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Abstract

The choice number of a graph G, denoted ch(G), is the minimum integer k such that
for any assignment of lists of size k to the vertices of G, there is a proper colour-
ing of G such that every vertex is mapped to a colour in its list. For general graphs,
the choice number is not bounded above by a function of the chromatic number.

In this thesis, we prove a conjecture of Ohba which asserts that ch(G) = χ(G) whenever
|V (G)| ≤ 2χ(G) + 1. We also prove a strengthening of Ohba’s Conjecture which is best
possible for graphs on at most 3χ(G) vertices, and pose several conjectures related to our
work.
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Abrégé

Le nombre de choix d’un graphe G, noté ch(G), est le plus petit entier k tel que pour
toute affectation de listes de taille k au sommets de G, il y a une coloration de G tel
que chaque sommet de G est coloré par une couleur de sa liste. En général, le nom-
bre de choix n’est pas borné supérieurement par une fonction du nombre chromatique.

Dans cette thèse, nous démontrons une conjecture de Ohba qui affirme que ch(G) =
χ(G) dès que |V (G)| ≤ 2χ(G) + 1. Nous démontrons aussi une version plus forte de la
conjecture de Ohba qui est optimale pour les graphes ayant au plus 3χ(G) sommets, et
énonçons plusieurs conjectures par rapport à nos travaux.

iii



Declaration

This thesis contains no material which has been accepted in whole, or in part, for any
other degree or diploma. Chapters 4 and 6 of this thesis contain new contributions to
knowledge. The results of these chapters have been, or will be, submitted for publication
in peer-reviewed journals. The result of Chapter 4 is based on joint work with Bruce A.
Reed and Hehui Wu. The result of Chapter 6 is based on joint work with Douglas B.
West, Hehui Wu, and Xuding Zhu.

iv



Acknowledgements
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Part I: Preliminaries

Chapter 1

Introduction

We often hear that mathematics consists mainly of “proving theorems.” Is a writer’s
job mainly that of “writing sentences?”

— Gian-Carlo Rota

Some of the most fruitful areas of contemporary mathematics have been motivated

by problems which are simple to state, yet disproportionately difficult to solve. One

of the most famous such problems was known as the Four Colour Conjecture, first

posed by Francis Guthrie in 1852 (see [Tho98]), which asserts that the countries of any

planar map can be coloured using at most four colours in such a way that neighbouring

countries are assigned to different colours. Although the problem itself can be easily

understood by most, its solution resisted the attempts of serious mathematicians for

over 120 years until Appel and Haken finally solved it [AH77a]. The problem can be

naturally reformulated in terms of properly colouring the vertices of a planar graph using

at most four colours and, because of this, the Four Colour Conjecture was instrumental
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in bringing attention to graph theory and establishing it as an interesting subject in its

own right.1

To this day, graph theory remains a subject that is driven by simple and elegant

problems. While many of these problems, like the Four Colour Conjecture, are investi-

gated primarily for their aesthetic appeal,2 there are many others which have a deeper

practical importance. One well-known example is the Strong Perfect Graph Conjecture

of Berge [Ber61], which was inspired by the problem of efficiently transmitting infor-

mation through a noisy channel without introducing errors (i.e. perfect transmission).

As it turns out, the problem of perfect transmission is related to the notion of a perfect

graph; a graph G is perfect if for every induced subgraph H of G, the chromatic number

of H is equal to the clique number of H. The Strong Perfect Graph Conjecture states

that a graph is perfect if and only if it does not contain an induced copy of an odd cycle

of length at least five or its complement. After being open for more than 40 years, it

was finally proved in a monumental paper of Chudnovsky, Roberston, Seymour and

Thomas [CRST06].

The main focus of this thesis is another tantalizing problem in graph theory, known

as Ohba’s Conjecture [Ohb02]. Ohba’s Conjecture concerns a variant of graph colouring,

known as choosability, in which the objective is to find a proper colouring of a graph

under the condition that the colour of each vertex v of G is contained in a particular

list L(v) of colours – distinct vertices may have different lists. Such a colouring is called

an acceptable colouring. Specifically, Ohba’s Conjecture says that if the order of G is

1 For a list of standard graph theoretic notation and terminology, see the glossary.

2 After all, how many cartographers were anxiously awaiting the resolution of the Four Colour Conjec-
ture?
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at most twice the chromatic number of G plus one, then there exists an acceptable

colouring whenever each vertex v of G has a list L(v) of at least χ(G) colours to choose

from.3

The thesis is divided into three parts. Part I contains the relevant preliminary

material, including a survey of some of the central results and conjectures in choosability.

At the end of Chapter 2, we will begin to discuss Ohba’s Conjecture within this broader

context.

In Part II, we focus our attention more specifically on Ohba’s Conjecture itself. In

Chapter 3, we outline the history of the problem, including a summary of partial results.

In Chapter 4, we give a detailed proof of Ohba’s Conjecture from [NRW12], which is

our main contribution. The proof is mainly composed of three parts: (a) a lemma which

shows that, by applying Hall’s Theorem, it is possible to obtain an acceptable colouring

by modifying a specific type of non-acceptable colouring, (b) a method for constructing

such a non-acceptable colouring under certain conditions regarding the distribution of

colours in the lists, and (c) a proof that, if Ohba’s Conjecture is false, then there exists a

counterexample which meets these conditions.

In Part III we look beyond Ohba’s Conjecture, turning our focus to some related

problems. In Chapter 5 we highlight the relationship between Ohba’s Conjecture

and an old problem of Erdős, Rubin and Taylor [ERT80] on the choice number of

complete multipartite graphs, and pose two conjectures based on this. We also discuss

a generalization of Ohba’s Conjecture to an ‘on-line’ variant of choosability conjectured

by Huang, Wong and Zhu [HWZ12]. In Chapter 6 we provide a proof from [NWWZ13]

3 Using standard graph theoretic notation, Ohba’s Conjecture is the following: if |V (G)| ≤ 2χ(G) + 1,
then ch(G) = χ(G).
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of a direct strengthening of Ohba’s Conjecture which verifies some special cases of

the conjectures posed in Chapter 5. Finally, we conclude the thesis in Chapter 7 by

summarizing some of the open problems discussed.

1.1 Additional Remarks

The Four Colour Conjecture has a very interesting history. Kempe published a

“solution” in 1879 which stood for over a decade until a fatal oversight was uncovered

by Heawood in 1890. Another proposed solution of Tait from 1880 was found to be

incorrect by Petersen in 1891. However, each of these attempts turned out to be fruitful.

Kempe’s idea was modified by Heawood to prove the Five Colour Theorem (every planar

graph can be properly coloured using at most five colours) and Tait’s attempted proof

revealed another formulation of the Four Colour Conjecture: every bridgeless cubic

planar graph has a proper 3-edge colouring.

When the full solution of Appel and Haken finally arrived in 1977, it was met

with resistance. Their proof consisted of two parts: a rigorous mathematical argument,

and a calculation which could only be reasonably checked by a computer. To some

mathematicians, a proof which requires the use of a computer could not be trusted.

Perhaps more troubling was that, even if the proof can be accepted as being complete

and correct, it lacks the insight of a proof that can be verified by hand. That is, by

using a computer, we can prove that the Four Colour Conjecture is true, but we only

gain a limited understanding of why it is true. Later, another proof of the Four Colour

Theorem was developed by Robertson, Sanders, Seymour and Thomas [RSST96b]. Their

proof is less complicated than Appel and Haken’s, but the general framework is similar

and it does not avoid the use of a computer. For an interesting book on the Four Colour

Theorem, including its colourful history, see [Wil02].
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The Strong Perfect Graph Conjecture was one of two famous conjectures posed by

Berge in [Ber61]. The other, which was known as the Weak Perfect Graph Conjecture,

states that a graph is perfect if and only if its complement is perfect. The Weak Perfect

Graph Conjecture was first proved by Lovász in [Lov72]. It is clear that the Strong

Perfect Graph Conjecture implies the Weak Perfect Graph Conjecture, as their names

would suggest. For more on perfect graphs and the Strong Perfect Graph Theorem

see [RAR01] or [RRT09].

There are many other problems which have inspired substantial progress in graph

theory; some notable examples are as follows: Hadwiger’s Conjecture [Had43], Tutte’s

5-Flow Conjecture [Tut54], the Cycle Double Cover Conjecture of Szekeres and Sey-

mour [Sze73, Sey80], the Erdős-Faber-Lovász Conjecture [Erd81], the Reconstruction

Conjecture of Kelly and Ulam [Kel57, Ula60], the Erdős-Hajnal Conjecture [EH89],

and the List Colouring Conjecture, the last of which will be discussed in Chapter 2. An

individual deserving of special mention is Paul Erdős, who thrived in the problem-driven

nature of graph theory and contributed a plethora of lasting conjectures which continue

to motivate the field; see [Chu97] for a list.
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Chapter 2

Choosability

One will not get anywhere in graph theory by sitting in an armchair and trying to
understand graphs better. Neither is it particularly necessary to read much of the
literature before tackling a problem: it is of course helpful to be aware of some of
the most important techniques, but the interesting problems tend to be open precisely
because the established techniques cannot easily be applied.

— Timothy Gowers, The two cultures of mathematics

2.1 Definitions and Basic Properties

Throughout this thesis, we follow standard graph theoretic notation and terminol-

ogy, most of which can be found in [BM08]; for a summary, see the glossary. An instance

of choosability is a graph G in which every vertex v is assigned to a list L(v) of available

colours. The objective is to find an acceptable colouring for L, which is a proper colour-

ing f of G such that f(v) ∈ L(v) for every vertex v of G. We say that G is k-choosable

if there exists an acceptable colouring for L whenever |L(v)| ≥ k for all v ∈ V (G). The

choice number of G, denoted ch(G), is defined as follows:

ch(G) := min{k : G is k-choosable}.

It is important to notice that, in determining the choice number of G, it is the size of the

smallest list that is important, regardless of the total number of colours
∣

∣∪v∈V (G)L(v)
∣

∣.
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Choosability was independently introduced by Vizing [Viz76] and Erdős et

al. [ERT80]. It has since become one of the most popular variants of the classical

graph colouring problem, and there are many well-read surveys on the topic; see,

e.g., [Alo93, KTV99, Tuz97, Woo01].

One attractive feature of choosability is that it arises naturally in many classical

graph colouring problems. For example, given a subgraph H of a graph G and a proper

colouring f of H, one might wish to extend f to a proper colouring of G which maps

into a set C ⊇ f(V (H)) of colours. This problem can be naturally formulated in terms

of choosability. The goal here is to construct an acceptable colouring of G −H in which

each vertex v ∈ V (G−H) is assigned to the list L(v) := C − f (N(v) ∩ V (H)).

It is clear that a graph G is k-colourable if and only if there exists an acceptable

colouring for L when L(v) = {1, . . . , k} for every vertex v of G. By setting k = χ(G) − 1

in this example, we see that

ch ≥ χ.

Initially, one may wonder if the choice number is actually equal to the chromatic

number in general. After all, if the vertices of G are assigned to lists of size χ(G) which

are not all the same, then

• some pairs of adjacent vertices may be assigned to lists which have a small intersec-

tion, and

• in constructing an acceptable colouring, we are permitted to use more than χ(G)

colours in total.

It would seem that, because of these two properties, assigning lists which are not

identical could only make it easier to find an acceptable colouring. However, this

reasoning is flawed. As it turns out, a graph G may not be k-choosable even when k far

exceeds the chromatic number of G.
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A well-known example of this phenomenon comes from [ERT80]. For d ≥ 2, let C be

a set of 2d − 1 distinct colours and let L be a list assignment which assigns each d-subset

of C to exactly one vertex in each side of the bipartition of K(2d−1
d ),(2d−1

d ). The smallest

such example, K3,3, is illustrated in Figure 2–1.

{1, 2} {1, 2}

{1, 3}{1, 3}

{2, 3} {2, 3}

Figure 2–1: A list assignment which demonstrates that K3,3 is not 2-choosable.

We claim that there does not exist an acceptable colouring for L. Otherwise, let f

be such a colouring. We observe that for any set S ⊆ C of at most d − 1 colours, there

is a vertex in each side of the bipartition whose list does not intersect S. Therefore, in

order to map each vertex of K(2d−1
d ),(2d−1

d ) to a colour in its list, we see that f must map

each side of the bipartition to a set of at least d distinct colours. Moreover, since f is

a proper colouring, no colour can be used by f on both sets of the bipartition. Thus,

the image of f must contain at least 2d distinct colours, contradicting the fact that

|C| = 2d− 1. This argument proves the following:

Proposition 2.1 (Erdős et al. [ERT80]). For d ≥ 2, we have

ch
(

K(2d−1
d ),(2d−1

d )

)

> d.

As a corollary, we see that there is no general upper bound on the choice number in

terms of the chromatic number.

8



Corollary 2.2 (Erdős et al. [ERT80]). For every function g on N, there exists a graph

G such that

ch(G) > g(χ(G)).

Proof. Let g be any function on N and define d = max{g(2), 2}. Let G be the graph

K(2d−1
d ),(2d−1

d ). Then, by Proposition 2.1, we have

ch(G) > d ≥ g(2) = g(χ(G)).

The result follows.

Although there is no upper bound on ch in terms of χ for general graphs, it is still

reasonable to consider the relationship between ch and χ for more restricted families

of graphs. In the coming sections, we will discuss some of the most important results

and conjectures in this direction: the List Colouring Conjecture (line graphs), Gravier

and Maffray’s Conjecture (claw-free graphs), the List Total Colouring Conjecture (total

graphs), the List Square Colouring Conjecture (squares of graphs), Ohba’s Conjecture

(graphs of bounded order), Thomassen’s Five Colour Theorem (planar graphs), and Alon

and Tarsi’s Theorem (planar bipartite graphs).

2.2 The Dinitz Problem and the List Colouring Conjecture

The original paper of Erdős et al. [ERT80] on choosability was inspired by a

problem of Dinitz on partial Latin squares:

“Given an m × m array of m-sets, is it always possible to choose one from

each set, keeping the chosen elements distinct in every row, and distinct in

every column?” [ERT80]

The problem of Dinitz can be reformulated as a choosability problem for the

line graph of Km,m. To see this, suppose that we label the vertices of each side of the

bipartition of Km,m with the integers 1, . . . ,m, where one side of the bipartition is

9



known as the row vertices and the other is known as the column vertices. Then the

edges of Km,m correspond to the entries of an m×m array in a straightforward manner.

Moreover, two edges of Km,m share an endpoint if and only if they correspond to entries

that are in the same row or column (depending on whether they share a row vertex or a

column vertex). Therefore, we can reformulate the Dinitz Problem as follows.

The Dinitz Problem ([ERT80]). Is it true that L (Km,m) is m-choosable for all m?

It is easily observed that the chromatic number of L(Km,m) is precisely m.1 Thus,

the Dinitz problem asks whether the choice number of L(Km,m) coincides with its

chromatic number. After 15 years, Galvin [Gal95] solved the Dinitz Problem in the

positive. In fact, his celebrated proof yielded much more; namely, the line graph of every

bipartite multigraph2 satisfies ch = χ.3

Galvin’s Theorem ([Gal95]). If G is a bipartite multigraph, then ch(L(G)) = χ(L(G)).

Galvin’s Theorem can also be viewed as evidence for a much stronger conjecture:

the famous List Colouring Conjecture.

The List Colouring Conjecture. For every multigraph G, ch(L(G)) = χ(L(G)).

The exact origin of the List Colouring Conjecture is not completely clear. The first

time that it appeared in print was in a paper of Bollobás and Harris [BH85] but, as

is explained in [HC92, JT95], it had also been posed independently by many different

researchers: Albertson and Collins, Gupta, and Vizing, to name a few. It is widely

1 Note that a proper m-colouring of L(Km,m) is equivalent to a partitioning of the edges of Km,m into
m disjoint matchings.

2 In a multigraph, a pair of vertices can be joined by more than one edge; that is, the edge set is a
multiset.

3 An exposition of Galvin’s proof can be found in Aigner and Ziegler’s Proofs from The Book [AZ10].
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believed to be very challenging, and has since become one of the central problems in

graph colouring.

Several noteworthy cases of the List Colouring Conjecture have been proven. As

we have mentioned, Galvin [Gal95] proved the List Colouring Conjecture for bipartite

multigraphs. In [HJ97], Häggkvist and Janssen proved that ch(L(Kn)) ≤ n for all

n, which verifies the List Colouring Conjecture for complete graphs of odd order.

Using an algebraic technique of Alon and Tarsi [AT92, Alo99] known as Combinatorial

Nullstellensatz,4 Ellingham and Goddyn [EG96] verified the conjecture for a certain

class of planar multigraphs: if G is a k-regular planar multigraph and χ(L(G)) = k,

then ch(L(G)) = k. However, perhaps the strongest evidence that we have for the List

Colouring Conjecture is provided by the following result of Kahn [Kah96], which shows

that it is asymptotically correct.

Kahn’s Theorem ([Kah96]). For every multigraph G, ch(L(G)) = (1 + o(1))χ(L(G)).

Kahn’s proof has been described as a ‘tour de force’ for incorporating many of

the central techniques from the probabilistic method (see [MR02]). His asymptotics

have since been improved by Molloy and Reed [MR02, MR00] using a similar approach.

