fills U then U is negligible.
(2) If U is well founded then B\U fills U and so U is negligible; in particular, if U

is weakly increasing, then U is negligible.

Our first proposition establishes the main result for self filling families B with
cf|B| = [BJ.

Proposition 5.4. Suppose that B fills itself and k = |B| is reqular. Then B contains
a negligible family of size k.

Proof. We can suppose that L(U,B) < « for every U € B; otherwise we can find a
weakly increasing subfamily of size x which is negligible by (1) and (2) of Observa-
tion B3

It suffices to define a sequence Ug, Ve € [B]<" for { < k such that
(1) Us N Ve =0,
(2) U CU: and Ve C Ve for € < ¢ < K,
(3) Ve fills Ue, and
(4) U1 \ U # 0;
Clearly, Y = U{Ue : & < k} will be a negligible set of size x in B by (3) of
Observation Suppose we have Ue, Ve € [B]<* for £ < ¢ as above for some
¢ < k; then B\ U{Ue, Ve : £ < ¢} # 0 by k being regular hence we can select
Ue € B\ U{Us, Ve : € < ¢} and define

U = | U - ¢ < G u{Ue}
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Find W C B\ {U¢} of size < k such UW = U¢; define

Vo= J(Ve: €< QUMW U).

Since (J{Ve : € < ¢} fills [J{Ue : £ < ¢} by the inductive hypothesis (3) above,
Lemma [£4(1) implies that V¢ fills Ue. O

Theorem 5.5. Suppose that B fills itself. Then B contains a negligible family of
size |B|.

Proof. We can suppose that p = cf(k) < k = |B| and that every weakly increasing
sequence in B is of size less than x by Observation B3|[2). Fix a cofinal strictly
increasing sequence of regular cardinals (k¢)e<, in & such that p < ko and define
Bg = {U eB: L(U,B) < Iig}
for every £ < p. So
B= (B (5.1)
E<p

If there is a £ < p such that every weakly increasing sequence in B is of size less than
ke then B = Be. Let us define a set mapping F': B — [IBS]<”””£+ such that U = UF(U)
where F(U) C B\ {U}. As Iigr < k we can apply Hajnal’s Set Mapping theorem
(see Theorem 19.2 in [1]): there is an F-free set U of size x in B, i.e. F(U)NU = ()
for all U € U; observe that U is negligible as U{F(U) : U e U} C B\ U fills U.

Now we suppose that B # B¢ for £ < pu, that is there is a weakly increasing
sequence in B of size k¢ for all £ < p. It suffices to define sequences Ue, Ve € [B|<"
for £ < p such that

(i) U CU and Ve C V; for € < ¢ < K,

(ii) Ug, Ve are disjoint and k¢ < |[Ue,

(111) Vg fills L{g.
Indeed, the union U{Ue : £ < p} is negligible in B of size k by Observation G311
because U{Vg : € < p} fills U{Ue : £ < p}.

Suppose we defined Ue, Ve € [B]<" for £ < (; let

A= (UM uve e <3 me) ™

Note that A < & thus we can pick a weakly increasing family W € [B]*; without
loss of generality, we can suppose that W is disjoint from (J{Us U Ve : £ < (}. Note
that
W=U{BsNW:6<pu}
by (&), and that u < cf(A) = A, hence there is § < p such that W = W N B; has
size A. Define
Ue = J{Ue - ¢ <Fuw’.
Now, for every U € W' select F(U) € [B\{U}]="4 such that U = UF(U). Define

Ve=JWVe: ¢ < QU J{FW): U e W\ U.

Note that k¢ < |[Ue| = X and [V¢| < X - ks < K. It is only left to prove that V. fills
U,; in fact, it suffices to show that V. fills W’. Suppose that < is the well ordering
witnessing that W' is weakly increasing and suppose that there is a U € W’ which
is not filled by V¢; we can suppose that U is <-minimal. Fix an # € U witnessing
that V; does not fill U. Pick V € F(U) such that z € V C U; then V ¢ V, so
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VeWoVelJ{ts : € < (};if VeW then V< U, thus V is filled by V¢
by the minimality of U. This contradicts the choice of x, hence V' ¢ W’. Thus
V e U{Ue : &€ < ¢} which is filled by U{Ve : £ < ¢} C V¢ by the inductional
hypothesis; this again contradicts the choice of z, which finishes the proof.

O

6. IRRESOLVABLE SELF FILLING FAMILIES

The aim of this section is to construct an irresolvable self filling family and
deduce the existence of a non base resolvable Ty topological space.
Given a partial order (P, <) and p,q € P let

[p,ql ={reP:p<r<gq}

The key to our construction is the following special partition relation:

Definition 6.1. We say that a poset P without mazimal elements satisfies
P — (L)}

iff for every partition P = Do U Dy there is i < 2 and strictly increasing {py, :
n € w} C D; such that [po,prn] C D; for every n € w. The negation is denoted by
P - (I,)).

The above definition is motivated by the following;:

Observation 6.2. For any irresolvable self filling family B C P(X) the partial
order P = (B, D) satisfies P — (I,,)3.