Sanders and Steurer [SS08] showed that, in fact, there is a deterministic algorithm to

properly colour a line graph L(G) from lists of size (1 + o(1))χ(L(G)) in polynomial

time.5

4 When applied to choosability, Combinatorial Nullstellensatz says the following: to show that a graph
G is k-choosable, it is enough to prove that a particular term of a certain polynomial (which is defined in
terms of an orientation of G) has a non-zero coefficient.

5 Because of the probabilistic nature of Kahn’s proof, it only ensures the existence of such a colouring,
but may not give an efficient method of constructing it.
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2.3 Chromatic-Choosable Graphs

In general, we say that a graph which satisfies ch = χ is chromatic-choosable [Ohb02].

Apart from the List Colouring Conjecture, there are several intriguing conjectures which

claim that graphs of special classes are chromatic-choosable. One such conjecture was

proposed by Gravier and Maffray in [GM97].

Gravier and Maffray’s Conjecture ([GM97]). Every claw-free graph is chromatic-

choosable.

It is easily observed that the line graph of a multigraph is claw-free,6 and there-

fore Gravier and Maffray’s Conjecture would imply the List Colouring Conjecture.

In [GM97], Gravier and Maffray verified their conjecture for a special class of claw-free

graphs known as 3-colourable elementary graphs.7

In [BKW97], Borodin, Kostochka and Woodall proposed a version of the List

Colouring Conjecture for total graphs.

The List Total Colouring Conjecture ([BKW97]). For every multigraph G,

ch(T (G)) = χ(T (G)).

This conjecture seems to fit well with other problems in the area. It is widely

believed that the colouring properties of total graphs are quite similar to those of line

graphs. This is perhaps best illustrated by the relation between a famous result of

Vizing [Viz64] and the well studied Total Colouring Conjecture, made independently

by Behzad [Beh65] and Vizing [Viz68]. For every graph G, Vizing’s Theorem says

that ∆(G) ≤ χ(L(G)) ≤ ∆(G) + 1 and the Total Colouring Conjecture claims that

6 This follows from the simple fact that every edge has only two endpoints.

7 A graph is elementary if its edges can be coloured with two colours such that any induced path on
three vertices contains edges of both colours.
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∆(G) + 1 ≤ χ(T (G)) ≤ ∆(G) + 2.8 Strong evidence for the Total Colouring Conjecture

is provided by a result of Molloy and Reed [MR98], which says that there is an absolute

constant C such that χ(T (G)) ≤ ∆(G) + C for every graph G.

In [KW01], Kostochka and Woodall made a conjecture regarding squares of graphs

which, as we will see, would imply the List Total Colouring Conjecture.

The List Square Colouring Conjecture ([KW01]). For every graph G, ch
(

G2
)

=

χ
(

G2
)

.

To verify that the List Square Colouring Conjecture implies the List Total Colouring

Conjecture, let G be a multigraph and let H be the graph obtained by subdividing every

edge of G; that is, if u and v are joined in G by an edge e, then we replace e by a vertex

we and two edges e1 and e2 joining from u to we and from we to v, respectively. The List

Square Colouring Conjecture would imply that

ch
(

H2
)

= χ
(

H2
)

.

Therefore, it suffices to show that H2 = T (G). However, this is not hard to verify. We

provide a concrete example in Figure 2–2 and leave the general case as an exercise for

the reader.

Thus, the List Square Colouring Conjecture would imply the List Total Colouring

Conjecture. Furthermore, one should observe that the graph H obtained by subdividing

every edge of G is a bipartite graph in which one side of the bipartition consists of

vertices of degree 2. Therefore, the List Total Colouring Conjecture corresponds exactly

to this special case of the List Square Colouring Conjecture.

8 Note that, in both cases, the lower bound is trivial.
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e

G

we

H

we

H2

Figure 2–2: Constructing the total graph of G by subdividing its edges and then tak-
ing the square. In H2, the red edges correspond to adjacencies in G and the blue edges
correspond to the edges in L(G).

In this thesis, we consider problems of a somewhat different flavour. A key feature of

graphs for which ch is large with respect to χ is that they must contain a large number

of vertices (c.f. Corollary 2.2). Thus, the following question is quite natural:

Question 2.3. Given a function h on N, what is the best upper bound on ch in terms of

χ for graphs G on at most h(χ(G)) vertices?

Our main focus is a conjecture of this type due to Ohba [Ohb02].9

Ohba’s Conjecture ([Ohb02]). If |V (G)| ≤ 2χ(G) + 1, then ch(G) = χ(G).

Of course, if the hypothesis of Ohba’s Conjecture is replaced with |V (G)| ≤ χ(G),

then we obtain a trivial statement regarding the choice number of a complete graph.

In this sense, Ohba’s Conjecture says that if a graph G is close enough to being a

complete graph, then it must be chromatic-choosable. Note that the example of K3,3

9 Bondy and Murty included Ohba’s Conjecture as one of the unsolved problems in their recent book
Graph Theory [BM08].
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from Figure 2–1 satisfies |V | = 2χ + 2 and ch > χ and so Ohba’s Conjecture is best

possible.

A simple observation is that the operation of adding an edge between vertices of

G in different colour classes of a χ(G)-colouring does not change the chromatic number

and does not decrease the choice number. By adding all such edges, we see that Ohba’s

Conjecture is true if and only if it is true for complete multipartite graphs. Therefore, we

can restate Ohba’s Conjecture as follows.

Ohba’s Conjecture ([Ohb02]). If G is a complete k-partite graph on at most 2k + 1

vertices, then ch(G) = k.

We will discuss the history of Ohba’s Conjecture in more detail, including motivat-

ing examples and partial results, in the next chapter. In Chapter 4, we present a full

proof of Ohba’s Conjecture from [NRW12].

2.4 Other Notable Results

Returning briefly to the origins of graph colouring, it is natural to wonder if there

is a ‘choosability analog’ of the Four Colour Theorem. This question dates back to the

original papers on choosability; Vizing [Viz76] asked whether every planar graph is

5-choosable, and Erdős et al. [ERT80] independently conjectured that every planar graph

is 5-choosable but not necessarily 4-choosable. Voigt [Voi93] discovered the first example

of a planar graph which is not 4-choosable and, later, an example of smaller order was

discovered by Mirzakhani [Mir96]. In [Tho94], Thomassen gave a simple and beautiful

proof that every planar graph is 5-choosable.10

Thomassen’s Five Colour Theorem ([Tho94]). Every planar graph is 5-choosable.

10 An exposition of Thomassen’s proof can be found in Aigner and Ziegler’s Proofs from The

Book [AZ10].
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Thomassen’s result has since been generalized to many different classes of graphs

which are, in one way or another, close to being planar; some notable examples are as

follows: K5-minor free graphs [Škr98] (for alternate proofs, see [HMS08, WL10]), locally

planar graphs [DKM08], graphs with crossing number at most 2 [DLŠ11] (independently

proved in [CH11]), and graphs G such that G − e is planar for some edge e [CH11].

Moreover, Thomassen improved his own result by showing that for any assignment L of

lists of size 5 to the vertices of a planar graph, there are exponentially many acceptable

colourings for L [Tho07].

Another problem of Erdős et al. [ERT80] was to determine whether every planar

bipartite graph is 3-choosable. In [AT92], Alon and Tarsi solved this problem using

Combinatorial Nullstellensatz. Their result is best possible since K4,2 is planar and

ch(K4,2) > 2, as one can verify by considering Figure 2–3.

Alon and Tarsi’s Theorem ([AT92]). Every planar bipartite graph is 3-choosable.

Note that, since |V (K4,2)| = 2χ (K4,2) + 2, we see that K4,2 is another example

which shows that Ohba’s Conjecture is best possible with respect to the bound on |V |.

{1, 3}

{1, 4}

{2, 3}

{4, 2}

{1, 2}{3, 4}

Figure 2–3: A drawing of K4,2 showing that it is planar, and a list assignment showing
that it is not 2-choosable.
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Part II: Ohba’s Conjecture

Chapter 3

Background

The art of doing mathematics consists in finding that special case which contains all
the germs of generality.

— David Hilbert

Ohba’s Conjecture is motivated by some simple, yet illuminating, examples. The

first of these comes from the original paper of Erdős et al. [ERT80] on choosability.

By applying Hall’s Theorem on matchings in bipartite graphs, they proved that the

complete k-partite graph in which every part has size 2 is k-choosable. The core ideas of

their argument, which we present now, will resurface in the proof of Ohba’s Conjecture

in the next chapter.

Theorem 3.1 (Erdős et al. [ERT80]). If G is a complete multipartite graph in which

every part has size 2, then ch(G) = k.

A key idea in the proof of Theorem 3.1 is that it is sometimes useful to view a

choosability problem in terms of a matching problem on a special bipartite graph. This

idea is captured by the following definition.
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Definition 3.2. Given a graph G and list assignment L, let

• CL := ∪v∈V (G)L(v),

• BL be the bipartite graph with bipartition (V (G), CL) where each v ∈ V (G) is

joined to the colours of L(v).

Clearly if there is a matching M in BL which saturates V (G), then an acceptable

colouring for L can be obtained by simply mapping each vertex of G to the colour that it

is matched to under M . To prove Theorem 3.1 we show that we can always either find a

matching in BL which saturates V (G), or reduce our problem to a smaller one and apply

induction on k. In order to do so, we apply a well known theorem of Hall [Hal48] from

matching theory.1

Hall’s Theorem ([Hal48]). Let B be a bipartite graph with bipartition (X,Y ) and let

S ⊆ X. Then there is a matching M which saturates S if and only if |NB(T )| ≥ |T | for

every subset T of S.

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that Theorem 3.1 is false for some k and let G be

complete k-partite graph in which every part has size 2. Moreover, suppose that k is the

smallest such integer and let L be an assignment of lists of size k to the vertices of G

such that there does not exist an acceptable colouring for L.

Lemma 3.3. If P = {u, v} is a part of G, then L(u) ∩ L(v) = ∅.

Proof. Otherwise, let c ∈ L(u) ∩ L(v). We delete {u, v} from G and remove c from the

lists of the remaining vertices. Clearly the remaining graph is a complete (k − 1)-partite

1 Hall’s Theorem is often stated in terms of a system of distinct representatives for a collection of sets;
see Chapter 6 for this formulation.
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graph in which every part has size 2, and every remaining vertex has at least k − 1

colours remaining in its list. Therefore, by our choice of k, we can find an acceptable

colouring of G− {u, v} from the remaining lists and extend it to an acceptable colouring

for L by mapping both u and v to c. This contradicts our choice of L.

The following lemma completes the proof of Theorem 3.1.

Lemma 3.4. There is a matching in BL which saturates V (G).

Proof. If not, then by Hall’s Theorem there is a set S ⊆ V (G) such that |NBL
(S)| < |S|.

If S contains both vertices from some part P = {u, v} of G, then by Lemma 3.3 we must

have

|NBL
(S)| ≥ |L(u) ∪ L(v)| = |L(u)|+ |L(v)| ≥ 2k = |V (G)| ≥ |S|

contradicting our choice of S. Thus, S must contain at most one vertex from each part

of G, and so it contains at most k vertices in total. However, for any vertex v ∈ S we

have

|NBL
(S)| ≥ |L(v)| ≥ k ≥ |S|

which, once again, contradicts our choice of S. Therefore, no such set S can exist. This

completes the proof of Lemma 3.4 and of Theorem 3.1.

Later, Gravier and Maffray [GM98] extended Theorem 3.1 to the case where one

of the parts has size 3 and the rest have size 2. Note that Gravier and Maffray’s result

concerns graphs of order exactly 2χ + 1; that is, these graphs satisfy the hypothesis of

Ohba’s Conjecture with equality.

Theorem 3.5 (Gravier and Maffray [GM98]). If G is a complete k-partite graph with 1

part of size 3 and k − 1 parts of size 2, then ch(G) = k.
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As we have already seen, the graphs K3,3 and K4,2 can be used to show that Ohba’s

Conjecture is best possible. Enomoto, Ohba, Ota and Sakamoto [EOOS02] expanded on

these examples to obtain two infinite classes of graphs which satisfy |V | = 2χ + 2 and

ch > χ.

Proposition 3.6 (Enomoto et al. [EOOS02]). Let k ≥ 2 be even. If G is the complete

k-partite graph with 1 part of size 4 and k − 1 parts of size 2, then ch(G) > k.

Proof. Let A1, A2, B1, B2 be disjoint sets of k
2 colours and define A := A1 ∪ A2 and

B := B1 ∪ B2. Let L be the list assignment such that every part of size 2 contains one

vertex assigned to each of the lists A and B, and every part of size 4 contains one vertex

assigned to each of the lists A1 ∪B1, A1 ∪B2, A2 ∪B1 and A2 ∪B2.

Now, suppose that there is an acceptable colouring f for L. Then, since f is

acceptable, it must map the parts of size 2 to a set of exactly k − 1 colours from each of

A and B. This implies that for some i, j ∈ {1, 2} every colour of Ai ∪Bj is used by f on

the parts of size 2. Therefore, it is impossible to colour the vertex of the part of size 4

whose list is Ai ∪Bj, and so there can be no acceptable colouring for L.

Proposition 3.7 (Enomoto et al. [EOOS02]). Let s ≥ 1 and define k = 2s. If G is

the complete k-partite graph with s + 1 parts of size 3 and s − 1 parts of size 1, then

ch(G) > k.

Proof. Let X,Y,Z be three disjoint sets of exactly s colours and define C := X ∪ Y ∪ Z.

Let L be the list assignment such that the vertex of each part of size 1 is assigned to the

list C and every part of size 3 contains one vertex assigned to each of the lists X ∪ Y ,

X ∪ Z and Y ∪ Z.2

2 Note that each vertex in a singleton part is assigned to a list of 3s > k available colours.
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Now, suppose that there is an acceptable colouring f for L. Then f must map each

part of size 3 to at least 2 colours, and each part of size 1 to exactly 1 colour, where all

of these colours are distinct. Thus, in total, f(V (G)) contains at least

2(s + 1) + (s− 1) = 3s+ 1 > |C|

distinct colours. However, this contradicts the basic assumption that f(V (G)) ⊆ C. The

result follows.

The above examples demonstrate the importance of considering the distribution of

colours in the lists. In Proposition 3.6, the reason that there does not exist an acceptable

colouring for L is that the lists assigned to each part are too spread apart. That is, we

are never given the opportunity to colour the vertices in a part of size 2 with the same

colour, and this forces us to deplete the lists of the vertices in the part of size 4. On the

other hand, in Proposition 3.7, the issue is that the total number of colours is too small,

which suggests that the lists assigned are too close together. In proving our main results,

we will need to pay special attention to each of these two extremes.

The only known examples of complete k-partite graphs on 2k + 2 vertices for which

ch > k are covered by Propositions 3.6 and 3.7. We conjecture that these are the only

such examples.

Conjecture 3.8. If G is a complete k-partite graph on 2k + 2 vertices such that

ch(G) > k, then G satisfies the hypothesis of Proposition 3.6 or 3.7.

Regarding Conjecture 3.8, we remark that Gravier and Maffray proved that for

k ≥ 3 the complete k-partite graph with 2 parts of size 3 and k − 2 parts of size 2

is chromatic-choosable. Also, Enomoto et al. [EOOS02] proved that for odd k, the

complete k-partite graph with 1 part of size 4 and k − 1 parts of size 2 is chromatic-

choosable. A particular consequence of Conjecture 3.8, which is alluded to in [EOOS02],
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would be that Ohba’s Conjecture could be extended to graphs of order 2χ+2 which have

odd chromatic number.

3.1 Partial Results

Ohba’s Conjecture has drawn considerable attention, and many notable cases

have been proven. One popular approach has been to prove variants of Ohba’s Con-

jecture which assume a stronger bound on |V |. In his original paper on the conjecture,

Ohba [Ohb02] proved a result of this type.

Theorem 3.9 (Ohba [Ohb02]). If |V (G)| ≤ χ(G) +
√

2χ(G), then ch(G) = χ(G).

Note that the above theorem does not provide us with a real number a > 1 for

which all graphs on at most aχ vertices are chromatic-choosable. The first result of this

type was proved by Reed and Sudakov [RS05] using a probabilistic approach.

Theorem 3.10 (Reed and Sudakov [RS05]). If |V (G)| ≤ 5
3χ(G)− 4

3 , then ch(G) = χ(G).

Using more sophisticated probabilistic tools, Reed and Sudakov [RS02] also obtained

an asymptotic version of Ohba’s Conjecture. Their result provides us with strong

evidence that Ohba’s Conjecture is, at the very least, nearly correct.

Theorem 3.11 (Reed and Sudakov [RS02]). If |V (G)| ≤ (2 − o(1))χ(G), then

ch(G) = χ(G).

Another approach to Ohba’s Conjecture has been to verify it for graphs of bounded

stability number. An early result in this direction is due to Ohba [Ohb04], who proved

that if |V (G)| ≤ 2χ(G) and α(G) ≤ 3, then G is chromatic-choosable. By building on

Ohba’s techniques, He, Li, Shen and Zheng [SHZL09] extended this result to graphs of

order 2χ+ 1.