Proof. Consider a partition of P = (B, D) into sets Dy, Dy; as B is irresolvable, there
ist <2, z€ X and U € D; such that V € D, for every V € B withxz € V C U.
Pick a strictly decreasing sequence {V,, : n € w} C B such that x € V,, C U for
every n € w; clearly, [Vp, V,,] C D; for every n € w. O

Our next aim is to find a partial order P first with P — (I,)3; note that trees or
Fn(k,2) cannot satisfy P — (I,)3. Moreover:

Proposition 6.3. P - (I,)} for every countable poset P without mazimal ele-
ments.

Proof. Fix a countable poset P without maximal elements. We construct a partition
P = PyUP; witnessing P - (I,,)3 as follows: first, fix an enumeration {I,, : n € w} of
all intervals I = [p/, p| in P which contain an infinite chain and let P = {p,, : n € w}
denote a 1-1 enumeration. Construct disjoint P ,,, P; , C P by induction on n € w
such that

(i) P;p, is a finite union of antichains for i < 2,
(ll) Pn S PO,n U Pl,na
(iii) I, N Pip # 0 for i < 2,
(iv) whenever C = {¢j : k € w} C P is a strictly increasing chain, p, € C and
[¢i, ;] is well-founded (i.e. [¢;,¢;] ¢ I) for all i < j < w then
U [co,ck] NPy # 0
kew
for each i < 2.

Provided we can carry out this induction, we have that
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Claim 6.4. P » (I,)}.

Proof. Let P; = U{P;,, : n € w} for i < 2 and note that this is a partition of P by
(ii). Consider an arbitrary strictly increasing chain C' = {¢i : k € w} C P. If there
is k € w such that [co, cx] contains an infinite chain in P then there is an n € w such
that I,, = [co, cx]; property (iii) from above ensures that P; N [co,cx] # 0 for ¢ < 2.
Otherwise, the intervals [¢;, ¢;] are all well-founded intervals; in this case, property
(iv) ensures that (J,c[co, cx] N P; # 0 for i < 2. O

Now suppose we constructed P; ,_; satisfying the above conditions for i < 2;
note that finitely many elements can be added to both Py ,—1 and P ,—; without
violating (i), thus (ii) and (iii) are easy to satisfy (note that I, \ (Po.n—1 U P1n-1)
is infinite since I,, contains an infinite chain).

It suffices to show the following to finish our proof:

Claim 6.5. Fizp € P and A C P which is covered by finitely many antichains.
Then there is an antichain B C P\ A such that whenever C = {cx : k € w} C P is
a strictly increasing chain, p € C and the intervals [c;, c;] are all well-founded then

U lco,ex] M B # 0.
kEw
Proof. Let
R={q€ P:p<gqand [p,q| does not contain infinite chains}.

Then (R, <) is well founded, so we can define, by well-founded recursion, a rank
function rk from R into the ordinals such that

rk(p) =0,

rk(t) =sup{rk(s) +1:s€[p,t)} ifteR,p<t.

Let @ = R\ A and define ¢~ to be the element minimizing rk on [p,¢] \ A for
g€ Q. Let

(6.1)

B={q :q€Q}

First note that B is an antichain by (6. Now fix a strictly increasing chain
C = {cr : k € w} C P such that the intervals [¢;, ¢;] are all well-founded and p € C;
since A is covered by finitely many antichains there is ¢ € C'\ A such that p < ¢;
also, ¢ € @ by [p, q] being well founded. Thus ¢~ € (U, [co,cx] N B. O

Indeed, to finish the inductive construction, apply the claim twice to find an-
tichain By C P\ A and By C P\ (AU By) such that [ J, ., [co, ck] N B; # () whenever
C = {cx : k € w} C P is a strictly increasing chain, p € C and the intervals [c;, ¢;]
are all well-founded.

Then Py, = Pyp—1 U By and P, = P -1 U B; are appropriate extensions
satisfying (iv). O

We will call a countable strictly increasing sequence of elements of a poset P a
branch; we say that a branch = = (z,,)necw goes above an element p € P iff p < x,
for some n € w.

Theorem 6.6. There is a partial order P of size wi without maximal elements such
that P — (1,)3. Furthermore,

(1) every p € P has finitely many predecessors,
(2) if p £ q in P then there is a branch x in P which goes above g but not p.
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Proof. Let us fix a function ¢ : [w1]? — w such that ¢(-,¢) : ( = w is 1-1 for every
¢ € wy. It is easy to see that such functions satisfy the following:

Fact 6.7. If c(-,¢) : ¢ = w is 1-1 for every ( € wy for some c: [w1]? — w then for

every uncountable, disjoint family A C [w1]<¥ and N € w there are a < bl in A
such that ¢(§,¢) > N for every & € a,( € b.

Also, fix an enumeration {(ya,ws) : w < a < wy} of all pairs of elements of
w1 X w such that y,,w, € a X w.