Theorem 3.12 (He et al. [SHZL09]). If |V (G)| ≤ 2χ(G) + 1 and α(G) ≤ 3, then

ch(G) = χ(G).
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Later, Kostochka, Stiebitz and Woodall [KSW11] proved Ohba’s Conjecture for

graphs of stability number at most 5. Recall that the only complete multipartite

graphs known to satisfy |V | = 2χ + 2 and ch > χ have stability number at most 4

(c.f. Conjecture 3.8). In light of this, their result seems to cover most of the ‘potential

counterexamples’ to Ohba’s Conjecture.

Theorem 3.13 (Kostochka et al. [KSW11]). If |V (G)| ≤ 2χ(G) + 1 and α(G) ≤ 5, then

ch(G) = χ(G).

Their technique can be roughly outlined as follows. Choose a stable set S ⊆ V (G)

and replace it with a single vertex whose list is ∩v∈SL(v) and whose neighbourhood is

∪v∈SN(v), and repeat this procedure until some stopping condition is reached. Then

apply Hall’s Theorem (in a similar fashion to the proof of Lemma 3.4) to obtain an

acceptable colouring for the resulting choosability problem. We will apply a variant of

this approach to prove a strengthening of Ohba’s Conjecture in Chapter 6.

Additionally, some papers have focused on proving Ohba’s Conjecture for specific

classes of complete multipartite graphs [SHZ+08, SZH07, HZC+08, ZSCL10]. Typically,

these results are proved by combining Hall’s Theorem with detailed case analysis.
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Chapter 4

The Proof

Mathematics is not a deductive science – that’s a cliché. When you try to prove a
theorem, you don’t just list the hypotheses, and then start to reason. What you do is
trial and error, experimentation, guess-work.

— Paul R. Halmos, I Want to Be a Mathematician

In order to prove Ohba’s Conjecture, we will develop several tools involving Hall’s

Theorem and the special bipartite graph BL introduced in Definition 3.2. The first of

these, which we prove in the next section, is a lemma pertaining to general graphs that

was discovered independently by Kierstead [Kie00] and Reed and Sudakov [RS05, RS02]

(in slightly different forms). We refer to it as the Colour Matching Lemma.

The Colour Matching Lemma (Kierstead [Kie00]; Reed and Sudakov [RS05, RS02]).

Suppose that G is not k-choosable, and let L be a list assignment such that

• |L(v)| ≥ k for all v ∈ V (G),

• there is no acceptable colouring for L, and

• subject to this, |CL| is minimum.

Then there is a matching in BL which saturates CL.

As we have mentioned, if there is a matching M in BL which saturates V (G), then

we can obtain an acceptable colouring for L by mapping each vertex of G to the colour

that it is matched to under M (c.f. Lemma 3.4). So, if there is a matching in BL which
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saturates CL, but there is no acceptable colouring for L, then it must be the case that

|CL| < |V (G)|. Therefore, we make the following observation.

Observation 4.1. If L is a list assignment as in the Colour Matching Lemma, then

|CL| < |V (G)|. Therefore, in order to determine the choice number of a graph G, we can

restrict our attention to list assignments L which satisfy |CL| < |V (G)|.

The Colour Matching Lemma seems to be widely applicable in choosability prob-

lems, especially for graphs of bounded order. In Chapter 6, we will apply Observa-

tion 4.1 to prove a strengthening of Ohba’s Conjecture.

Our proof of Ohba’s Conjecture is by contradiction. Suppose that Ohba’s Conjec-

ture is false and let G and L be chosen to have the following properties:

• G is a complete k-partite graph on at most 2k + 1 vertices, and

• L is a list assignment of G as in the Colour Matching Lemma.

Furthermore, we can choose G to be a minimal counterexample in the sense that Ohba’s

Conjecture is true for all graphs on fewer than |V (G)| vertices. By Observation 4.1 and

our choice of L, the difference |V (G)| − |CL| is positive; it will be useful for us to keep

track of this quantity.

Definition 4.2. γ := |V (G)| − |CL|.

To prove the conjecture, our general approach is to use the minimality of G to ob-

tain information about the distribution of colours in the lists, and to use this information

to construct an acceptable colouring for L. Of particular importance are the lists of

vertices which form singleton parts of G.

Definition 4.3. Say that a vertex v ∈ V (G) is a singleton if {v} is a part of G.

The proof of Ohba’s Conjecture is divided into three lemmas, which we refer to as

Lemmas A, B and C. We state these lemmas here and prove them later in the chapter.

In order to state them, we require two more definitions.
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Definition 4.4. We say that a colour c ∈ CL is

• globally frequent if c is available for at least k + 1 vertices of G,

• frequent among singletons if c is available for at least γ singletons.

If c is either globally frequent or frequent among singletons, then we say that c is

frequent.

Definition 4.5. We say that a proper colouring f : V (G) → CL is near-acceptable for L

if for every vertex v ∈ V (G), either

• f(v) ∈ L(v), or

• f−1(f(v)) = {v} and f(v) is frequent.

Of course, every acceptable colouring for L is also near-acceptable for L, but the

converse is not true. However, a near-acceptable colouring for L can be modified to

obtain an acceptable colouring for L, as the following lemma suggests.

Lemma A. If there is a near-acceptable colouring for L, then there is an acceptable

colouring for L.

The advantage of Lemma A is that a near-acceptable colouring for L is sometimes

easier to construct than an acceptable colouring for L. Specifically, when constructing a

near-acceptable colouring for L, a vertex v of G can be mapped to a colour c outside of

L(v) provided that c is frequent and no other vertex is mapped to c. We will exploit this

flexibility to prove the following.

Lemma B. If CL contains at least k frequent colours, then there is a near-acceptable

colouring for L.

Finally we will show that, if the Ohba’s Conjecture is false, then there is a coun-

terexample which satisfies the hypothesis of Lemma B, thereby completing the proof.

Lemma C. There is a list assignment L as in the Colour Matching Lemma such that

CL contains at least k frequent colours.
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The rest of the chapter is outlined as follows. In the next section, we prove the

Colour Matching Lemma for general graphs, and discuss some of its consequences regard-

ing the proof of Ohba’s Conjecture. In Section 4.2, we use the minimality assumption on

G to obtain some basic properties of G and L which we exploit repeatedly in the rest of

the proof.

Then, we begin to prove the main lemmas, starting with a proof of Lemma A in

Section 4.3. The basic ideas of the proof are as follows. First, if f is a near-acceptable

colouring for L and v∗ is mapped by f to a colour c∗ /∈ L(v∗), then we know that

f−1(c∗) = {v∗} and that c∗ is either globally frequent or frequent among singletons. We

proceed differently based on these two cases.

In the first case, by uncolouring v∗, we obtain a colouring of G − v∗ which does

not map to c∗. Now, since c∗ is globally frequent, there are at least k + 1 vertices of G

for which c∗ is available, and at least k colours of CL which are available for v∗. Using

this information, we apply Hall’s Theorem to show that we can modify f so that v∗ is

mapped to a colour of L(v∗) and c∗ is used on a stable set for which it is available.

The second case requires a more detailed argument; we provide only a few of

the ideas here. Since c∗ is frequent among singletons, there exists a set of at least γ

singletons for which c∗ is available. If we delete a set A ⊆ V (G) from G such that A

contains all such singletons and at least γ additional vertices, then the chromatic number

of G decreases by at least γ and the order of G decreases by at least 2γ. Therefore, by

minimality of G, we see that G − A is (k − γ)-choosable. Given a careful choice of A,

we show that there is an acceptable colouring of G − A from lists of size k − γ which

we can combine with a colouring of G[A], constructed via Hall’s Theorem, to obtain an

acceptable colouring for L.
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In Section 4.4, we prove Lemma B by describing an explicit greedy procedure which

allows us to construct a near-acceptable colouring for L provided that CL contains a set

F of k frequent colours. The procedure consists of three phases. Loosely speaking, the

goal of the first two phases is to use all of the colours of CL−F and a few colours of F to

properly (and greedily) colour as many vertices as we can, where every vertex coloured in

the first two phases is mapped to a colour in its list. The goal is to show that, after the

first two phases, the number of unused colours of F is at least the number of vertices of

G which have not yet been coloured. If this is the case, then we obtain a near-acceptable

colouring for L by assigning each unused colour of F to at most one vertex of G that was

not coloured in the first two phases, where this vertex is chosen arbitrarily.

Finally, in Sections 4.5 and 4.6, we consider a certain type of extremal list as-

signment L and analyze its properties to prove Lemma C. One particularly useful

property of such an extremal list assignment L, which we will derive in Section 4.5, is

that a colour c ∈ CL is frequent if and only if it is available for every singleton of G.

In Section 4.6, we will apply a strengthening of Lemma A and many careful counting

arguments to complete the proof of Lemma C, and of Ohba’s Conjecture.

4.1 The Colour Matching Lemma

In this section, we prove the Colour Matching Lemma.

Proof of the Colour Matching Lemma. Let G be a graph which is not k-choosable and

let L satisfy the hypotheses of the Colour Matching Lemma. We show that there is a

matching in BL which saturates CL.

Otherwise, by Hall’s Theorem, there must be a set S ⊆ CL such that |NBL
(S)| <

|S|. Let S be such a set chosen so that |S| is minimum. We choose c ∈ S arbitrarily and
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define T := S − c. By our choice of S we see that, for every subset T ′ of T ,

∣

∣NBL
(T ′)

∣

∣ ≥ |T ′|.

Therefore, by Hall’s Theorem, there is a matching M in BL which saturates T . More-

over, by definition of S and T we have

|NBL
(S)| ≥ |NBL

(T )| ≥ |T | = |S| − 1 ≥ |NBL
(S)|

and so equality must hold throughout. In particular, |T | = |NBL
(T )| and so M must

also saturate NBL
(T ). For each vertex v ∈ NBL

(T ), let g(v) be the colour in T which is

matched to v by M . Since M saturates NBL
(T ), we have that NBL

(T ) cannot contain

all of V (G) for, if it did, then g would be an acceptable colouring for L. Thus, we can

choose w ∈ V (G) −NBL
(T ) arbitrarily.

Now, define a list assignment L′ of G in the following way:

L′(v) :=











L(w) if v ∈ NBL
(T ),

L(v) otherwise.

Clearly |L′(v)| ≥ k for all v ∈ V (G) and

CL′ ⊆ CL − T 6= CL. (4.6)

Therefore, since L satisfies the hypotheses of the Colour Matching Lemma, there must

exist an acceptable colouring f ′ for L′. Moreover, by (4.6), we see that f ′ does not map

to any colour of T . Thus, we can construct an acceptable colouring f for L as follows

f(v) :=











g(v) if v ∈ NBL
(T ),

f ′(v) otherwise.

This contradicts our choice of L and completes the proof.
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A matching in BL which saturates CL corresponds to an injective function from CL

to V (G) in a straightforward way. The next proposition captures this.

Proposition 4.7. If L is a list assignment as in the Colour Matching Lemma, then

there is an injective function h : CL → V (G) such that c ∈ L(h(c)) for every c ∈ CL.

Proof. Let M be a matching in BL which saturates CL, and for each c ∈ CL let h(c) be

the vertex that it is matched to under M .

Returning to the proof of Ohba’s Conjecture, one consequence of the Colour

Matching Lemma is that every near-acceptable colouring for L can be modified to obtain

a near-acceptable colouring for L which maps surjectively to CL. This is implied by the

next proposition.

Proposition 4.8. If f : V (G) → CL is a proper colouring, then there is a proper

surjective colouring g : V (G) → CL such that for each v ∈ V (G), either

(a) g(v) ∈ L(v), or

(b) g−1(g(v)) ⊆ f−1(f(v)).

Proof. Let h : CL → V (G) be a function as in Proposition 4.7. Given a proper colouring

g : V (G) → CL and a colour c ∈ CL, we say that g agrees with h at c if g(h(c)) = c.

Now, let g : V (G) → CL be a proper colouring in which every vertex v ∈ V (G)

satisfies either (a) or (b) and, subject to this, the number of colours c ∈ CL at which

g agrees with h is maximized. We show that g is surjective. Otherwise, let c′ ∈ CL −

g(V (G)) be arbitrary and define a colouring g′ : V (G) → CL as follows:

g′(v) =











c′ if v = h(c′),

g(v) otherwise.

Clearly g′ is proper since g does not map any vertex to c′. Moreover, g′ agrees with

h at c′ and at every colour at which g agrees with h. Let us show that every vertex v of
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G satisfies either (a) or (b) for g′, which will contradict our choice of g and complete the

proof.

In the case that v = h(c′), then we have g′(v) = c′ ∈ L(v) and so (a) is satisfied for

v. Now, suppose that v 6= h(c′) and g′(v) /∈ L(v). Since every vertex w 6= h(c′) satisfies

g′(w) = g(w) 6= c′, we see that

g′−1(g′(v)) = g−1(g(v)) − h(c′) ⊆ f−1(f(v))

and so (b) is satisfied for v. The result follows.

4.2 Basic Properties of a Minimal Counterexample

Our next goal is to use the minimality assumption on G to obtain some useful

properties of L. The following proposition describes a general situation in which we are

able to do so.

Proposition 4.9. For ℓ ≥ 1, suppose that there is a set A ⊆ V (G) and a proper

colouring g : A → CL of G[A] such that

(a) |V (G) −A| ≤ 2(k − ℓ) + 1,

(b) χ(G−A) ≤ k − ℓ,

(c) g(v) ∈ L(v) for every v ∈ A, and

(d) |g(A) ∩ L(w)| ≤ ℓ for w ∈ V (G)−A.

Then there is an acceptable colouring for L.

Proof. Let G′ be a graph on 2(k − ℓ) + 1 vertices with chromatic number k − ℓ obtained

by adding a (possibly empty) set of vertices and edges to G − A. Clearly, G′ satisfies

the hypothesis of Ohba’s Conjecture and so, by minimality of G, we have that G′ is

(k − ℓ)-choosable. We let L′ be any list assignment of G′ with the following properties:

• for each w ∈ V (G) −A, we have L′(w) = L(w) − g(A), and

• for each w ∈ V (G′)− V (G) we have |L′(w)| ≥ k − ℓ.
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Given w ∈ V (G)−A, we have

|L′(w)| = |L(w)| − |g(A) ∩ L(w)| ≥ k − ℓ.

Therefore, since G′ is (k − ℓ)-choosable, there exists an acceptable colouring f ′ for L′.

We obtain an acceptable colouring f for L by colouring each vertex v ∈ A with g(v) and

each vertex v ∈ V (G)−A with f ′(v). The result follows.

Next we prove a simple, yet important, corollary of Proposition 4.9. One should

compare the following result to Lemma 3.3.

Corollary 4.10. If P is a part of G such that |P | ≥ 2, then ∩v∈PL(v) = ∅.

Proof. Otherwise, let c ∈ ∩v∈PL(v) be arbitrary and define g(v) := c for all v ∈ P .

Then clearly the set A := P and the function g satisfy Proposition 4.9 for ℓ = 1, a

contradiction.

Combining Observation 4.1 and Corollary 4.10, we obtain the following.

Corollary 4.11. If P = {u, v} is a part of G, then CL = L(u) ∪ L(v) and |CL| = 2k.

Using Corollary 4.11, we see that |V (G)| is exactly 2k + 1.

Corollary 4.12. |V (G)| = 2k + 1.

Proof. By assumption, we have |V (G)| ≤ 2k + 1. If G contains a part of size 2, then by

Corollary 4.11 we have |V (G)| > |CL| ≥ 2k, and so the result holds in this case.

On the other hand, suppose that |V (G)| ≤ 2k and that G does not contain a part of

size 2. Then G must contain a singleton, say v. Choose a colour c ∈ L(v) arbitrarily and

define g(v) := c. Then, since |V (G)| ≤ 2k and v is a singleton, we have that A := {v}

and the function g satisfy Proposition 4.9 for ℓ = 1. This contradiction completes the

proof.
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4.3 Colouring Outside of the Lists

To present the proof of Lemma A, we require a generalization of the bipartite graph

BL used in the proof of Theorem 3.1.

Definition 4.13. Given a proper colouring f of G, let

• Vf :=
{

f−1(c) : c ∈ f(V (G))
}

,

• Bf,L be the bipartite graph with bipartition (Vf , CL) where each f−1(c) ∈ Vf is

joined to the colours of ∩v∈f−1(c)L(v).

Notice that, if there is a matching M in Bf,L which saturates Vf , then we can

obtain an acceptable colouring for L by mapping every vertex of f−1(c) to the colour

that f−1(c) is matched to under M . In proving Lemma A, our aim is to show that such

a matching exists whenever f is near-acceptable for L.

Proof of Lemma A. Let f be a near-acceptable colouring for L. By the above discussion,

we can assume that there is no matching in Bf,L which saturates Vf . So, by Hall’s

Theorem, there exists a set S ⊆ Vf such that
∣

∣NBf,L
(S)

∣

∣ < |S|. In particular, this implies

that there is a colour c∗ ∈ CL such that

f−1(c∗) ∈ S, and (4.14)

c∗ /∈ NBf,L
(S). (4.15)

Combining (4.14) and (4.15), we see that c∗ /∈ ∩v∈f−1(c∗)L(v) and so there is a vertex v∗

such that f(v∗) = c∗ and c∗ /∈ L(v∗). Since f is near-acceptable for L, this implies that

f−1(c∗) = {v∗}, and

c∗ is frequent.

From this point forward, we divide the proof into two cases.
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Case 1: c∗ is globally frequent.

In this case, since f−1(c∗) = {v∗} ∈ S, we have L(v∗) ⊆ NBf,L
(S) and so

∣

∣NBf,L
(S)

∣

∣ ≥ k. Thus, by our choice of S we have

|S| ≥
∣

∣NBf,L
(S)

∣

∣+ 1 ≥ k + 1. (4.16)

Now, recall that c∗ /∈ NBf,L
(S). It follows that every colour class f−1(c) ∈ S

contains a vertex w for which c∗ /∈ L(w). Thus, the cardinality of S is at most the

number of vertices of G for which c∗ is not available. However, since c∗ is globally

frequent, we have that c∗ is available for at least k + 1 vertices of G. Therefore,

|S| ≤ |V (G)| − (k + 1) ≤ (2k + 1)− (k + 1) = k

contradicting (4.16). This completes the proof in this case.

Case 2: c∗ is frequent among singletons.

In this case, the proof is more complicated, but the underlying idea is straightfor-

ward. Our objective is to find a set A ⊆ V (G) and function g : A → CL which satisfy

the conditions of Proposition 4.9 for some integer ℓ. This will imply that there is an

acceptable colouring for L, completing the proof.

First, we require some stronger assumptions on the colouring f and the set S. By

Proposition 4.8, we can assume that f maps surjectively to CL. Also, we let S be chosen

to maximize |S| −
∣

∣NBf,L
(S)

∣

∣ over all subsets of Vf . By the choice of S, we obtain the

following:

Claim 4.17. There is a matching M ′ in Bf,L −NBf,L
(S) which saturates Vf − S.

Proof. Otherwise, by Hall’s Theorem, there is a set T ⊆ Vf − S such that

|T | >
∣

∣NBf,L
(T )−NBf,L

(S)
∣

∣ .
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Now, if we define S′ = S ∪ T , we see that

|S′| −
∣

∣NBf,L
(S′)

∣

∣ = |S|+ |T | −
∣

∣NBf,L
(S)

∣

∣−
∣

∣NBf,L
(T )−NBf,L

(S)
∣

∣

> |S| −
∣

∣NBf,L
(S)

∣

∣

contradicting our choice of S. The result follows.

Next, we describe the choice of ℓ,A and g. Let ℓ denote the number of colour classes

in Vf containing more than one element. We define A to be the union of colour classes of

f−1(c) such that either

• f−1(c) is contained in Vf − S, or

• f−1(c) contains more than one element.

Given this, we define g : A → CL so that, for each colour class f−1(c) ⊆ A, every vertex

of f−1(c) is mapped to the same colour, chosen in the following way:

• if f−1(c) ∈ Vf − S, then for each v ∈ f−1(c) we set g(v) to be the colour which is

matched to f−1(c) under M ′,

• if f−1(c) ∈ S, then for each v ∈ f−1(c) we set g(v) = c. Note that, by definition of

A, every such colour class must satisfy
∣

∣f−1(c)
∣

∣ ≥ 2. So, since f is near-acceptable

for L, we have c ∈ L(v) for every v ∈ f−1(c).

Note that any two distinct colour classes of f contained in A are mapped by g to

different colours. Therefore, g is a proper colouring of G[A] and it satisfies property (c)

of Proposition 4.9 by definition. To complete the proof, we show that A and g satisfy

properties (a), (b) and (d) of Proposition 4.9.

First, observe that |A| ≥ 2ℓ since A contains every non-singleton colour class of f .

Therefore, A satisfies property (a) of Proposition 4.9. Now, for any singleton x of G for

which c∗ is available, we have that {x} is a colour class of f which is not contained in S

(since f is proper and c∗ /∈ NBL
(S)). Therefore, A contains every singleton for which c∗
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is available. Since c∗ is frequent among singletons, this implies that

χ(G−A) ≤ k − γ.

Recall that f is surjective which, by the pigeonhole principle, implies that ℓ ≤ γ.

Therefore, we have that k − γ ≤ k − ℓ, and so A satisfies property (b) of Proposition 4.9.

So, all that remains is prove that g satisfies property (d) of Proposition 4.9. First,

notice that for every vertex w ∈ V (G) − A we have that {w} is a colour class of f which

is contained in S by definition of A. This implies that L(w) ⊆ NBL
(S) for every such

vertex w. Therefore, to show that g satisfies property (d) of Proposition 4.9, it suffices to

prove the following:

|g(A) ∩NBL
(S)| ≤ ℓ. (4.18)

To see that (4.18) is true, recall that g maps f−1(c) ⊆ A to a colour of NBL
(S) if

and only if f−1(c) ∈ S. Therefore, |g(A) ∩NBL
(S)| is bounded above by the number of

colour classes f−1(c) ∈ S contained in A. However, by definition of A, every colour class

f−1(c) ∈ S contained in A must contain more than one element. The number of colour

classes of f containing more than one element is precisely ℓ, and so (4.18) holds. This

completes the proof of Lemma A.

4.4 The Greedy Colouring Procedure

To prove Lemma A, we showed that a near-acceptable colouring for L can be

modified to produce an acceptable colouring for L. Our next goal is to prove Lemma B,

which says that there exists a near-acceptable colouring for L provided that there are at

least k frequent colours.

Proof of Lemma B. Let F be a set of exactly k frequent colours. Our objective is to

construct a near-acceptable colouring for L via a three phase greedy procedure. For
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i ∈ {1, 2, 3}, the ith phase of the procedure involves colouring a set Vi of vertices with a

set Ci of colours. The key feature of this procedure is that it always produces a proper

colouring f of G[V1 ∪ V2 ∪ V3] such that if V1 ∪ V2 ∪ V3 = V (G), then f is near-acceptable

for L. We describe the procedure now.

Phase 1. Define C1 := CL − F . We choose a subset V1 of V (G) and a mapping

g1 : V1 → C1 to have the following properties:

(P1.1) g1 is a proper colouring of G[V1] and for each v ∈ V1 we have g1(v) ∈ L(v),

(P1.2) subject to (P1.1), |V1| is maximized,

(P1.3) subject to (P1.1) and (P1.2), the number of parts P of G such that P ∩ V1 6= ∅

is maximized.

We observe the following:

Observation 4.19. We can assume that |V1| ≤ k. Otherwise, we would have |V (G) −

V1| ≤ (2k + 1) − (k + 1) = k. Since |F | = k and the colours of F are frequent, we could

obtain a near-acceptable colouring for L by simply mapping the vertices of V (G) − V1 to

distinct colours of F in an arbitrary way. Thus, the proof is complete unless |V1| ≤ k.

After completing Phase 1, for each part P of G we let P ′ := P − V1. We label the

parts of G by P1, . . . , Pk so that

∣

∣P ′
1

∣

∣ ≥ · · · ≥
∣

∣P ′
k

∣

∣ .

Given this ordering, we colour the vertices of V (G)− V1 in the following way.

Phase 2. For each i = 1, . . . , k, in turn, if there is a colour ci ∈ F − {ci′ : i
′ < i} which

is available for every vertex of P ′
i , then we set g2(v) := ci for every vertex v ∈ P ′

i . We

terminate Phase 2 when we reach an index i for which no such ci exists. Let V2 be the

set of vertices which are coloured during Phase 2 and let C2 := g2(V2).
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We remark that every vertex of V1 ∪ V2 is mapped by either g1 or g2 to a colour

which is contained in its list. That is, until this point of the procedure, the colouring

which we have constructed is acceptable for L. In the final phase, we allow vertices to be

mapped to frequent colours that are outside of their lists.

Phase 3. Define C3 := F − C2. For each colour c ∈ C3, we colour at most one vertex

of V (G) − V1 − V2 with c, where this vertex is chosen arbitrarily. Let V3 be the set of

vertices which are coloured in Phase 3.

Clearly, if V1 ∪ V2 ∪ V3 = V (G), then the resulting colouring is near-acceptable for

L. Since, in Phase 3, we are free to map each vertex of V (G) − V1 − V2 to an arbitrary

colour of C3, we are done if the following inequality holds:

|V (G) − V1 − V2| ≤ |C3|. (4.20)

In order to show that (4.20) holds, we require the following two claims; we state them

now and defer their proofs to the end.

Claim 4.21. For any part P of G, we have

∑

v∈P ′

|L(v) ∩C1| ≤ |V1 − P |.

Claim 4.22. If P is a non-singleton part of G, then either P ∩ V1 6= ∅ or there is a

near-acceptable colouring for L.

For now, we assume that Claims 4.21 and 4.22 are true. By Claim 4.22, we are done

unless

P ∩ V1 6= ∅ for every non-singleton part P of G. (4.23)

Given (4.23), our goal is to prove that (4.20) holds.
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By definition of Phase 2, we can let i ≥ 0 be the index such that V2 = ∪i
j=1P

′
j . That

is, in Phase 2, we have coloured every vertex of ∪i
j=1P

′
j , but no vertex of ∪k

j=i+1P
′
j. Note

that if i = k, then by combining g1 and g2 we obtain an acceptable colouring for L, and

so we can assume i < k. By definition of Phase 2, we have |C2| = i and so, since |F | = k,

we must have |C3| = k − i. Therefore, (4.20) holds unless

|V (G)− V1 − V2| =
k

∑

j=i+1

∣

∣P ′
j

∣

∣ ≥ |C3|+ 1 = k − i+ 1. (4.24)

In particular, since |V (G)| = 2k + 1, we see that

|V1 ∪ V2| ≤ k + i. (4.25)

Also, by (4.24) and our choice of ordering of the parts, we have

(k − i)
∣

∣P ′
i+1

∣

∣ ≥
k

∑

j=i+1

∣

∣P ′
j

∣

∣ ≥ k − i+ 1

and so,
∣

∣P ′
i+1

∣

∣ ≥

⌈

k − i+ 1

k − i

⌉

= 2. (4.26)

Now, again by our choice of ordering, we see that (4.26) implies that
∣

∣

∣
P ′
j

∣

∣

∣
≥ 2 for all

j ≤ i. Therefore, we have that |V2| =
∑i

j=1

∣

∣

∣
P ′
j

∣

∣

∣
≥ 2i. Combining this with (4.25), we

obtain

|V1| ≤ k − i. (4.27)

By (4.23) and (4.26), we can assume that V1 ∩ Pi+1 6= ∅ and so, by (4.27),

|V1 − Pi+1| = |V1| − |V1 ∩ Pi+1| ≤ |V1| − 1 ≤ k − i− 1.
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Therefore, by Claim 4.21,

∑

v∈P ′

i+1

|L(v) ∩ C1| ≤ k − i− 1. (4.28)

Next, notice that each colour c ∈ C3 must be absent from the list of at least one

vertex in P ′
i+1 for, if not, then we would have coloured the vertices of P ′

i+1 with c during

Phase 2. Combining this fact with (4.28), we see that

∑

v∈P ′

i+1

|L(v)| =
3

∑

j=1

∑

v∈P ′

i+1

|L(v) ∩ Cj| ≤ (k − i− 1) +
∣

∣P ′
i+1

∣

∣ |C2|+
(
∣

∣P ′
i+1

∣

∣− 1
)

|C3| .

Now, substituting |C2| = i and |C3| = k − i into the inequality above gives us

∑

v∈P ′

i+1

|L(v)| ≤ (k − i− 1) +
∣

∣P ′
i+1

∣

∣ i+
(
∣

∣P ′
i+1

∣

∣− 1
)

(k − i) = k
∣

∣P ′
i+1

∣

∣− 1.

However, this contradicts the fact that every list has size at least k. Thus, we have that

(4.20) holds.

So, to complete the proof of Lemma B, all that remains is to prove Claims 4.21

and 4.22. To do so, we apply properties (P1.2) and (P1.3) of V1 and g1. We begin by

proving Claim 4.21.

Proof of Claim 4.21. To prove the claim, we will actually show the following: if a colour

c ∈ C1 is available for a set T of j > 0 vertices in P ′, then

• g−1
1 (c) ∩ P = ∅, and

•
∣

∣g−1
1 (c)

∣

∣ ≥ j.

Clearly, this will imply the claim.

First, since G is a complete multipartite graph, if g−1
1 (c) ∩ P 6= ∅, then it must be

the case that g−1
1 (c) ⊆ P . In this case, we can extend our colouring g1 by mapping the

vertices of T to c, contradicting property (P1.2). Similarly, if g−1
1 (c) contains fewer than
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j vertices of V (G)−P , then we can uncolour the vertices of g−1
1 (c) and, instead, map the

vertices of T to c, again contradicting property (P1.2). The result follows.

We prove a special case of Claim 4.22 separately before establishing the full result.

Claim 4.29. If P = {u, v} is a part of G, then P ∩ V1 6= ∅.

Proof. Suppose to the contrary that P ∩ V1 = ∅. By Corollary 4.11, we see that

L(u) ∪ L(v) = CL and (4.30)

|CL| = 2k. (4.31)

Before moving on, let us prove the following:

∣

∣g−1
1 (c)

∣

∣ = 1 for every c ∈ C1. (4.32)

First, we observe that g−1
1 (c) cannot be empty for any colour c ∈ C1. Otherwise,

since P ∩ V1 = ∅ and L(u) ∪ L(v) = CL, we could colour one of u or v with c, increasing

the number of coloured vertices and contradicting (P1.2). Therefore,
∣

∣g−1
1 (c)

∣

∣ ≥ 1 for

all c ∈ C1. Now, suppose that
∣

∣g−1(c)
∣

∣ ≥ 2 for some c ∈ C1. By (4.31), we have that

|C1| = |CL| − |F | = k. Thus, we would have that

|V1| =
∑

c′∈C1

∣

∣g−1(c′)
∣

∣ ≥
∣

∣g−1(c)
∣

∣ + |C1 − c| ≥ k + 1

contradicting Observation 4.19. Therefore, (4.32) holds.

So, by (4.32) and the fact that |C1| = k, we see that |V1| = k. Combining this with

the assumption that P ∩ V1 = ∅ and the fact that G consists of exactly k parts, we see

that there exists a part Q of G such that |Q ∩ V1| ≥ 2. Let x be any vertex of Q ∩ V1,

and define c := g1(x).
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By (4.30) and without loss of generality, we have c ∈ L(u). Let g′1 be a partial

colouring of G obtained from g1 by uncolouring x and colouring u with c. Since (4.32)

implies that g−1
1 (c) = {x}, we see that g′1 is proper. However, g1 and g′1 colour the same

number of vertices, namely k, but there are more parts of G which contain a vertex that

is coloured under g′1 than under g1. This contradicts (P1.3) and completes the proof.

Finally, we prove Claim 4.22, and thus complete the proof of Lemma B.

Proof of Claim 4.22. Suppose that there is a non-singleton part P of G such that

P ∩ V1 = ∅. Then we must have |P | ≥ 3 by Claim 4.29. We prove that there exists a

near-acceptable colouring for L.

By Corollary 4.10, we have that every colour c ∈ F is be available for at most |P |−1

vertices of P . So, in total,

∑

v∈P

|L(v) ∩ F | ≤ |F |(|P | − 1) = k(|P | − 1). (4.33)

By Observation 4.19 we have |V1| ≤ k and so since P ∩ V1 = ∅, we obtain the following

by Claim 4.21:
∑

v∈P

|L(v) − F | =
∑

v∈P

|L(v) ∩ C1| ≤ |V1| ≤ k. (4.34)

Combining (4.33) and (4.34), we have

∑

v∈P

|L(v)| =
∑

v∈P

|L(v) ∩ F |+
∑

v∈P

|L(v)− F | ≤ k(|P | − 1) + k = k|P |.

However, since every list has size at least k, we see that both (4.33) and (4.34) must be

tight. Therefore,

each colour c ∈ F is available for exactly |P | − 1 ≥ 2 vertices of P, and (4.35)

the colours of C1 appear exactly k times in the lists of vertices of P. (4.36)
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However, by applying Claim 4.21, we see that (4.36) implies that |V1| = k. In

particular, we have |V (G) − V1| = k + 1. Now, we extend g1 to a near-acceptable

colouring for L as follows:

• let c ∈ F be arbitrary and use c to colour a set T of |P | − 1 ≥ 2 vertices of P for

which c is available. This is possible by (4.35).

• Since |T | ≥ 2 and P ∩ V1 = ∅, we see that |V (G) − V1 − T | ≤ k − 1. Thus, since

|F − c| = k − 1, we can colour the vertices of V (G) − V1 − T with distinct colours of

F − c arbitrarily.

This completes the proof of Claim 4.22 and of Lemma B.

4.5 Colours Common to the Singletons

Our final goal is to prove Lemma C, from which the main result will follow. From

this point forward, we assume to that L is a list assignment as in the Colour Matching

Lemma and that

• CL contains fewer than k frequent colours.

Additionally, we can assume that L is maximal in the following sense:

• there does not exist an acceptable colouring for L, but if v ∈ V (G) and c /∈ L(v),

then there is an acceptable colouring for the list assignment L′ where L′(v) :=

L(v) ∪ {c} and L′(w) := L(w) for every vertex w 6= v.

Given that L is maximal, it follows easily that every frequent colour is available for every

singleton.

Lemma 4.37. If c ∈ CL is frequent, then c ∈ L(v) for every singleton v.

Proof. Otherwise, add c to the list of v. Since L is maximal, we obtain an acceptable

colouring f for this modified list assignment. However, since f is proper and v is a
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singleton, we have f−1(f(v)) = {v}. Since c is frequent, it follows that f is a near-

acceptable colouring for L. By Lemma A, this implies that there is an acceptable

colouring for L, which is a contradiction.