We define P = (w; X w, <) as follows: by induction on a € Ly (where L; stands
for the limit ordinals in wy) we construct a poset P, = ((a + w) X w, <,) with
properties:

(i) P, has no maximal elements and every p € P, has finitely many predecessors,
ii) <4l B=<gforall §<aq,

(iii) (£,n) <q (¢,m) implies that £ < ¢ and max(n, c(£,¢)) < m,

(iv) there is a t, € P, such that ¢ <, t, if and only if ¢t <, y, or t <, w, for any
t e P,,

(v) if p £ ¢ in P, then there is a branch z in P, which goes above ¢ but not p.

We only sketch the inductive step: suppose that y, = (§,n) and ws = ({,m). Let
I={v <w;: there is s < y, or s < w, with s = (v,1) for some | € w} and note
that |T'| < w by (i). Let

k = max{n,m,c(v,a):v e '} + 1.

Now define t, = (a, k) and <, so that ¢ <, t, implies that ¢ <, y, or t <, w,.
Extend <, further so that P, has no maximal elements and satisfies (v); this can
be done by "placing" copies of 2<“ above elements of P, \ U{Pg : 8 < a}.

Let us define P = U{P,, : @ < w1} and <= U{<,: a < w1 }; observe that (P, <) is
well defined and trivially satisfies (1) and (2). In what follows, 7, and 7, denotes
the projections from w; X w to the first and second coordinates respectively.

Claim 6.8. P — (I,)}.

Proof. Suppose that P = Dy U D1; we can assume that Dy and D7 are both cofinal
in P. Now suppose that there is no increasing chain with each interval in one of the
D; and reach a contradiction as follows. We will say that an interval [s,¢] in PP is
i-mazimal for some i < 2 if [s,t] C D; but [s,t'] € D; for every t <’ € P. Observe
that for every s € D; there is ¢ € D; such that [s,#] is i-maximal; otherwise, we
can construct an increasing chain starting from s with each interval in D;. Now
construct increasing 4-element sequences Ry = {Za, Jas Za, Wa} C P for a < wq
such that T, < go < Zo < W, and

(a) [Za,¥a) C Py is a 0-maximal interval,

(b) [Za,Wa] C Py is a 1-maximal interval,

(c) ), Ra < 7, Rpif a <p.

By passing to a subsequence of {R,, : @ < wi} we can suppose that the image of
(Zows Yoy Zas We) under m, is independent of o < w; and we let N = max 7/ R,.
Find a < 3, using Fact [6.7] such that

¢ [ng, Ra,m, Rg] > N.

la<biff¢ <Cforallé €a, €D
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Observe that Z, £ wg by mjwg = N < c(n]} Zo, ) wg) and (iii). Now find v < w;
such that (y,,wy) = (Ja,Ws) and consider ¢, € P,. We claim that ¢, is a minimal
extension of g, and wg in the following sense:

(1) [Ta,ty] = [Za,Fa] U{ty},
(2) [Z6,t5] = [25, wp] U {15}
Indeed, if Zo <t <ty thent' < g, ort’ <g; To £ Ws implies that ¢’ £ wg hence
t' € [Za,Yal. Similarly, if Zg <’ < ¢y then ¢ < g, or ¢/ < wg; however, t’ £ §, by
7ot > wlga so t' € [Z3, wgl.

Note that ¢t € Py contradicts the 0-maximality of [Zq,Js] and (1) while ¢t € Py
contradicts the 1-maximality of [Z5,wg] and (2). O

The above claim finishes the proof. (I

Using the previous theorem, we construct an irresolvable self-filling family; we
can actually realize this family as a system of open sets in a first countable compact
space. We remark that this space is base resolvable, as every compact space, by
Corollary B.17

Theorem 6.9. There is a first countable Corson compact space (X,7) andU C 1
such that U fills {NV :V € [U]<¥} and U is irresolvable.

Proof. Consider the poset P in Theorem We say that « € [P]¥ is a mazimal
chain iff {x(n)}ne, is a branch in P, 2(0) is a minimal element of P and [z(n), z(n+
1)] = {z(n),x(n+1)}. Note that there are no increasing chains of order type w+1
in P. Furthermore, since the intervals are finite

Observation 6.10. (1) Any branch y € [P]¥ can be extended to a mazimal
chain g € [P]“,
(2) there is an ng € w such that Upy<n[§(n0), §(n)] C Unew(y(0), y(n)].

Note that (2) implies that if y € [P]* has homogeneous intervals with respect
to some coloring of P then the an end-segment of the maximal extension g has the
same property.

Now consider X = {z € [P]* : x is a maximal chain} as a subspace of 2%; here
2F is equipped with the usual product topology.

Claim 6.11. X is a compact subspace of X(2%) = ¥(2+1).

Proof. ¥(2F) = %£(2%1) follows from |P| = w; and clearly every chain is countable
so X C ¥(25).

We prove that X is a closed subset of 2¥. Suppose that y € 27\ X; clearly, if y is
not a chain then y can be separated from X. Suppose that y is a chain, then either
y(0) is not minimal in P or there is n € w such that [y(n),y(n+1)] # {y(n), y(n+1)}.
In the first case let ¢ € Fn(P,2) be defined to be 1 on y(0) and e(p) = 0 for
p < y(0), p € P (note that each element in P has only finitely many predecessors);
then y € [g] and [e] N X = (. In the second case let ¢ € Fn(P,2) such that
1=¢(y(n)) =e(y(n+1)) and e | [y(n),y(n+1)]\{y(n),y(n+1)} = 0; then y € [¢]
and [e]NX = 0. O

Claim 6.12. {z} = N{[Xy(m)] N X : n € w} for every x € X. Hence every point in
X has countable pseudocharacter; in particular, X is first countable.
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Proof. Suppose that y € N{[Xz(n)] N X : n € w}, that is {z(n) : n € w} C {y(n) :
n € w}. We prove that z(n) = y(n) by induction on n € w. y(0) = x(0) as they are
comparable minimal elements in P. Suppose that x(i) = y(i) for i < n; if x(n) #
y(n) then x(n) = y(k) for some n < k, thus y(n) € [x(n—1),z(n)] = [y(n—1), y(k)]
which contradicts the maximality x. (Il

Now define
Vp={zeX:In€cw:z(n)>p}forpeP,
and note that V}, is open since V,, = U{[x{q3] N X : p < ¢}. We define
U=A{Vv,:peP}
Claim 6.13. U fills {NV : V € [U]<“} and U is irresolvable.

Proof. Note that p < ¢ in P if and only if V; C V},; the nontrivial direction is implied
by property (2) of P in Theorem 6.6l To see that Z/{ fills the finite intersections from
Ulet V € [U]< be arbitrary. If A ={p e P:V, € V} € [P]<¥ then

mVZU{Vq: p<qforalpeA}.

We show that U/ is irresolvable; suppose that we partitioned U, equivalently P
into two parts Py, P1. Applying P — (I,,)} we that there is a chain y € P¥ and i < 2
such that [y(0),y(n)] C P; for every n € w. By Observation [6.I0] there is maximal
chain § € X such that [g(no),g(n)] C P; for some ng € w and every n > ng. We
claim that there is no V' € {V,, : p € P1_;} such that § € V' C Vj(,,,). Indeed, if
y € Vp C Vjn,) for some p € P then g(ng) < p and there is n € w \ ng such that
p < y(n); that is p € [g(no),y(n)] C P. O

The last claim finishes the proof of the theorem. O

Let us finish this section with the following:

Lemma 6.14. IfU fills {NV : V € [U]<“} and U is irresolvable then there is a non
base resolvable, Ty topological space.

Proof. Suppose that U C P(X) is as above. Define a relation ~ on X by = ~ y
iff{Ueld:2eU}={Uecl:ye U}, clearly, ~ is an equivalence relation on
X. Let [z] = {2’ € X : x ~ 2’} for x € X and let [U] = {[z] : © € U} for any
UCX. Itisclear that [U] =U{[V]: V €V} it U=UV and [U]=n{[V]:V € V}
it U =nV. Thus B = {[U]: U € U} is a base for a Ty topology on [X]; sometimes
this is referred to as the Kolmogorov quotient of the original (not necessarily Tp)
topology generated by U.

It remains to show that B is an irresolvable base. Take a partition B = By U B;.
Note that
(1) [z] e [U]iff z €U,
(2) U] =[V]iftU =V,
3) [Ulc[V]iftUcCV
for any U,V € U; thus the partition By UB; gives a partition U; = {U e U : [U] €
B;} of U. Now there is an ¢ < 2 so that U; does not fill I i.e. there is z € X and
V € U so that € U implies U \ V # ) for all U € U;. This gives that [x] € [U]
implies [U]\ [V] # 0 for all [U] € B;; in particular, B; is not a base for the topology
generated by B. O

In particular, we have the following
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Corollary 6.15. There is a non base resolvable, Ty topological space.

7. A 0-DIMENSIONAL, HAUSDORFF SPACE WITH AN IRRESOLVABLE BASE
In this section, we partially strengthen Corollary [6.15] by showing

Theorem 7.1. It is consistent that there is a first countable, 0-dimensional, Ts
space which has a point countable, irresolvable base. Furthermore, the space has
size ¢ and weight w1 .

Proof. For (a,n), {8, m) € w1 x w write {a,n) < (B, m) € wy xw iff {(a,n) = (B, m)
or (¢ < fandn<m).

Definition 7.2. If <1, =2C <, then let <1 U =<5 be the partial order generated by
=1 U =s.

Definition 7.3. If A = (w1 X w, =) is a poset with <C <, and for each a € L1 we
have a set T, C a X w such that

(C) (Ty, =X) is an everywhere w-branching tree,

then we say that the pair (A, (T, : o € L1)) is a candidate.

Denote by Ty, (n) the n'" level of the tree (T, <).

Definition 7.4. Fiz a candidate A = (A, (T, : « € L1)). We will define a topolog-
ical space X (A) as follows.
For o € Ly let B(T,) be the collection of the cofinal branches of Tn, and let

B(A) = J{B(T.) 1 a € L,}.
The underlying set of the space X (A) is B(A).
Forrcw xwletU(z)={y €w xw:z <y} and
V(z)={beBA):Jyeb (z=y)}.

Clearly V(z) = {b € B(A) : b C* U(x)} where C* denotes containment modulo
finite.