Our next goal is to prove the converse of Lemma 4.37. To do so, it will be useful to

keep track of the number of singleton and non-singleton parts of G.

Definition 4.38. Let p denote the number of non-singleton parts in G.

Observation 4.39. G contains precisely k − p singletons.

To prove the converse of Lemma 4.37, we require a preliminary bound on the

number of globally frequent colours. This bound will be used again in the next section.

Lemma 4.40. If F ′ is the set of all globally frequent colours in CL, then

|F ′| ≥
kγ

k + 1− p
.

Proof. By Lemma 4.10, each colour of F ′ can be available for at most |V (G)| − p =

2k+1− p vertices of G. Also, since colours of CL−F ′ are not globally frequent, they can

be available for at most k vertices of G. Therefore,

k|V (G)| ≤
∑

v∈V (G)

|L(v)| =
∑

c∈CL

|NBL
(c)| ≤ (2k + 1− p)

∣

∣F ′
∣

∣+ k
∣

∣CL − F ′
∣

∣

= (k + 1− p)
∣

∣F ′
∣

∣+ k |CL| .

Rearranging, we obtain

∣

∣F ′
∣

∣ ≥
k (|V (G)| − |CL|)

k + 1− p
=

kγ

k + 1− p

as desired.

Corollary 4.41. G contains at least γ singletons.
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Proof. Otherwise, we would have γ ≥ k + 1 − p. However, by Lemma 4.40, this would

imply that there are at least k frequent colours, contradicting our choice of L.

Corollary 4.42. A colour c ∈ CL is frequent if and only if it is available for every

singleton.

Proof. By Corollary 4.41, there are at least γ singletons and so any colour that is

available for every singleton is frequent among singletons. For the converse, we apply

Lemma 4.37. The result follows.

We obtain another consequence of Corollary 4.41.

Corollary 4.43. G does not contain a part of size 2.

Proof. If G contains a part of size 2, then by Corollary 4.11 we see that |CL| = 2k and so

γ = 1. By Corollary 4.41, we have that G contains a singleton, say v. Since γ = 1, every

colour of L(v) is frequent among singletons, and so there are at least k frequent colours.

This contradicts our choice of L and completes the proof.

Corollary 4.44. p ≤ k+1
2 .

Proof. By Corollary 4.43, we see that every part of G is either a singleton, or has size at

least 3. Therefore,

(k − p) + 3p ≤ |V (G)| = 2k + 1

which implies p ≤ k+1
2 .

By applying Corollary 4.42, we obtain a strong restriction on the number of frequent

colours.

Lemma 4.45. CL contains fewer than p frequent colours.
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Proof. Otherwise, let Ap = {c1, . . . , cp} be a set of p frequent colours. By Corollary 4.42,

every colour of Ap is available for every singleton. (4.46)

Now, label the singletons of G by vp+1, . . . , vk. For each i = p + 1, . . . , k, in turn,

choose a colour ci ∈ L(vi)−Ai−1 greedily and define Ai := Ai−1 ∪ {ci}. Let L
′ be the list

assignment of G defined by

L′(v) :=











Ak if v is a singleton,

L(v) otherwise.

Clearly |L′(v)| ≥ k for all v ∈ V (G).

We argue that there exists an acceptable colouring for L′. If CL′ ( CL, then this

follows from the assumption that L satisfies the hypotheses of the Colour Matching

Lemma. So, we assume that CL′ = CL, which implies that |V (G)| − |CL′ | = γ. However,

under L′, we have that Ak is a set of k colours each of which is available for every

singleton. So, by Corollary 4.41, every colour of Ak is frequent among singletons with

respect to L′. However, this implies that there is an acceptable colouring for L′ by

Lemmas A and B.

Now, let f ′ be an acceptable colouring for L′. We modify f ′ to obtain an acceptable

colouring f for L in the following way. For each vertex v which is not a singleton, we

simply set f(v) := f ′(v). Thus, all that remains is to colour the singletons. Note that f ′

maps the singletons to a set A′ of exactly k− p colours of Ak. We colour each singleton v

of G with a colour of L(v) ∩A′ as follows:

• For i ≥ p+ 1, if ci ∈ A′, then colour vi with ci.

• Otherwise, colour vi with a colour of A′ ∩Ap arbitrarily.
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Since |A′| = k − p, which is precisely the number of singletons, we see that this is always

possible. That is, |A′ ∩Ap| is precisely the number of singletons vi such that ci /∈ A′. We

have that f is an acceptable colouring for L, a contradiction. The result follows.

4.6 Counting the Frequent Colours

In the previous section, we obtained many useful properties of the frequent colours.

All that is left now is to roll up our sleeves and count them! The next proposition is key

to our argument. While the statement is somewhat technical, we remark that it can be

viewed as a strengthening of Lemma A.

Proposition 4.47. Let c∗ be a colour which is not available for every singleton. Then

there is a set X(c∗) of singletons (depending on c∗) such that

(a) |X(c∗)| ≥ k − p− γ + 1, and

(b)
∣

∣∪v∈X(c∗)L(v)
∣

∣ ≤ 2k − |NBL
(c∗)|.

Proof. Let v∗ be a singleton for which c∗ is not available and for v ∈ V (G) define

L∗(v) :=











L(v∗) ∪ {c∗} if v = v∗,

L(v) otherwise.

By maximality of L, there exists an acceptable colouring f∗ for L∗. It must be the case

that f∗(v∗) = c∗ as, otherwise, f∗ would be an acceptable colouring for L. Moreover,

since v∗ is a singleton and f∗ is proper we have f∗−1(c∗) = {v∗}.

Now, if there is a matching in Bf∗,L which saturates Vf∗ , then we can obtain an

acceptable colouring for L. Thus, we assume that there is a set S ⊆ Vf∗ such that
∣

∣

∣
NBf∗,L

(S)
∣

∣

∣
< |S|. Since every vertex v 6= v∗ has f∗(v) ∈ L(v), we have that

f∗−1(c∗) ∈ S, and (4.48)

c∗ /∈ NBf∗,L
(S). (4.49)
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Let X(c∗) denote the set of all singletons v such that {v} ∈ S. By (4.49), we see

that every colour class in S must contain a vertex whose list does not contain c∗. It

follows that |S| ≤ 2k + 1− |NBL
(c∗)|. Therefore, we have

∣

∣∪v∈X(c∗)L(v)
∣

∣ ≤
∣

∣

∣
NBf∗,L

(S)
∣

∣

∣
< |S| ≤ 2k + 1− |NBL

(c∗)|

which verifies (b).

Now, for every singleton w /∈ X(c∗), we have {w} ∈ Vf∗ − S. If |X(c∗)| ≤ k − p − γ,

then there there are at least γ such singletons and so we can proceed as in Case 2 of the

proof of Lemma A to obtain an acceptable colouring for L. Therefore, (a) must hold.

This completes the proof.

The advantage of Proposition 4.47 is that it gives us a relatively large set X(c∗) of

singletons whose lists are contained in a small set of colours. Thus, an average colour

of ∪v∈X(c∗)L(v) is available for many vertices of X(c∗). Using this, we will show that

there are at least p colours of ∪v∈X(c∗)L(v) which are available for at least γ singletons

in X(c∗), contradicting Lemma 4.45 and completing the proof of Ohba’s Conjecture. To

make this more precise, we require several definitions.

Definition 4.50. Let c∗ be a colour which is not available for every singleton and,

subject to this, let |NBL
(c∗)| be maximum.

Definition 4.51. Let Z be the set of p − 1 colours which appear most frequently in the

lists of vertices of X(c∗).

Observation 4.52. We can assume that every frequent colour is contained in Z since

(1) X(c∗) consists of singletons, (2) by Corollary 4.42, every frequent colour is available

for every singleton, and (3) there are fewer than p frequent colours by Lemma 4.45.

Definition 4.53. Define Y := ∪v∈X(c∗)L(v) − Z and let c′ be a colour in Y such that

|NBL
(c′) ∩X(c∗)| is maximized.
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To complete the proof of Lemma C and of Ohba’s Conjecture, we will show that

that |NBL
(c′) ∩X(c∗)| ≥ γ which implies that c′ is frequent among singletons and

contradicts Observation 4.52. As we show next, it is enough to prove that |NBL
(c∗)| is

relatively large.

Proposition 4.54. If |NBL
(c∗)| ≥ k − (k−p−2γ+1)(k−p+1)

γ , then |NBL
(c′) ∩X| ≥ γ.

Proof. For each vertex v ∈ X(c∗) we have L(v) ⊆ X ∪ Y , and so |L(v) ∩ Y | ≥ k − |Z| =

k − p+ 1. Therefore, by our choice of c′,

|Y |
∣

∣NBL
(c′) ∩X(c∗)

∣

∣ ≥
∑

c∈Y

|NBL
(c) ∩X(c∗)| =

∑

v∈X(c∗)

|L(v) ∩ Y | ≥ |X(c∗)|(k − p+ 1).

Recall that X(c∗) satisfies both bounds of Proposition 4.47. Therefore,

∣

∣NBL
(c′) ∩X(c∗)

∣

∣ ≥
|X(c∗)|(k − p+ 1)

|Y |
=

|X(c∗)|(k − p+ 1)
∣

∣∪v∈X(c∗)L(v)
∣

∣ − p+ 1

≥
(k − p− γ + 1)(k − p+ 1)

2k − |NBL
(c∗)| − p+ 1

.

If |NBL
(c∗)| ≥ k − (k−p−2γ+1)(k−p+1)

γ , then we obtain

∣

∣NBL
(c′) ∩X(c∗)

∣

∣ ≥
γ(k − p− γ + 1)(k − p+ 1)

γ(k − p+ 1) + (k − p− 2γ + 1)(k − p+ 1)
= γ,

as desired.

Therefore, by Proposition 4.54, we need only show that |NBL
(c∗)| is at least

k − (k−p−2γ+1)(k−p+1)
γ . To do so, we will first establish a preliminary bound on |NBL

(c∗)|

and then verify that it is indeed as large as we require.

Proposition 4.55. |NBL
(c∗)| ≥ k − (p−1)(k−p+1)−kγ

2k−γ−p+2 .

Proof. Let F denote the set of frequent colours in CL. Recall, that a colour is frequent

if and only if it is available for every singleton. Therefore, it is equivalent to say that

c∗ was chosen to maximize |NBL
(c∗)| over all colours which are not frequent. Thus, for
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every c /∈ F we must have |NBL
(c)| ≤ |NBL

(c∗)|. Moreover, by Lemma 4.45 there are at

most p− 1 frequent colours. If c is frequent, then |NBL
(c)| ≤ 2k + 1− p by Lemma 4.10.

Putting this together, we have

(2k + 1)k ≤
∑

v∈V (G)

|L(v)| =
∑

c∈CL

|NBL
(c)| ≤ |CL − F | |NBL

(c∗)|+ |F |(2k + 1− p)

≤ (2k + 1− γ − p+ 1) |NBL
(c∗)|+ (p − 1)(2k + 1− p).

Solving for |NBL
(c∗)|, we obtain

|NBL
(c∗)| ≥

(2k + 1)k − (p− 1)(2k + 1− p)

2k − γ − p+ 2

= k +
(γ + p− 1)k − (p− 1)(2k + 1− p)

2k − γ − p+ 2
= k +

kγ − (p − 1)(k + 1− p)

2k − γ − p+ 2
.

The result follows.

Proposition 4.56. |NBL
(c∗)| ≥ k − (k−p−2γ+1)(k−p+1)

γ .

Proof. By Proposition 4.55 it is enough to prove

k −
(p − 1)(k + 1− p)− kγ

2k − γ − p+ 2
≥ k −

(k − p− 2γ + 1)(k + 1− p)

γ

which is equivalent to

(k − p− 2γ + 1)(k + 1− p)

γ
≥

(p − 1)(k + 1− p)− kγ

2k − γ − p+ 2
. (4.57)

By setting η := γ
k+1−p > 0, we can rewrite γ as η(k + 1 − p). Now, by dividing

both sides of (4.57) by k+ 1− p (which is positive) we see that (4.57) is equivalent to the

following:

1− 2η

η
≥

p− 1− ηk

(k + 1) + (1− η)(k + 1− p)
. (4.58)
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Corollary 4.44, implies that p− 1 < k
2 and k+1− p ≥ k+1

2 . Thus, we obtain a bound

on the right side of (4.58).

p− 1− ηk

(k + 1) + (1− η)(k + 1− p)
<

(

1
2 − η

)

k
(

3
2 − η

2

)

(k + 1)
<

1− 2η

3− η
. (4.59)

Recall that Lemma 4.40 implies that there are at least kη globally frequent colours.

However, since there are at most p − 1 frequent colours in total (Lemma 4.45), we see

that ηk ≤ p − 1. So, we have η ≤ p−1
k which by Corollary 4.44 is less than 1

2 . Therefore,

1−2η
3−η < 1−2η

η . Combining this with (4.59), we obtain (4.58), which completes the proof of

the proposition and of the main result.

Thus, Ohba’s Conjecture is proved.

Theorem 4.60 (Noel et al. [NRW12]). If |V (G)| ≤ 2χ(G) + 1, then ch(G) = χ(G).
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Part III: Beyond Ohba’s Conjecture

Chapter 5

The Bigger Picture

One should always generalize.

— Carl Gustav Jacob Jacobi

In the rest of the thesis, we discuss several theorems and conjectures which are

related, in one way or another, to Ohba’s Conjecture. We first consider a direct strength-

ening of Ohba’s Conjecture which provides a tight upper bound on the choice number

of graphs on at most 3χ vertices and improves a known result on the choice number of

complete multipartite graphs with parts of size 4. In the next chapter, we will provide a

proof from [NWWZ13] of the aforementioned theorem. We also propose two conjectures

which generalize this theorem and relate it to a problem of Erdős et al. [ERT80] on the

choice number of complete multipartite graphs. Finally, in the next section, we discuss

an analog of Ohba’s Conjecture for on-line choosability which was proposed by Huang et

al. [HWZ12].

As we have mentioned, Ohba’s Conjecture is best possible in the sense that there

are graphs on 2χ + 2 vertices which satisfy ch > χ. However, many natural questions
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still remain. For example, we consider the following: what is the relationship between the

choice number and the chromatic number for graphs on at most 3χ vertices? A natural

starting point for this problem is a result of Kierstead [Kie00] on the choice number of

complete multipartite graphs in which every part has size 3.

Theorem 5.1 (Kierstead [Kie00]). If G is a complete multipartite graph in which every

part has size 3, then ch(G) =
⌈

4χ(G)−1
3

⌉

.

In the next chapter, we will present a proof of the following result of Noel, West,

Wu and Zhu [NWWZ13], which implies that every graph G on at most 3χ(G) vertices

satisfies ch(G) ≤
⌈

4χ(G)−1
3

⌉

; ie. the upper bound of Theorem 5.1 holds for all such

graphs.

Theorem 5.2 (Noel et al. [NWWZ13]). For every graph G,

ch(G) ≤ max

{

χ(G),

⌈

|V (G)|+ χ(G) − 1

3

⌉}

.

Clearly, by Theorem 5.1, we have that Theorem 5.2 is tight for complete multi-

partite graphs in which every part has size 3. The following theorem of Ohba [Ohb04]

provides us with a larger family of tight examples; we provide a proof of Ohba’s result in

Section 6.4.

Theorem 5.3 (Ohba [Ohb04]). Let k1 and k3 be integers and define k := k1 + k3 and

n := k1 + 3k3. If G is the complete k-partite graph with k1 parts of size 1 and k3 parts of

size 3, then

ch(G) = max

{

k,

⌈

n+ k − 1

3

⌉}

.

Theorem 5.2 also implies that the difference between the choice number and the

chromatic number of a graph G is bounded in terms of the difference between |V (G)|

and 2χ(G) + 1, as the following corollary demonstrates. From this, it is easily observed

that Theorem 5.2 is a strengthening of Ohba’s Conjecture.
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Corollary 5.4 (Noel et al. [NWWZ13]). For every graph G,

ch(G)− χ(G) ≤ max

{

0,

⌈

|V (G)| − (2χ(G) + 1)

3

⌉}

.

We provide yet another consequence of Theorems 5.1 and 5.2: among k-chromatic

graphs on at most 3k vertices, the largest choice number is attained by the complete

k-partite graph in which every part has size 3. We conjecture that a similar property

holds for graphs on at most mk vertices for all m.

Definition 5.5. For m,k ≥ 2, let Km∗k denote the complete k-partite graph in which

every part has size m.

Conjecture 5.6. For m,k ≥ 2, every k-chromatic graph G on at most mk vertices

satisfies ch(G) ≤ ch(Km∗k).

Remark 5.7. The main results of this thesis imply that Conjecture 5.6 is true in the

case that m ≤ 3.

In actuality, we suspect that it is artificial to consider only graphs for which the

number of vertices is bounded by an integer multiple of the chromatic number. For this

reason, we propose the following refinement of Conjecture 5.6.

Conjecture 5.8. For n ≥ k ≥ 2, there exists a graph Gn,k such that

• Gn,k is a complete k-partite graph on n vertices,

• α (Gn,k) =
⌈

n
k

⌉

, and

• every k-chromatic graph G on at most n vertices satisfies ch(G) ≤ ch (Gn,k).