We declare that the family

V={V(z):x€w Xw}

is the base of X (A).

Lemma 7.5. V is a base and so X (A) is a topological space. Moreover, V is point
countable.

Proof. Assume that b € V(z) N V(y). Then there is z € b such that z < z and
y=<=z Then be V(z) CV(zx)NV(y).

To see that V is point countable, note that b ¢ V(z) if b € B(T,) and = €
(w1 \ @) X w. O

For z,y € w1 x w with x <Xy let
[y ={t€cw xw:z <t <y}
Definition 7.6. We say that a candidate A = (A, (T, : o € L1)) is good iff
(G1) V(u) D V(v) iff u <wv.

(G2) Va € L1 V¢ < a (T, \ (¢ X w)) # 0.
(G3) (a) Ya € Ly (Vx,y € Ty) U(x) NU(y) # 0 iff  and y are <-comparable.



PARTITIONING BASES OF TOPOLOGICAL SPACES 19

(b) for each {a,B} € [Ll}z there is f(a, B) € w such that

Vo € To(f(, 8)) Yy € Ts(f(a, B)) Uz) NU(y) = 0.
(G4) For each x € wy Xw and o € Ly there is g(x, ) € w such that for each
y € Ta(g(z, )
Uly) cU(z) or U(y) NU(z) = 0.
(G5) If for all @ € Ly and { < a we choose a four element <-increasing sequence
<x?,y?,z§‘,w?> CTu\ (( xw)
then there are {«, 8} € [Llf, (<o, &< B, andt €T, NTg such that
(i) yg <t and [x?,t] = [x?,y?] U {t},
(ii) wi <t and [2{ 1] = [, wl] U {t}.
Basically (G3) will force the space to be Hausdorff, (G4) ensures that each V()
is clopen and (G5) will be used in proving irresolvability. Indeed, we have

Lemma 7.7. If A is a good candidate, then X (A) is a dense-in-itself, first count-
able, 0-dimensional Ty space such that the base {V(x) : x € wy X w} is point count-
able and irresolvable.

Proof. We prove this lemma in several steps.
Claim 7.8. X (A) is dense-in-itself.

Indeed, assume that b € B(T,) and V(z) is an open neighbourhood of b. Then
there is y € b with x < y and so b € V(y) C V(z). Thus V(z) D V(y) D {V' €
B(T,) : y € b}, and so V(z) has 2¥ many elements. So b is not isolated.

Claim 7.9. X(A) is T5.

Indeed, let b € B(Ty,) and ¢ € B(Tg) so that b # c.

If « = f3 then pick n € w such that x, the n element of b, and y, the n*" element
of ¢, are different. Then b € V(z), c € V(y) and V(z) NV (y) = 0 by (G3)(a).

If o # 3 then write n = f(a, 8) (see GB))(b)), let = be the n*" element of b, and
let y be the n'* element of c. Then b € V(x), ¢ € V(y) and V(z) NV (y) = 0 by
(CB)(b).

Claim 7.10. Fach set in {V(z) : x € wyxw} is clopen, thus X (A) is 0-dimensional.

Indeed, assume that © € w; Xxw, b € B(T,) and b ¢ V(z). Let {y} = bN
To(g(a,z)). Then y ¢ U(z) because b ¢ V(x), so U(x) NU(y) = 0 by (GAl). Thus
V(z)NV(y) =0 as well.

Claim 7.11. The base {V(x) : x € w1 X w} is irresolvable.

Assume on the contrary that there is a partition (Ko, K1) of w1 X w such that
both Vo ={V(z) : 2 € Ko} and V; = {V(z) : x € K;} are bases.

Assume that « € Ly, z,y € T, with z <y and i € 2. We say that interval [z, y]
is i-maximal in T, iff

(i) [z,y] C K;, but [z, 2] ¢ K; for any z with y < z € T,.

Subclaim 7.11.1. Ifa € L1 and z € T, N K;, then there is x <y € T, such that
the interval [x,y] is i-maximal in T,.



20 D.T. SOUKUP AND L. SOUKUP

Proof of the Claim. Assume on the contrary that there is no such y. Then we can
construct a strictly increasing sequence (x,yo,y1,-..) in Ty, such that [z,y,] C K;
for all n < w.

Thenb={y €Ty :Incwy =S y,} € B(Tn).

Since b € V(z), and we assumed that {V(z) : z € K1_;} is a base, there is
z € Ky_; with b € V(2) C V(z). Then = <X z by (G). Moreover, there is y € b
with z < y because b € V(z). Thus z € [z,y| N K14, so [z,y] ¢ K;. Contradiction,
the subclaim is proved. ([l

Using the subclaim, for all « € L; and for all { < a we will construct a four
element <-increasing sequence

(@, yd, 28 wg) CTa\ (¢ X w)

as follows.

First, using (G2) pick s¢ € T \ (¢ x w).

If Ko ﬂ.U(sg) N T, =0, then let 2 = y& = s¢.

Otherwise pick

¢ € KoNU(s¢) NT,
and then, using the Subclaim above, pick
ye € U(zg) N Ty
such that
[z¢,y¢] is 0-maximal in T,.
If KiNU(yg) NTo = 0, then let 28 = wg = y¢.
Otherwise pick
2z € KiNU(yg) NTa,
and then, using the Subclaim above, pick
wg € U(z¢) NTa
such that
[2¢',w¢] is 1-maximal in T,.
By (GH), there are {«, 8} € [Llf, (<a, &<, and t € T, NTs such that
(i) y&¢ <t and [2g,t] = [z, yg] U {t},
(i) wy < tand [z, = [z, w{] U {t}.

Assume first that ¢t € Ko. Then t € Ko NT,, and [2¢,t] = [z¢,y¢] U {t}, so
[2g,t] C Ko, i.e. [z¢,y¢] was not 0-maximal in Ty,. Contradiction. If ¢ € K1, then
a similar argument works using the interval [z? , w? | and Kj;.

So in both cases we obtained a contradiction, so the base {V(z) : € w1 x w} is
irresolvable, which proves the lemma. (I

Next we show that some c.c.c. forcing introduces a good candidate which finishes
the proof the theorem.
Define the poset P = (P, <) as follows. The underlying set consists of 6-tuples

(A, I A{Ts € 1}, f,9),
where

(P1) Ae [wl X w} <w, (A, =) is a poset, <C <, I € [wl
(P2) T, C (ANa) X w and (Ty, =) is a tree for a € I,

]<w

3
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(P3) f and g are functions, dom(f [I}z, dom(g) C A x I, ran(f) Uran(g) C w
(P4) To simplify our notation wrlte U( )={y € A x Xz} for x € A.
(a) If v € T and z,y € T,, then U(z)NU(y) # 0 iff 2 and y are <-comparable.

(b) If {o, B} € [dom(f)]2 and n = f(a, 8), then
UlTo(n))NU[Ts(n)] =0 and U[T,(n)|NTa(< n) = 0.
(P5) if (z,) € dom(g) then for all y € T,(g(z,)) we have U(y) C U(x) or
Uy)nU(z) = 0.
For p € P write p = (AP, =P IP {TP? : a € IP}, fP,¢P), and for x € AP let

UP(z) ={y € AP : & <P y}.
For p,q € P let p < q iff
(0O1) AP D A9, and =9==P[ A,
(02) IP 5 19 and T = T? 0 A for a € I9,
(03) if x € AP\ A4, then UP(z) N A7 =),

(04) fP D f?%and g? D g7,

(05) if Ud(x) NU(y) = O then UP(z) NUP(y) = 0.
Clearly < is a partial order on P.
For p € P write supp(p) = I? U {a : (a,n) € AP for some n € w}.
If G is a P-generic filter, then let

A= J{4ar:pegl,

=== peg},

1= peay.
T,=|J{T?:aepe G} forac Ly,

f=\J{rr:peg,

g=Hg":peg}.

We show that P satisfies c.c.c. and A = ((w; X w, %), {T : a € L1}) is a good
candidate.

Definition 7.12. We say that the conditions p and q are twins iff conditions (T1)-
(T7) below are satisfied:

(T1) |supp(p)| = |supp(q)|, moreover max(supp(p) N supp(q)) < min(supp(p) &
supp(q)),

Denote by p the unique order preserving bijection between supp(p) and supp(q),

and define the function p : supp(p) X w — supp(q) x w by the formula p({a,n)) =

(p(a), ).

(T2) p' AP = A%,
(T3) x =Py iff p(x) =7 p(y),
(T4) p'17 =1,

(T5) T%,, = 'T.,

(T6) fP(x,y) =m iff f1(p(x),
(T7) g*(z, o) = m iff g(p(x),

(y)) =

[_) m
pla)) =m.
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Lemma 7.13. If p and q are twins then

pPDq=
(APUAY P U TPUTT TP UTI € IPUTYY, fPU f9,g7 U g?)
is a common extension of p and q, where T? = () for « € I9\ I and T = 0 for
aelP\ I,
Proof. Straightforward. O

Lemma 7.14. There is a function ¢ from P into some countable set such that if
o(p) = p(q) and supp(p) Nsupp(q) < supp(p) A supp(q), then p and q are twins.

Proof. Let ¢(p) be the type of the first order structure
(supp(p) x w, AP, =P IV {T§ : v € I"}, [P, 7).

Lemmas [7.13] and [7.14] yield that P satisfies c.c.c

Lemma 7.15. A = w; xw, I = Ly and T,(0) \ (( x w) is infinite for all v € Ly
and ¢ < 7y, and so (AQ) holds.

Proof. Forpe P,y € Ly and y € (y X w) \ AP define p W {y} as follows:

py{yl, =
(AP U {y}, <P, IPU {7} TP Uy}, T8 s a € 1P\ {7}}, /P, 07) .

Then ¢ =pW{y}, € Pand pw{y}, <p. Ify ¢ (xwthenglFy e T, \ ({ xw) so
we are done. g

Lemma 7.16. (a) Assume thatp € P, a € T? and b € (y x w) \ AP with a<b. Let

pWa {0} =
(AP U{b}, =P Uf{a. b} ATY U {0}, T : a € TP\ {0} }, /., 9) -
Then p W, {b}, € P and pW, {b}, < p.
(b) The structure A is a candidate.