Remark 5.9. Theorem 4.60 implies that Conjecture 5.8 is true when n ≤ 2k + 1. Also,

by Theorems 5.2 and 5.3, we have that Conjecture 5.8 is true in the case that n ≤ 3k

and n− k is even.

As a first step to studying Conjecture 5.6, it is natural to try to obtain bounds on

the choice number of Km∗k. Presently, for any fixed m ≥ 4, the exact value of ch(Km∗k)
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is not known for general k. The best known bounds for m = 4 are given by the following

result of Yang [Yan03].

Theorem 5.10 (Yang [Yan03]).
⌊

3k
2

⌋

≤ ch(K4∗k) ≤
⌈

7k
4

⌉

.

As a corollary of Theorem 5.2, we obtain an improvement of the upper bound.

Corollary 5.11 (Noel et al. [NWWZ13]). ch(K4∗k) ≤
⌈

5k−1
3

⌉

.

Thus, it is known that the choice number of K4∗k is between
⌊

3k
2

⌋

and
⌈

5k−1
3

⌉

inclusive. It is not clear whether either of these bounds hold with equality for general k.

We speculate that the actual value of ch(K4∗k) is usually closer to
⌈

5k−1
3

⌉

than
⌊

3k
2

⌋

.

The problem of bounding ch(Km∗k) dates back to the original paper of Erdős et

al. [ERT80] on choosability, who proposed it as an approach to obtaining an estimate

on the choice number of the random graph G(n, 1/2).1 Using a probabilistic argument,

Alon [Alo92] determined the asymptotic behaviour of ch(Km∗k) to within a constant

factor and, as a result, showed that ch(G(n, 1/2)) = o(n) almost surely.

Theorem 5.12 (Alon [Alo92]). There exists constants c1 and c2 such that

c1 log(m)k ≤ ch(Km∗k) ≤ c2 log(m)k.

Using well-known results on the chromatic number and stability number of

G(n, 1/2), it is not difficult to derive the following corollary from Theorem 5.12.2

Corollary 5.13 (Alon [Alo92]). ch(G(n, 1/2)) = O
(

cn log log(n)
log(n)

)

almost surely.

Improving on Theorem 5.12, Gazit and Krivelevich [GK06] determined the exact

asymptotics of the choice number for complete multipartite graphs whose parts may have

different sizes, provided that the size of the smallest part is ‘not too small’ compared to

1 G(n, 1/2) is a graph on n vertices in which each edge is present independently with probability 1/2.

2 Specifically, χ(G(n, 1/2)) = Θ
(

n
log(n)

)

and α(G(n, 1/2)) = O(log(n)) almost surely.
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the size of the largest part. Their main theorem implies the following result regarding

the asymptotics of the choice number of Km∗k.

Theorem 5.14 (Gazit and Krivelevich [GK06]). ch(Km∗k) = (1 + o(1))

(

log(m)

log(k+1
k )

)

.3

Thus, the asymptotic behaviour of ch(Km∗k) is quite well understood, despite the

fact that the exact value is only known in a few cases.

5.1 On-Line Ohba’s Conjecture

The on-line choice number of a graph G, denoted chOL(G), is defined in terms a

competitive game between two players, Lister and Painter, described as follows. Let k be

a positive integer and let C = {c1, c2, . . . } be an infinite set of colours. Initially, every

vertex v of G has L(v) := ∅. On the ith step of the game, where i ≥ 1, Lister chooses

a non-empty set Vi of vertices which are not yet coloured and, for each v ∈ Vi, replaces

L(v) with L(v) ∪ {ci}. Once this is done, Painter is required to choose a stable subset

of Vi to colour with ci.
4 If, after the ith step, there is a vertex v ∈ Vi such that v is

not coloured with ci and |L(v)| = k, then Lister wins the game. On the other hand, if

the game continues until every vertex is coloured, then Painter wins. We say that G is

on-line k-choosable if the Painter has a winning strategy, and the on-line choice number

of G, denoted chOL(G), is the minimum k such that G is on-line k-choosable.

On-line choosability was introduced independently by Schauz [Sch09] and

Zhu [Zhu09]. It is clear that chOL ≥ ch since, if L is a list assignment for which there is

no acceptable colouring, then Lister can play the game in such a way that the resulting

lists are precisely L.

3 Since log
(

k+1
k

)

= Θ
(

1
k

)

, we see that Theorem 5.14 implies Theorem 5.12.

4 It is important to note that Painter is not allowed to modify his choice from any previous step.
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On the other hand, the on-line choice number is also bounded above by a function of

the choice number. To see this, we first require a definition. The colouring number of a

graph G is defined in the following way:

col(G) := max {δ(H) + 1 : H ⊆ G} .

Using a simple greedy colouring procedure, it is quite easy to see that every graph G

is col(G)-choosable (see, e.g., [JT95]). In fact, Zhu [Zhu09] proved that every graph is

also on-line col(G)-choosable. Combining this with the following well known theorem of

Alon [Alo93], we see that the on-line choice number is bounded above by a function of

the choice number.

Theorem 5.15 (Alon [Alo93]). There is a function g on N such that, for every graph G,

we have col(G) ≤ g(ch(G)).

Corollary 5.16 (Zhu [Zhu09]). There is a function g on N such that, for every graph G,

we have chOL(G) ≤ g(ch(G)).

We remark that the function g in the above results is exponential. Regarding the

optimal upper bound on chOL in terms of ch, Zhu [Zhu09] asked the following questions,

all of which remain unanswered:

Question 5.17 (Zhu [Zhu09]). Are there graphs for which chOL − ch is arbitrarily large?

Question 5.18 (Zhu [Zhu09]). Are there graphs for which chOL

ch is arbitrarily large?

Question 5.19 (Zhu [Zhu09]). Is there a polynomial function g such that chOL(G) ≤

g(ch(G)) for every graph G?

Regarding Question 5.17, Kim, Kwon, Liu and Zhu [KKLZ12] proved that for k ≥ 3

the complete k-partite graph with 1 part of size 3 and k − 1 parts of size 2 is not on-line

k-choosable, despite the fact that it is k-choosable by Theorem 3.5. Therefore, for this

graph, we have chOL > ch. To our knowledge, it is not known if there is a graph G for
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which chOL(G) > ch(G) + 1.5 In [KMZ12], Kozik, Micek and Zhu suggested that the

graphs K3∗k may be natural candidates for answering Question 5.17 in the positive. In

the same paper, they proved that chOL(K3∗k) ≤
3k
2 . Currently, it is not known whether

there exists an integer k such that chOL(K3∗k) > ch(K3∗k).

As it turns out, many of the well known upper bounds on the choice number for

graphs of certain classes are also true for the on-line choice number. For example,

Schauz [Sch09] proved that every planar graph is on-line 5-choosable, and that the line

graph of every multigraph satisfies chOL = χ.

Huang et al. [HWZ12] proved that chOL(K2∗k) = k for all k (c.f. Theorem 3.1) by

applying an on-line version of Combinatorial Nullstellensatz developed by Schauz [Sch10].6

Using this result as evidence, they conjectured that a slightly restricted version of Ohba’s

Conjecture holds for on-line choosability.

On-Line Ohba’s Conjecture (Huang et al. [HWZ12]). If |V (G)| ≤ 2χ(G), then

chOL(G) = χ(G).

Note that the result of Kim et al. [KKLZ12] cited above shows that On-Line Ohba’s

Conjecture cannot be extended to graphs of order 2χ+ 1.

Since Painter cannot change his choice from any previous step of the game, we see

that Hall’s Theorem cannot be directly applied to problems in on-line choosability. This

suggests that the approach that we used to prove Ohba’s Conjecture in Chapter 4 cannot

be applied to prove the on-line variant.

5 This problem is mentioned by Carraher et al. [CLM+13].

6 Combinatorial Nullstellensatz proves the existence of an acceptable colouring, but does not nec-
essarily provide a method for constructing it. For constructive proofs that chOL(K2∗k) is equal to k,
see [HWZ12] and [CLM+13].
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Some special cases of On-Line Ohba’s Conjecture have been proved. In [KMZ12],

Kozik et al. proved that chOL(G) = χ(G) for graphs G on at most χ(G) +
√

χ(G)

vertices (c.f. Theorem 3.9). This was improved by Carraher et al. [CLM+13] to the

following.

Theorem 5.20 (Carraher et al. [CLM+13]). If |V (G)| ≤ χ(G) + 2
√

χ(G)− 1, then

chOL(G) = χ(G).

Presently, however, it is not known if there is a constant a > 1 such that every

graph on at most aχ vertices satisfies chOL = χ.

As with the early results on Ohba’s Conjecture, one approach has been to verify On-

Line Ohba’s Conjecture for graphs of bounded stability number. Kozik et al. [KMZ12]

proved the case of graphs with stability number at most 3.

Theorem 5.21 (Kozik et al. [KMZ12]). If |V (G)| ≤ 2χ(G) and α(G) ≤ 3, then

chOL(G) = χ(G).

Another approach has been to verify On-Line Ohba’s Conjecture for special classes

of complete multipartite graphs. For results of this type, see [HWZ12, KKLZ12].
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Chapter 6

A Strengthening of Ohba’s

Conjecture

What is the purpose of Life? Proof and conjecture, and keep the SF’s score low.

— Paul Erdős

In this chapter, we present a proof of Theorem 5.2 from [NWWZ13]. As in the proof

of Ohba’s Conjecture, it suffices to prove Theorem 5.2 for complete multipartite graphs.

So, throughout this chapter, we fix G and L as follows:

• G is a complete k-partite graph on n vertices, and

• L is a list assignment of G such that |L(v)| ≥ max
{

k,
⌈

n+k−1
3

⌉}

for all v ∈ V (G).

We assume to the contrary that Theorem 5.2 is false and let G be a minimal counterex-

ample in the sense that, there is no acceptable colouring for L, but Theorem 5.2 is true

for all graphs on fewer than n vertices. Since Ohba’s Conjecture is true, it must be the

case that that n ≥ 2k + 2. Also, by Observation 4.1, we can assume that |CL| < n.

In proving Theorem 5.2, our first step is to apply the minimality assumption on G

to obtain several useful reductions. In contrast to the proof of Ohba’s Conjecture, we are

able to obtain strong restrictions on G and L with relatively little effort. In particular,

in Section 6.1, we use the minimality assumption in a very basic way to prove that every
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colour of CL is available for at most 2 vertices in each part of G. We then apply this

result to show that the stability number of G is at most 4.

Given that every colour of CL is available for at most 2 vertices in each part of G,

it is clear that an acceptable colouring for L must induce a partitioning of V (G) into

colour classes of size at most 2. In Section 6.2, we describe conditions under which we

can use Hall’s Theorem to obtain an acceptable colouring for L from a pre-determined

partitioning of V (G) into colour classes of size at most 2. The final step of the proof,

which we provide in Section 6.3, is to show that we can partition V (G) into colour

classes which satisfy the conditions described in Section 6.2.

In completing this final step, we will often exploit the properties of G and L

obtained in Section 6.1. For instance, we have already mentioned that the stability

number of G is at most 4. In Section 6.1, we also show that for any part P of size 2 in

G, the vertices of P are assigned to disjoint lists. Therefore, when partitioning V (G) into

colour classes, we need only determine which pairs of vertices in the parts of size 3 and 4

should form colour classes of size 2.

Let us briefly mention some of the intuition which guides our choice of partitioning.

Recall from Chapter 3 that it is often important to be aware of how close together or

spread apart the lists of a given part are. In defining the partitioning of V (G) into colour

classes, we will insist that every pair u and v which forms a colour class of size 2 has a

relatively large number of available colours in common. As this suggests, the number

of colour classes of size 2 in the chosen partitioning is closely tied to the number of

non-adjacent pairs in V (G) which share a large number of available colours.

Given that we prefer the vertices of every non-singleton colour class to share a

large number of available colours, a natural approach is to simply choose each non-

singleton colour class {u, v} so that |L(u) ∩ L(v)| is as large as possible. While this
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greedy approach does have certain advantages, it is not always necessary (and perhaps

not wise) to determine every non-singleton colour class in this way. Instead, our method

of partitioning V (G) involves a combination of greedy and non-greedy choices. However

we remark that, even when we choose to define a colour class {u, v} in a non-greedy way,

our procedure will still tend to favour pairs for which |L(u)∩L(v)| is relatively large. For

a detailed description of the partitioning of V (G) into colour classes, see Section 6.3.

In the final section of the chapter, we give a proof of Theorem 5.3 which provides us

with a family of tight examples for Theorem 5.2.

6.1 Preliminary Reductions

The following proposition describes a general condition under which we can apply

the minimality assumption on G. One should compare this with the more complicated

Proposition 4.9 which we used to prove Ohba’s Conjecture.

Proposition 6.1. Suppose that A ⊆ V (G) is a stable set and c ∈ ∩v∈AL(v). If
⌈

|V (G−A)|+χ(G−A)−1
3

⌉

≤
⌈

n+k−1
3

⌉

− 1, then there is an acceptable colouring for L.

Proof. Recall that, since Ohba’s Conjecture is true, we must have n ≥ 2k + 2. This

implies that
⌈

n+k−1
3

⌉

≥ k + 1 and so

|L(v)| ≥ k + 1 for every v ∈ V (G). (6.2)

We define L′(x) := L(x)− c for every vertex x ∈ V (G − A). Then, by (6.2) we have

for x ∈ V (G−A),

|L′(x)| ≥ |L(x)| − 1 ≥ k ≥ χ(G−A).

Now, for x ∈ V (G−A) we have, by hypothesis,

|L′(x)| ≥ |L(x)| − 1 ≥

⌈

n+ k − 1

3

⌉

− 1 ≥

⌈

|V (G−A)|+ χ(G−A)− 1

3

⌉

.
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Putting this together, we see that for every x ∈ V (G−A),

|L′(x)| ≥ max

{

χ(G−A),

⌈

|V (G−A)|+ χ(G−A)− 1

3

⌉}

.

So, by minimality of G, there is an acceptable colouring f ′ for L′. However, we can

extend f ′ to an acceptable colouring for L by colouring each vertex of A with c. This

contradiction completes the proof.

We apply Proposition 6.1 to prove several key reductions.

Lemma 6.3. If {u, v, w} is a stable set of G, then L(u) ∩ L(v) ∩ L(w) = ∅.

Proof. Otherwise, we set A := {u, v, w} and let c be any element of L(u) ∩ L(v) ∩ L(w).

Then, since |A| = 3, we have

⌈

|V (G−A)|+ χ(G−A)− 1

3

⌉

≤

⌈

(n− 3) + k − 1

3

⌉

=

⌈

n+ k − 1

3

⌉

− 1.

Therefore, the result follows by Proposition 6.1.

Lemma 6.4. If P = {u, v} is a part of G, then L(u) ∩ L(v) = ∅.

Proof. Otherwise, we set A := P and let c be any element of L(u) ∩ L(v). Then, since

|A| = 2 and χ(G−A) = k − 1, we have

⌈

|V (G−A)|+ χ(G−A)− 1

3

⌉

≤

⌈

(n− 2) + (k − 1)− 1

3

⌉

=

⌈

n+ k − 1

3

⌉

− 1.

Therefore, the result follows by Proposition 6.1.

During the the proof, it will sometimes be useful to consider the parity of n and k.

For this, we will apply the following lemma.

Lemma 6.5. n+ k − 1 ≡ 0 mod 3.

Proof. Suppose that n+ k− 1 6≡ 0 mod 3. First, let us show that there is a non-adjacent

pair u, v ∈ V (G) such that L(u) ∩ L(v) 6= ∅. Let P be the largest part of G. If the
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vertices of P are assigned to disjoint lists, then since P is the largest part of G,

|CL| ≥ |∪v∈PL(v)| =
∑

v∈P

|L(v)| ≥ |P |k ≥ |V (G)|.

However, this contradicts the assumption that |CL| < |V (G)|.

Therefore, there is a pair u, v ∈ P such that L(u) ∩ L(v) 6= ∅. We define A := {u, v}

and let c be any colour of L(u) ∩ L(v). Then, since |A| = 2, we have

⌈

|V (G−A)|+ χ(G−A)− 1

3

⌉

≤

⌈

(n− 2) + k − 1

3

⌉

However, since we are assuming n+ k − 1 6≡ 0 mod 3, we have

⌈

(n − 2) + k − 1

3

⌉

≤

⌈

n+ k − 1

3

⌉

− 1.

Thus, the result follows by Proposition 6.1.

Note that Lemma 6.5 implies that n − 2k ≡ 1 mod 3. Since we already know that

n > 2k + 1, we have the following:

Corollary 6.6. n ≥ 2k + 4.

Perhaps the most useful consequence of Lemma 6.3 is that the stability number of G

is at most 4, as we prove now.

Lemma 6.7. α(G) ≤ 4.

Proof. Let P be the largest part of G. By Lemma 6.3, each colour of CL is available for

at most 2 vertices of P . Therefore, since |CL| ≤ n− 1, we must have

2(n − 1) ≥ 2|CL| ≥
∑

v∈P

|L(v)| ≥ |P |

(

n+ k − 1

3

)

. (6.8)

Now, if we suppose that |P | ≥ 5, then (6.8) would imply that n > 5k. Since P is

the largest part of G and G contains precisely k parts, this would imply that |P | ≥ 6.
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However, if |P | ≥ 6, then (6.8) can only be satisfied if k ≤ 0. Therefore, it must be the

case that |P | ≤ 4. This completes the proof.

Putting this together, we see that an extremal counterexample (G,L) to Theo-

rem 5.2 must have some very special properties. To recap,

• every part of G has size at most 4,

• every colour c ∈ CL is available for at most 2 vertices in each part of size 3 or 4, and

• every colour c ∈ CL is available for at most 1 vertex in each part of size 1 or 2.

We will exploit these three properties throughout the rest of the proof. In what follows,

for i ∈ {1, 2, 3, 4}, let ki denote the number of parts of G of size i.

Observation 6.9. Clearly we have

k = k1 + k2 + k3 + k4, and

n = k1 + 2k2 + 3k3 + 4k4.

We obtain a few more basic consequences of Lemma 6.5 and Corollary 6.6.

Corollary 6.10. 2k4 + k3 ≥ k1 + 4.

Proof. By Observation 6.9 and Corollary 6.6, we have

2k4 + k3 − k1 = n− 2k ≥ 4.

The result follows.

Corollary 6.11. k4 + k1 − k3 ≡ 2 mod 3.

Proof. First, by Lemma 6.5 we have that 2n+2k ≡ 2 mod 3. Also, we have that 2n+2k

is equivalent to (2n+2k)− 3(2k+ k3 + k4 − k1) modulo 3. Substituting for n and k using

the equations of Observation 6.9, we have that (2n + 2k) − 3(2k + k3 + k4 − k1) is equal

to k4 + k1 − k3. The result follows.
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6.2 Proof Outline

In what follows, to contract a non-adjacent a pair u, v ∈ V (G) is to replace u

and v with a single vertex, say w, whose list is defined by L(w) := L(u) ∩ L(v). The

resulting vertex w is called a contracted vertex. The method that we use to construct

an acceptable colouring for L is to contract certain non-adjacent pairs in V (G) and use

Hall’s Theorem to show that there is a system of distinct representatives for the resulting

lists.1

For clarity, if P is a part of G, then we will let P ∗ denote the set of vertices which

results from completing the contraction procedure for P . We will be careful to contract

pairs in such a way that the following properties are satisfied:

(P1) we contract exactly 1 pair in t3 ≥
⌈

k3
3

⌉

parts P of size 3.

(P2) we contract at least 1 pair in every part P of size 4.

In particular, at least t3 + k4 pairs will be contracted, and so the number of vertices

which will remain after the contraction procedure is complete is at most

n− t3 − k4. (6.12)

Furthermore, to ensure that there is a system of distinct representatives for the resulting

lists, we insist that the contraction procedure satisfies the following properties:

(P3) there is a system of distinct representatives for the lists of the contracted

vertices.

(P4) if P is a part of size 3 and x, y ∈ P ∗, then |L(x) ∪ L(y)| ≥ k +
⌈

k3
3

⌉

+ k4.

1 Given a collection of sets X1, . . . , Xn, a system of distinct representatives is a set of n distinct ele-
ments x1, . . . , xn such that xi ∈ Xi for 1 ≤ i ≤ n. Hall’s Theorem can be restated in this language as
follows: there exists a system of distinct representatives for X1, . . . , Xn if and only if |∪i∈SXi| ≥ |S| for
every S ⊆ {1, . . . , n}.
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(P5) if P is a part of size 3 and P ∗ = P , then for any x, y ∈ P ∗ we have |L(x) ∪

L(y)| ≥ k + k3 + k4.

(P6) there is a set Z3 of exactly
⌊

2k3
3

⌋

parts P of size 3 such that if P ∈ Z3 and

x, y ∈ P ∗, then |L(x) ∪ L(y)| ≥ k + t3 + k4.

(P7) for any part P if x, y, z ∈ P ∗, then |L(x) ∪ L(y) ∪ L(z)| ≥ n− t3 − k4.

(P8) there is a set Z4 of at least k4+k1−k3+1
3 parts P of size 4 such that if P ∈ Z4 and

x, y ∈ P ∗, then |L(x) ∪ L(y)| ≥ k + k4.
2

To complete the proof of Theorem 5.2, it suffices to prove the following two lemmas.

Lemma 6.13. It is possible to contract a collection of non-adjacent pairs in V (G) such

a way that properties (P1) through (P8) are satisfied.

Lemma 6.14. If we have contracted a collection of non-adjacent pairs in V (G) in such

a way that properties (P1) through (P8) are satisfied, then there is a system of distinct

representatives for the resulting lists.

We leave the description of the contraction procedure and the proof of Lemma 6.13

to the next section. Let us now prove Lemma 6.14.

Proof of Lemma 6.14. Suppose to the contrary that there does not exist a system of

distinct representatives for the lists after contracting a collection of non-adjacent pairs

in V (G) in such a way that properties (P1) through (P8) are satisfied. Then, after

contracting, there is a set S of vertices such that |∪x∈SL(x)| < |S| by Hall’s Theorem. If

S contains 3 vertices, say x, y, z, from some part P ∗, then by (P7) we have

|S| > |L(x) ∪ L(y) ∪ L(z)| ≥ n− t3 − k4

2 Note that, by Corollary 6.11, we have that k4+k1−k3+1
3

is an integer which, by Corollary 6.10, is less
than k4.
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which contradicts (6.12). Thus, S contains at most 2 vertices from each part for a total

of at most 2k vertices.

Suppose that P = {u, v} is a part and that P ∗ = P . Then by Lemma 6.4 we have

that L(u) ∩ L(v) = ∅. Therefore, if u, v ∈ S, then

|S| > |L(u) ∪ L(v)| = |L(u)|+ |L(v)| ≥ 2k.

However, this contradicts the bound from the previous paragraph. Therefore, S contains

at most 1 vertex from each part P ∗ such that |P | = 2. In total, we have |S| ≤ k+k3+k4.

Suppose now that there is a part P of size 3 such that P ∗ = P and S contains 2

vertices x, y of P ∗. By (P5), this implies that

|S| > |L(x) ∪ L(y)| ≥ k + k3 + k4

which is a contradiction. Therefore, S contains at most one vertex from every such part.

By (P1), we have |S| ≤ k + t3 + k4.

Next, suppose that, for some P ∈ Z3, S contains two vertices x and y of P ∗. Then,

by (P6), we would have

|S| > |L(x) ∪ L(y)| ≥ k + t3 + k4

which is, again, a contradiction. Thus, S contains at most 1 vertex from each part P ∗

such that P ∈ Z3. Since |Z3| =
⌊

2k3
3

⌋

, this implies that

|S| ≤ (k + k3 + k4)−

⌊

2k3
3

⌋

= k +

⌈

k3
3

⌉

+ k4. (6.15)

Now, if S contains 2 vertices x and y from any part P ∗ such that |P | = 3, then by

(P4) we would have

|S| > |L(x) ∪ L(y)| ≥ k +

⌈

k3
3

⌉

+ k4.

This contradicts (6.15), and therefore |S| ≤ k + k4.
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For P ∈ Z4, if S contains 2 vertices x and y of P ∗, then by (P8) we would have

|S| > |L(x) ∪ L(y)| ≥ k + k4,

which is a contradiction. Thus, S contains at most 1 vertex from each part P ∗ such that

P ∈ Z4. By (P8), we have

|S| ≤ (k + k4)− |Z4| = (k + k4)−

(

k4 + k1 − k3 + 1

3

)

=
2k1 + 3k2 + 4k3 + 5k4 − 1

3

=
n+ k − 1

3

However, since |L(x)| ≥ n+k−1
3 for every vertex x that is not contracted, this implies that

S contains only contracted vertices. This contradicts (P3) and completes the proof of

Lemma 6.14.

To prove Theorem 5.2, all that remains is to describe the contraction procedure and

to show that it satisfies properties (P1) through (P8).

6.3 The Contraction Procedure

As we mentioned at the beginning of this chapter, it will be important to keep

track of how close together or spread apart the lists of a given part are. The following

definition allows us to do this in a crude, but useful, way.

Definition 6.16. Given a part P of G, define

ℓ(P ) := max{|L(u) ∩ L(v)| : u, v ∈ P}.

We use Lemma 6.3 to obtain a straightforward bound on ℓ.

Lemma 6.17. If S ⊆ V (G) is a stable set such that |S| = 3, then

∑

u,v∈S

|L(u) ∩ L(v)| ≥ k.
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Proof. By the inclusion-exclusion principle, Lemma 6.3, and the fact that |∪v∈SL(v)| ≤

|CL| < n, we have
∑

u,v∈S

|L(u) ∩ L(v)| =
∑

v∈S

|L(v)| − |∪v∈SL(v)|

≥ 3

(

n+ k − 1

3

)

− (n− 1) = k

as desired.

Corollary 6.18. For every part P such that |P | ≥ 3, we have ℓ(P ) ≥
⌈

k
3

⌉

.

Proof. Let S ⊆ P so that |S| = 3. By Lemma 6.17 we have
∑

u,v∈S |L(u) ∩ L(v)| ≥ k.

Therefore, by the pigeonhole principle there must be a pair u, v ∈ S such that

|L(u) ∩ L(v)| ≥

⌈

k
(3
2

)

⌉

=

⌈

k

3

⌉

as desired.

A natural approach to proving Lemma 6.13 is to start by contracting pairs u, v in

certain parts P , where u and v are chosen to satisfy |L(u) ∩ L(v)| = ℓ(P ). Certainly, it is

often advantageous to contract pairs in such a way that the resulting lists are as large as

possible. However, to ensure that there is a system of distinct representatives for the lists

of the contracted vertices, we will usually aim for a more relaxed condition on the size of

|L(u) ∩ L(v)|. This condition is described by the following definition.

Definition 6.19. Let P be a part of size 3 or 4 and let u, v ∈ P . We say that (u, v) is a

good pair for P if either

• |P | = 3 and |L(u) ∩ L(v)| ≥
⌈

k1+k4+1
3

⌉

, or

• |P | = 4 and for w, z ∈ P − {u, v} we have |L(u) ∩ L(v)| ≥ |L(w) ∩ L(z)|.

We insist that the contraction procedure satisfies the following property:
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(Q1) if P is a part such that we contract exactly one pair u, v ∈ P , then (u, v) is a

good pair for P .

We obtain some consequences of (Q1).

Lemma 6.20. If the contraction procedure satisfies (Q1) and (P5), then it also satisfies

(P4).

Proof. Suppose that the contraction procedure satisfies (Q1) and (P5). Let P be any

part of size 3 and let x, y ∈ P ∗ be arbitrary. If P ∗ does not contain a contracted vertex,

then by (P5) we have

|L(x) ∩ L(y)| ≥ k + k3 + k4 ≥ k +

⌈

k3
3

⌉

+ k4.

Therefore, (P4) is satisfied in this case.

On the other hand, suppose that x is the unique contracted vertex of P ∗. Then, by

Lemma 6.3 we have L(x) ∩ L(y) = ∅ and so (Q1) implies that

|L(x) ∪ L(y)| = |L(x)|+ |L(y)| ≥

⌈

k1 + k4 + 1

3

⌉

+
n+ k − 1

3
≥ k +

k3
3

+ k4

and so (P4) holds.

Lemma 6.21. If the contraction procedure satisfies (Q1), (P1) and (P2), then it also

satisfies (P7) for every part P of size 4.

Proof. Suppose that the contraction procedure satisfies (Q1), (P1) and (P2). Let

P be any part of size 4 and let x, y, z ∈ P ∗. Then, since (P2) is satisfied, we can

assume, without loss of generality, that x is contracted and y and z are not. Clearly,

x is the unique contracted vertex in P ∗. Since (Q1) is satisfied, we have that |L(x)| ≥

|L(y) ∩ L(z)|. Also, by Lemma 6.3 we must have L(x) ∩ L(y) = L(x) ∩ L(z) = ∅.
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Therefore, since we are assuming that (P1) is true we have t3 ≥
⌈

k3
3

⌉

, and so

|L(x) ∪ L(y) ∪ L(z)| = |L(x)|+ |L(y)|+ |L(z)| − |L(y) ∩ L(z)|

≥ |L(y)|+ |L(z)| ≥ 2

(

n+ k − 1

3

)

≥ n−
k3
3

− k4 −
2

3

≥ n− t3 − k4 −
2

3

which implies that |L(x) ∪ L(y) ∪ L(z)| ≥ n− t3 − k4. The result follows.

Using Corollary 6.18, we obtain a simple condition under which (u, v) is guaranteed

to be a good pair for a part P .

Lemma 6.22. If |P | ≥ 3 and u, v ∈ P such that |L(u) ∩ L(v)| = ℓ(P ), then (u, v) is a

good pair for P .

Proof. If |P | = 4, then the result follows easily from the definition of a good pair for P .

So, suppose that |P | = 3. In this case, we obviously have k3 ≥ 1 and so by Corollary 6.18

|L(u) ∩ L(v)| = ℓ(P ) ≥

⌈

k

3

⌉

=

⌈

k1 + k2 + k3 + k4
3

⌉

≥

⌈

k1 + k4 + 1

3

⌉

.

Therefore, (u, v) is a good pair for P . The result follows.

Finally, we describe the contraction procedure. We consider parts of size 3 and 4

separately.

6.3.1 Parts of Size 3

Let Z3 be an arbitrary set of
⌊

2k3
3

⌋

parts P of size 3. We order the elements of Z3

so that ℓ(P ) is decreasing. Let t3 denote the maximum integer i such that every part P

in the set Z ′
3 of the first i −

⌈

k3
3

⌉

parts in Z3 satisfies ℓ(P ) ≥
⌈

k+i−1
3

⌉

. Note that, since

|Z ′
3| = t3 −

⌈

k3
3

⌉

and 0 ≤ |Z ′
3| ≤ |Z3| =

⌊

2k3
3

⌋

, we must have

⌈

k3
3

⌉

≤ t3 ≤

⌈

k3
3

⌉

+

⌊

2k3
3

⌋

= k3. (6.23)
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We contract pairs in the parts of size 3 in the following way:

• for each part P ∈ Z ′
3, we contract a pair u, v ∈ P such that |L(u) ∩ L(v)| = ℓ(P ).

• for each part P ∈ Z3 − Z ′
3, we do not contract any pair in P .

• at a later stage of the procedure, for each part P of size 3 which is not contained in

Z3, we will contract a good pair in P .

Therefore, the number of parts which were originally of size 3 and will contain a

contracted vertex is precisely

|Z ′
3|+ (k3 − |Z3|) =

(

t3 −

⌈

k3
3

⌉)

+

(

k3 −

⌊

2k3
3

⌋)

= t3.

Combining this with (6.23), we have that (P1) is satisfied. Also, by Lemma 6.22, we

have that (Q1) is satisfied for every part P of size 3.

To close this subsection, we prove that the contraction procedure satisfies (P5) and

(P6), and that it satisfies (P7) for every part P of size 3. By Lemma 6.20 and the fact

that (Q1) holds for every part P of size 3, it will follow that (P4) holds as well.

Lemma 6.24. The contraction procedure satisfies (P5).

Proof. Let P be a part of size 3 such that P ∗ = P . By definition of the contraction

procedure, we have P ∈ Z3 − Z ′
3. Let x, y ∈ P ∗ be arbitrary. Then, by definition of Z ′

3,

we have that |L(x) ∩ L(y)| ≤
⌈

k+t3
3

⌉

− 1. Therefore, since k3 ≥ t3,

|L(x) ∪ L(y)| = |L(x)|+ |L(y)| − |L(x) ∩ L(y)|

= 2

(

n+ k − 1

3

)

−

(⌈

k + t3
3

⌉

− 1

)

≥
2n+ k − t3 − 1

3
≥ k +

4k3 − t3 − 1

3
+ 2k4

≥ k + k3 + k4 −
1

3
.

So, we have |L(x) ∪ L(y)| ≥ k + k3 + k4. The result follows.

Lemma 6.25. The contraction procedure satisfies (P6).
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Proof. Let P ∈ Z3 and x, y ∈ P ∗ be arbitrary. If P ∈ Z3 − Z ′
3, then the result follows

from Lemma 6.24. Thus, we assume that P ∈ Z ′
3. Without loss of generality, we can

assume that x is a contracted vertex and y is not. By Lemma 6.3, this implies that

L(x) ∩ L(y) = ∅. Now, by definition of Z ′
3, we have

|L(x) ∪ L(y)| = |L(x)|+ |L(y)| ≥

⌈

k + t3 − 1

3

⌉

+
n+ k − 1

3

≥ k +
2k3 + t3

3
+ k4 −

2

3

which, since t3 ≤ k3, implies that |L(x) ∪ L(y)| ≥ k + t3 + k4. The result follows.

Lemma 6.26. The contraction procedure satisfies (P7) for every part P of size 3.

Proof. Let P be a part of size 3 such that P ∗ = P . By definition of the contraction

procedure, we have P ∈ Z3 − Z ′
3. Thus, by definition of Z ′

3, every pair x, y ∈ P ∗ satisfies

|L(x) ∩ L(y)| ≤
⌈

k+t3
3

⌉

− 1. It follows that

|∪x∈P ∗L(v)| =
∑

x∈P ∗

|L(x)| −
∑

x,y∈P ∗

|L(x) ∩ L(y)|

≥ 3

(

n+ k − 1

3

)

− 3

(⌈

k + t3
3

⌉

− 1

)

≥ (n+ k − 1)− (k + t3 − 1) ≥ n− t3 − k4.