Proof. First we check ¢ = pW, {b}, € P.

(PI)-(PB) are straightforward.
(PE)(a): Since U4(b) = {b}, we can assume that z,y # b. If UP(z) N UP(y) # 0
then x and y are <P-comparable. So we can assume that b € U?(x) N U?(y). But
then a € UP(z) N UP(y), so we are done.
(PE)(b): Assume that x € T(n), y € T4(n) with n = fP(a,3) = f¥(a, 8) and
z € Ul(z)NU(y). If z # b then z € UP(x) NUP(y) which is not possible. So z = b.
If 2,y # b, then a € UP(z) NUP(y) which is not possible. So we can assume that
x=band a=+~. Sobe Ti(n)and so a € T?(n—1). Thus T?(n — 1) NUP(y) # 0
which is not possible because (PH])(b) holds for p.
Assume that x € Td(n), y € Tg(< n) and y € U%(z). If y # b then y € UP(z) N
TE(< n) which is not possible. Soy = b and 8 =v. Thus a € Tf(< n) N UE(x)
which is not possible because (PH])(b) holds for p.
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(PB) Since U(b) = {b}, we can assume that y € AP. Since b € U%(z) iff a € U%(z)
for z € AP if UP(y) C UP(x) then U4(y) C U%(z), and if UP(y) N UP(x) = O then
Ul(y)nU9(x) = 0.

Thus we proved g € P. Since g < p is straightforward, we are done.

(b) is clear from (a) by standard density arguments. O
Now our aim is to prove that A is a good candidate.
Lemma 7.17. A has property (d).

Proof. Assume that p € P, u,v € AP, v ¢ UP(u). Pick v € L1\ I? with supp(p) C 7,
and pick b € v x w with v <b.

Consider the condition ¢ = p, {b}, < p.

Since b € T4, we have V(b)) NB(T,) # 0, so V(b) # 0. Since U?(u)NU*(b) = 0 we
have U(u)NU((b) =0, and so V(u) NV (b) =0, and so @ # V(b) C V(v)\V(u). O

Lemma 7.18. dom(f) = [Ll}z and dom(g) = (w1 X w) x Ly. Hence (33) and
(G4)) holds.

Proof. Assume that {v,d} € [Ip]2 \ dom(fP).
Pick m such that T?(m) = 0 for all o« € IP.
Extends f? to f¢ as follows: dom(f?) = dom(f?) U {{v,6}} and f4(v,6) = m.
Let
q= (AP, 2P P AT - v € 1P}, 19, g7)
Then g € P and g < p.
Similar argument works for g. O

Finally we verify that (GH) also holds.
Assume that
VPEVYael V¢ <a
<x2‘, Y&, 2 wg‘> C Ty \ (¢ X w) is =<-increasing.
For all & € Ly and ¢ < « pick a condition p¢ = <A2‘, m Y > which decides the
sequence <x?,y?,z?,w?> and {z¢,y¢, ¢, wg} C T
Let us say that a A-system A C [w] <Y is mice if ANB < AA B for all

A#Be A
Using the Fodor lemma, for each ¢ € w; find m¢ < w and I¢ € [Ll]wl such that

(i) () =m¢ for all a € I, where ¢ is from Lemma [7.T4]
(ii) {supp(p¢) : a € I} forms a nice A-system with kernel S¢, moreover a €

supp(pg) \ Sc.
(iii) <x?,y?,z?,w?> = (x¢, y¢, 2¢, we) for a € I¢.
Then {z¢,y¢, &, wg'} = {z¢, y¢, 2¢, wep C ¢ X w.
Findmewand I € [wl]wl such that
(iv) m¢ =m for all ¢ € I, and so
V¢ eI Vae s o(pe) =m.
(v) {S¢:¢ € I} forms a nice A-system with kernel S.
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Pick {¢,C} € [1]2. Then pick a € I; such that S¢ US¢ < supp(pg) \ S¢. So
S < (S USe)\ S <supp(pg) \ S
Now pick 8 € I¢ such that supp(p{) < supp(pg) \ S¢. So
S < (SeUSe)\ S < supp(p?) \ S¢ < supp(py) \ Se.

Thus supp(pg) N's pp(pg) S, o € supp(pg) \ Sc and 8 € supp(pf) \ Se.
)

Since p(p¢) = ¢ (p ) the conditions ¢(p¢) and ¢(p )) are twins, and
q=p2@p;

is a common extension. Pick ¢ € (o x w) \ (AZ U A?) with yc <t and we <t.
Define r as follows:

T_<A < U<yCa> <U]£,t>,]q,

{TEU{ TE UL Ty € 17\ {o, B}, £, 0°)

w
pE 1S P 1 (Sc\S) P 1 (Se\S) pg e
t
.o

mo—o—owDLE Ll ooy
| g ! | |
[ | ‘ |
G | | |
| |
0 Ve [ | :
e : | !
| ! | 1
Lo Lo

N o o B w1

< N N

S Sg‘ \ S 55 \ S S“PPP? \ Sg Suppp? \ SE

To check r € P we will use the following observation:

r [ (supp(p¢) U{t}) = p¢ Wye {t}a (7.1)
and
r 1 (supp(p) U {1}) = p¢ 0 {t}5. (7.2)
Now let us check (P1)—(P5).
(P is trivial for 7.