The result follows.

Let us summarize the results of this subsection.

Note 6.27. We have shown that the contraction procedure satisfies (P1), (P4), (P5) and

(P6) and that it satisfies (P7) and (Q1) for every part of size 3.

6.3.2 Parts of Size 4

Let Z4 be an arbitrary set of max
{

0, k4+k1−k3+1
3

}

parts of size 4. We contract pairs

in the parts of size 4 as follows:
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• for each part P ∈ Z4, we first contract a pair u, v ∈ P such that |L(u) ∩ L(v)| =

ℓ(P ). Afterwards, let w and z denote the two vertices of P − {u, v}. If |L(w) ∩

L(z)| ≥ k1+3k2+5k3+4k4+1
3 , then we also contract w and z.3

• at a later stage of the procedure, for each part P of size 4 which is not contained in

Z4, we will contract exactly one good pair in P .

Note 6.28. By Corollary 6.18 and the definition of the contraction procedure, for every

contracted vertex x in a part P ∗ such that P ∈ Z4 we have |L(x)| ≥
⌈

k
3

⌉

.

By Lemma 6.22 and the definiton of the contraction procedure, we will have

contracted a good pair in every part P such that |P | = 4. This implies that both (P2)

and (Q1) are satisfied. Therefore, by Lemma 6.21 and Lemma 6.26, we have that the

contraction procedure satisfies (P7) in general.

We prove that the contraction procedure satisfies (P8). Once this is done, in order

to complete the proof of Theorem 5.2, all that remains is to describe the contraction

procedure for parts of size 3 and 4 not contained in Z3 ∪ Z4, and to show that it can be

done in such a way that (P3) is satisfied.

Lemma 6.29. The contraction procedure satisfies (P8).

Proof. By definition, we have that |Z4| ≥
k4+k1−k3+1

3 . Let P ∈ Z4 and x, y ∈ P ∗ be

arbitrary. Our goal is to show that |L(x) ∪ L(y)| ≥ k + k4.

First, suppose that neither x nor y is a contracted vertex. Then, by the definition of

the contraction procedure, we must have that |L(x) ∩ L(y)| ≤ k1+3k2+5k3+4k4+1
3 − 1. So,

|L(x) ∪ L(y)| = |L(x)|+ |L(y)| − |L(x) ∩ L(y)|

3 It can be easily deduced from Corollary 6.11 that k1+3k2+5k3+4k4+1
3

is an integer.
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≥ 2

(

n+ k − 1

3

)

−

(

k1 + 3k2 + 5k3 + 4k4 + 1

3
− 1

)

= k + k4.

Therefore, we have |L(x) ∪ L(y)| ≥ k + k4.

Now, suppose that x is contracted any y is not. Then it must be the case that x

is the result of contracting a pair u, v ∈ P such that |L(u) ∩ L(v)| = ℓ(P ). Thus, by

Corollary 6.18, we have that |L(x)| ≥
⌈

k
3

⌉

. Also, by Lemma 6.3, we have L(x)∩L(y) = ∅.

Therefore,

|L(x) ∪ L(y)| = |L(x)|+ |L(y)| ≥

⌈

k

3

⌉

+
n+ k − 1

3

≥ k + k4 −
1

3

which implies that |L(x) ∪ L(y)| ≥ k + k4.

Finally, suppose that both x and y are contracted. Then, without loss of generality,

x is the result of contracting a pair u, v ∈ P such that |L(u) ∩ L(v)| = ℓ(P ) and y is the

result of contracting a pair w, z ∈ P such that |L(w) ∩ L(z)| ≥ k1+3k2+5k3+4k4+1
3 .

However, by definition of ℓ, this implies that both |L(x)| and |L(y)| are at least

k1+3k2+5k3+4k4+1
3 . Also, by Lemma 6.3, we have L(x) ∩ L(y) = ∅. It follows that

|L(x) ∪ L(y)| = |L(x)|+ |L(y)| ≥ 2

(

k1 + 3k2 + 5k3 + 4k4 + 1

3

)

≥ (k + k4) +
7k3 − k1 + 2k4

3
.

By Corollary 6.10 we have that the second term is positive, and so |L(x) ∪ L(y)| ≥ k + k4

in this case as well. The result follows.

6.3.3 Final Arguments

The last step of the proof is to show that it is possible to contract a good pair in

every part of size 3 or 4 not in Z3 ∪ Z4 in such a way that there is a system of distinct

representatives for the lists of the contracted vertices; i.e. to ensure that the contraction
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procedure satisfies (P3) and (Q1). To this end, we let Y be the set of all parts of size 3

or 4 not contained in Z3 ∪ Z4 and, for each part P ∈ Y , we create an auxiliary vertex vP

corresponding to P . Let ΓP denote the set of good pairs for P , and define the list for vP

as follows:

L(vP ) :=
⋃

(u,v)∈ΓP

(L(u) ∩ L(v)) . (6.30)

Definition 6.31. We let X be the set consisting of vP for every P ∈ Y , and every

vertex which has been contracted at an earlier stage of the procedure.

Our goal is to show that there is a system of distinct representatives for the lists of

vertices in X. If so, then for each part P ∈ Y , we contract a good pair (u, v) for P such

that L(u) ∩ L(v) contains the representative for L(vP ). By construction, there will be a

system of distinct representatives for the lists of the contracted vertices. Before moving

on, let us establish some bounds on |L(vP )|.

Lemma 6.32. If P is a part of size 3 not contained in Z3, then

|L(vP )| ≥ k3 +

⌈

k1 + k4
3

⌉

.

Proof. By Lemma 6.17, we have that
∑

u,v∈P |L(u) ∩ L(v)| ≥ k. Also, by Lemma 6.22,

there are at most 2 pairs in P which are not good for P . By definition, every such pair

must have at most
⌈

k1+k4+1
3

⌉

− 1 colours in common. Thus, by Lemma 6.3,

|L(vP )| =
∑

(u,v)∈ΓP

|L(u) ∩ L(v)| =
∑

u,v∈P

|L(u) ∩ L(v)| −
∑

(u,v)/∈ΓP

|L(u) ∩ L(v)|

≥ k − 2

(⌈

k1 + k4 + 1

3

⌉

− 1

)

> k3 +
k1 + k4

3
.

The result follows.
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Lemma 6.33. If P is a part of size 4 not contained in Z4, then

|L(vP )| ≥ k3 + k4.

Proof. By the definition of a good pair for P and (6.30), we have that

|L(vP )| >
1

2

∑

u,v∈P

|L(u) ∩ L(v)| (6.34)

and so it suffices to obtain a lower bound on the latter. By Lemma 6.3, the inclusion-

exclusion principle and the fact that |CL| < n, we have

∑

u,v∈P

|L(u) ∩ L(v)| =
∑

u∈P

|L(u)| − |∪u∈PL(u)|

≥ 4

(

n+ k − 1

3

)

− (n− 1) =
n+ 4k − 1

3
.

Therefore, by (6.34), we have

|L(vP )| ≥
n+ 4k − 1

6
≥

7k3 + 8k4 − 1

6
.

By Corollary 6.10 we have k3 + 2k4 > 1 and so the result follows.

To complete the proof of Theorem 5.2, we need only establish the following lemma.

Lemma 6.35. There is a system of distinct representatives for the lists of vertices in X.

Proof. Otherwise, by Hall’s Theorem, there must be a set S ⊆ X such that |∪v∈SL(v)| <

|S|. As in the proof of Lemma 6.14, our goal is to obtain stronger and stronger bounds

on the size of S until we reach a contradiction.

For each part P of size 3 there is at most one vertex in X corresponding to P (i.e.

if P /∈ Z3, then X contains vP and if P ∈ Z ′
3, then X contains the contracted vertex in

P ∗), and for every part P ′ of size 4 there are at most 2 vertices in X corresponding to
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P ′. This implies that

|S| ≤ |X| ≤ k3 + 2k4. (6.36)

However, if S contains two vertices x, y from a part P ∗ such that |P | = 4, then by (P8)

we would have that

|S| > |L(x) ∪ L(y)| ≥ k + k4 ≥ k3 + 2k4

which contradicts (6.36). Therefore, S contains at most one vertex corresponding to each

part of size 3 or 4, and so

|S| ≤ k3 + k4. (6.37)

Suppose next that S contains a vertex vP where P is a part of size 4 not contained

in Z4. By Lemma 6.33, this would imply that

|S| > |L(vP )| ≥ k3 + k4.

However, this contradicts (6.37). Therefore, S cannot contain any vertex corresponding

to a part P of size 4 not in Z4. Thus, in total, we have

|S| ≤ k3 + |Z4| = k3 +max

{

0,
k4 + k1 − k3 + 1

3

}

. (6.38)

Now, suppose that S contains a vertex vP where P is a part of size 3 not contained

in Z3 (in particular, this implies that k3 ≥ 1). By Lemma 6.32, we have

|S| > |L(vP )| ≥ k3 +

⌈

k4 + k1
3

⌉

which contradicts (6.38). Therefore, S cannot contain a vertex vP corresponding to a

part P /∈ Z3 ∪ Z4. It follows that

|S| ≤ |Z ′
3|+ |Z4| =

(

t3 −

⌈

k3
3

⌉)

+max

{

0,
k4 + k1 − k3 + 1

3

}

. (6.39)
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Next, we suppose that S contains a contracted vertex x from a part P ∗ such that

P ∈ Z ′
3. Then by definition of Z ′

3 it must be the case that

|S| > |L(x)| ≥

⌈

k + t3 − 1

3

⌉

. (6.40)

Combining (6.39) and (6.40), we obtain

(

t3 −

⌈

k3
3

⌉)

+max

{

0,
k4 + k1 − k3 + 1

3

}

≥ |S| ≥
k + t3 + 2

3

which, in any case, contradicts the fact that t3 ≤ k3. Therefore, S can only contain

contracted vertices from parts P ∗ such that P ∈ Z4, and so

|S| ≤ |Z4| = max

{

0,
k4 + k1 − k3 + 1

3

}

. (6.41)

Finally, let x ∈ S be arbitrary. By Note 6.28, we have that

|S| > |L(x)| ≥

⌈

k

3

⌉

≥ |Z4|

which contradicts (6.41). This completes the proof.

6.4 Tight Examples

We close this chapter with a proof of Theorem 5.3. The construction that we exhibit

is very similar to the one that was used to prove Proposition 3.7. We remark that the

lower bound of Theorem 5.10 can also be proved by applying a similar principle.

Proof of Theorem 5.3. The upper bound is implied by Theorem 5.2, and so it suffices to

prove the lower bound. Also, if n ≤ 2k + 1, then lower bound is trivial, so we assume

that
⌈

n+k−1
3

⌉

> k.

Define s := k1+2k3−1
3 and let X1,X2 and X3 be disjoint sets of colours so that for

i, j ∈ {1, 2, 3} we have

|Xi ∪Xj | ≥ ⌊2s⌋ =

⌈

n+ k − 1

3

⌉

− 1
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and

|X1 ∪X2 ∪X3| ≤ k1 + 2k3 − 1.

We assign the lists X1 ∪X2, X1 ∪ X3 and X2 ∪X3 to the vertices of the parts of size 3

and X1 ∪X2 ∪X3 to the vertices of the parts of size 1. If there is an acceptable colouring

f , then it must use at least 2 colours on each part of size 3 and 1 colour on each part of

size 1 for a total of at least k1 + 2k3 colours. However, since the total number of colours

is |X1 ∪X2 ∪X3| < k1 + 2k3, this is a contradiction.
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Chapter 7

Conclusion

The possession of knowledge does not kill the sense of wonder and mystery. There is
always more mystery.

— Anäıs Nin

In previous chapters, we have discussed several open problems for future study. For

convenience, we conclude the thesis by repeating a few of them.

Conjecture 3.8. If G is a complete k-partite graph on 2k + 2 vertices such that

ch(G) > k, then either

• every part of G has size 3 or 1, or

• k is even and every part of G has size 4 or 2.

Conjecture 5.6. For m,k ≥ 2, every k-chromatic graph G on at most mk vertices

satisfies ch(G) ≤ ch(Km∗k).

Conjecture 5.8. For n ≥ k ≥ 2, there exists a graph Gn,k such that

• Gn,k is a complete k-partite graph on n vertices,

• α (Gn,k) =
⌈

n
k

⌉

, and

• every k-chromatic graph G on at most n vertices satisfies ch(G) ≤ ch (Gn,k).

Problem 7.1. Determine the choice number of K4∗k for general k.

Question 5.17 (Zhu [Zhu09]). Are there graphs for which chOL − ch is arbitrarily large?
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Question 5.18 (Zhu [Zhu09]). Are there graphs for which chOL

ch is arbitrarily large?

Question 5.19 (Zhu [Zhu09]). Is there a polynomial function g such that chOL(G) ≤

g(ch(G)) for every graph G?

Question 7.2 (Carraher et al. [CLM+13]). Is there a graph G such that chOL(G) >

ch(G) + 1?

Problem 7.3 (Kozik et al. [KMZ12]). Determine the on-line choice number of K3∗k for

general k.

On-Line Ohba’s Conjecture (Huang et al. [HWZ12]). If |V (G)| ≤ 2χ(G), then

chOL(G) = χ(G).
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Glossary of Graph Theoretic

Terminology

Basic Graph Theory

In what follows, G and H are graphs, u and v are vertices of G, S is a set of vertices

of G, and M is a set of edges of G.

Terminology Notation Definition/Meaning

A graph G A collection of points, called vertices, some pairs

of which are joined by lines, called edges.

The vertex set of G V (G) The set of vertices of G.

The edge set of G E(G) The set of edges of G.

The order of G |V (G)| The number of vertices of G.

The size of G |E(G)| The number of edges of G.

u is adjacent to v u ∼ v u and v are joined by an edge.

The neighbourhood of u NG(u) The set of vertices v such that u ∼ v. We denote

NG(u) by N(u) when no confusion will arise.

The degree of u d(u) The cardinality of N(u).

The neighbourhood of S NG(S) The set of vertices v ∈ V (G) − S such that u ∼ v

for some u ∈ S.

H is a subgraph of G H ⊆ G H is a graph such that V (H) ⊆ V (G) and

E(H) ⊆ E(G).

The subgraph of G G[S] The graph with vertex set S, containing all

induced by S edges of G between members of S.

H is an induced subgraph There is a set S ⊆ V (G) such that G[S] = H.

of G

The complement of G G The graph on vertex set V (G) where vertices u
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and v in V (G) are adjacent in G if and only if

they are not adjacent in G.

S is a stable set No two vertices of S are adjacent.

S forms a clique Every pair of vertices in S are adjacent.

The stability number of G α(G) The size of the largest stable set in V (G).

The clique number of G ω(G) The size of the largest set S ⊆ V (G) which forms

a clique.

The maximum degree of G ∆(G) The maximum of d(u) over the vertices u ∈ V (G).

The minimum degree of G δ(G) The minimum of d(u) over the vertices u ∈ V (G).

A bipartition of G A pair (A,B) of stable sets which partition V (G).

M is a matching No two edges in M share an endpoint.

Special Graphs

Terminology Notation Definition/Meaning

A complete graph of order Kk A graph consisting of a set of k vertices, any two

k of which are adjacent.

G is bipartite There exists a bipartition of G.

A complete bipartite graph Ka,b A graph consisting of a stable set of size a, a

stable set of size b, and all edges between these

two sets.

A complete k-partite or A graph consisting of k non-empty sets

multipartite graph P1, . . . , Pk, called parts, such that two vertices

of G are adjacent precisely when they belong

to different parts.

A claw K1,3 A copy of the graph K1,3.

G is claw-free The claw is not an induced subgraph of G.

G is planar G can be drawn in R2 such that edges of G

intersect only at vertices of G.

G is cubic Every vertex u of G has d(u) = 3.

The line graph of G L(G) A graph with vertex set E(G), where vertices of

L(G) are adjacent if they share an endpoint in

G.
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The total graph of G T (G) A graph with vertex set V (G) ∪ E(G), where

vertices of T (G) are adjacent if they are (1)

adjacent vertices of G, (2) edges of G that are

adjacent in L(G), or (3) an edge of G and one of

its endpoints.

The square of G G2 A graph on vertex set V
(

G2
)

:= V (G), where

vertices u, v of G2 are adjacent if either they are

adjacent or N(u) ∩N(v) 6= ∅.

Graph Colouring and Choosability

In what follows, G is a graph, C is a set of colours, f is a function mapping V (G) to

C, c is an element of C, and L(v) is a subset of C for each v ∈ V (G).

Terminology Notation Definition/Meaning

f is a proper (vertex) If u and v are adjacent, then

colouring of G f(u) 6= f(v).

f is a k-colouring of G f is a proper colouring of G and |C| = k.

G is k-colourable χ(G) ≤ k There exists a k-colouring of G.

The chromatic number of G χ(G) The minimum k such that G is

k-colourable.

The colour class for c under f f−1(c) The set of vertices which are mapped by

f to a given colour c.

L is a k-list assignment of G |L(v)| ≥ k for all v ∈ V (G).

f is an acceptable colouring f is a proper colouring and f(v) ∈ L(v)

for L for all v ∈ V (G).

G is k-choosable ch(G) ≤ k There is an acceptable colouring for

every k-list assignment L of G.

The choice number of G ch(G) The minimum k such that G is

k-choosable.
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[Had43] H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr.
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