(P2). Let v € I7. If v # «, 3, then T% =TP, so we are done.
Moreover, TP = T2 U {t}, t € a X w, and (T, <) is a tree by (1)) and (T.2).
The same argument works for Ty.

(PB) is trivial.

(PA)(a). Assume that v € I", x,y € T with U"(x) NU" (y) # 0. Since U"(t) = {t}

we can assume z,y € A9
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Assume that v € I¢". Then T C AZ, and so z,y € AZ. Thus t € U"(z) N U"(y)
implies y& € U"(z) N U"(y). So U?(x) NUI(y) # 0, which yields that z and y are
=<4 comparable because g € P.

Similar argument works when v € I? ‘.

(P)(b). Assume that {a/, '} € dom(f") = dom(f?) = dom(p¢) U dom(p?). We
can assume that {o/, 8’} € dom(p?).

Write n = f"({/, 8'}).

(1) Assume on the contrary that there are a € T, (n) and b € Tj (n) with
U"(a) NU"(b) # 0.

First assume that {a,b} € [AQ]Z. Since ¢ € P, we have U%(a) NU(b) = 0. So
t € UT(a) N U (b) should hold.

If c € AZ, then t € U(c) implies yc € U(c) by [Il Similarly, if ¢ € Ag, then
t € U(c) implies we € U(c) by [[2

Since U?(a) NU%(b) = 0, we can assume that a € AZ \A? and b € A? \ AZ.

But then o' € supp(pg) \ S and B’ € supp(pf) \ S, so f7(¢/, ) is undefined.
Contradiction.

So we can assume that e.g t = a and b € A Asgume first that b € AP<.
Then o/ = a and yc € A¢ by (ZI). Thus y; € Th (< n) N UPE(b), and so

5?(< n)N U[Tg? (n)] # 0, so (Pd)(b) fails for pg.

Ifbe A? , then we can use similar arguments using (7.2)) instead of (T.I)).

(ii) Assume on the contrary that there are a € Ty, (n) and b € T, (< n) NU"(a).

Clearly a # t. If b # t, then a € T?,(n) and b € T§ (< n) N U%(a) which
contradicts g € P.

Assume that b= t. If b € AP¢ then (ZI)) implies 8’ = o and y¢ € U%(a) NT(<
n). Thus ye € T4, (< n) NU4(a), which contradicts ¢ € P.

s
If b € AP¢, then we can use similar arguments using (7.2)) instead of (T.1J).

(PB). Let (z,7) € dom(g") and y € T7(g(x, 7))

Since U"(t) = {t}, we can assume that z,y # t.

So x,y € AL If U(y) C U%(x), then x <%y and so U"(y) C U"(x).

Assume on the contrary that U?(z) NU%(y) =0, but t € U (z) N U" (y).

We can assume that (x,7) € g?¢. Thus z € A and v € I

However T C AZ, soy € AZ.

Since z,y € AF and vy € I, t € U"(z) NU"(y) implies y, € UPS (z) N UP< (y) by
(TI), which contradicts U(x) N U (y) = 0.

So we proved r € P.

Next we show that r < pg,pf. (01)—(04) are trivial. To check (O5), assume on
the contrary that U?< (a) N UP< (b) = 0, but U™ N U™ (b) # 0.
Then ¢t € U"(a) N U"(b), and so y¢ € U (a) N U (b) by (ZI), which is a

contradiction.
Finally, it is also straightforward that
r |- (GH)(i)-(ii) holds for a, 5,(, &, and ¢. (7.3)

So we proved the theorem. O
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8. OPEN PROBLEMS

In this section, we present a list of open problems which could be of further
interest and are closely connected to our results.

Problem 8.1. Is every linearly ordered space base resolvable?
Problem 8.2. Is every Ts (hereditarily) separable space base resolvable?
Problem 8.3. Is every paracompact space base resolvable?

Note that under PFA, every T3 hereditarily separable space is Lindelof hence
base resolvable by Corollary 3.7l Also, we conjecture that our forcing construction
can be modified to produce a separable non base resolvable space.

Problem 8.4. Is every power of R base resolvable? Is it true that base resolvability
is preserved by products?

We know that every m-base is the union of two disjoint m-bases by Proposition
235(2). However:

Problem 8.5. Does every base contain a disjoint base and m-base?

Bases closed under finite unions are resolvable by Corollary which raises to
following question:

Problem 8.6. Is it true that every base which is closed under finite intersections
is base resolvable?

It would be interesting to look into the following;:
Problem 8.7. Is every self filling family F of closed (Borel) sets of w* resolvable?
Concerning negligible subsets we ask the following:

Problem 8.8. Is there a base B for some space X such that every U € [B]®
contains a neighborhood base at some point?
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