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(3, 1)∗-choosability of planar graphs without adjacent short cycles
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Abstract

A list assignment of a graphG is a functionL that assigns a listL(v) of colors to each vertex
v ∈ V (G). An (L, d)∗-coloring is a mappingπ that assigns a colorπ(v) ∈ L(v) to each vertex
v ∈ V (G) so that at mostd neighbors ofv receive colorπ(v). A graphG is said to be(k, d)∗-
choosable if it admits an(L, d)∗-coloring for every list assignmentL with |L(v)| ≥ k for all
v ∈ V (G). In 2001, Lih et al. [6] proved that planar graphs without4- andl-cycles are(3, 1)∗-
choosable, wherel ∈ {5, 6, 7}. Later, Dong and Xu [3] proved that planar graphs without4- and
l-cycles are(3, 1)∗-choosable, wherel ∈ {8, 9}.

There exist planar graphs containing4-cycles that are not(3, 1)∗-choosable (Crown, Crown
and Woodall, 1986 [1]). This partly explains the fact that inall above known sufficient conditions
for the(3, 1)∗-choosability of planar graphs the4-cycles are completely forbidden. In this paper
we allow 4-cycles nonadjacent to relatively short cycles. More precisely, we prove that every
planar graph without4-cycles adjacent to3- and4-cycles is(3, 1)∗-choosable. This is a common
strengthening of all above mentioned results. Moreover as aconsequence we give a partial answer
to a question of Xu and Zhang [11] and show that every planar graph without4-cycles is(3, 1)∗-
choosable.

Keyword: Planar graphs; Improper choosability; Cycle.

1 Introduction

All graphs considered in this paper are finite, loopless, andwithout multiple edges. Aplane graphis a

particular drawing of a planar graph in the Euclidean plane.For a graphG, we useV (G), E(G), |G|,

|E(G)| andδ(G) to denote its vertex set, edge set, order, size and minimum degree, respectively. For

v ∈ V (G), NG(v) denotes the set of neighbors ofv in G. If there is no confusion about the context,

we writeN(v) for NG(v).

∗Research supported by NSFC (No.11101377). Email: chenmin@zjnu.cn
†Research partially supported by ANR-NSC Project GRATEL - ANR-09-blan-0373-01 and NSC99-2923-M-110-001-
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A k-coloring ofG is a mappingπ from V (G) to a color set{1, 2, · · · , k} such thatπ(x) 6= π(y)

for any adjacent verticesx andy. A graph isk-colorable if it has ak-coloring. Cowen, Cowen, and

Woodall [1] considereddefectivecolorings of graphs. A graphG is said to bed-improperk-colorable,

or simply,(k, d)∗-colorable, if the vertices ofG can be colored withk colors in such a way that each

vertex has at mostd neighbors receiving the same color as itself. Obviously, a(k, 0)∗-coloring is an

ordinary properk-coloring.

A list assignmentof G is a functionL that assigns a listL(v) of colors to each vertexv ∈ V (G).

An L-coloring with impropriety of integerd, or simply an(L, d)∗-coloring, of G is a mappingπ that

assigns a colorπ(v) ∈ L(v) to each vertexv ∈ V (G) so that at mostd neighbors ofv receive color

π(v). A graph isk-choosablewith impropriety of integerd, or simply (k, d)∗-choosable, if there

exists an(L, d)∗-coloring for every list assignmentL with |L(v)| ≥ k for all v ∈ V (G). Clearly,

a (k, 0)∗-choosable is the ordinaryk-choosability introduced by Erdős, Rubin and Taylor [5] and

independently by Vizing [10].

The concept of list improper coloring was independently introduced by Škrekovski [7] and Eaton

and Hull [4]. They proved that every planar graph is(3, 2)∗-choosable and every outerplanar graph

is (2, 2)∗-choosable. These are both improvement of the results showed in [1] which say that every

planar graph is(3, 2)∗-colorable and every outerplanar graph is(2, 2)∗-colorable. Letg(G) denote

the girth of a graphG, i.e., the length of a shortest cycle inG. The (k, d)∗-choosability of planar

graphG with giveng(G) has been studied by Škrekovski in [9]. He proved that every planar graph

G is (2, 1)∗-choosable ifg(G) ≥ 9, (2, 2)∗-choosable ifg(G) ≥ 7, (2, 3)∗-choosable ifg(G) ≥ 6,

and(2, d)∗-choosable ifd ≥ 4 andg(G) ≥ 5. Recently, Cushing and Kierstead [2] proved that every

planar graph is(4, 1)∗-choosable. So it would be interesting to investigate the sufficient conditions

of (3, 1)∗-choosability of subfamilies of planar graphs where some families of cycles are forbidden.

Škrekovski proved in [8] that every planar graph without3-cycles is(3, 1)∗-choosable. Lih et al. [6]

proved that planar graphs without4- and l-cycles are(3, 1)∗-choosable, wherel ∈ {5, 6, 7}. Later,

Dong and Xu [3] proved that planar graphs without4- and l-cycles are(3, 1)∗-choosable, where

l ∈ {8, 9}. Moreover, Xu and Zhang [11] asked the following question:

Question 1 Is it true that every planar graph without adjacent triangles is(3, 1)∗-choosable?

Recall that there is a planar graph containing4-cycles that is not(3, 1)∗-colorable [1]. Therefore,

while describing(3, 1)∗-choosability planar graphs, one must impose these or thoserestrictions on

4-cycles. Note that in all previously known sufficient conditions for the(3, 1)∗-choosability of planar
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graphs, the4-cycles are completely forbidden. In this paper we allow4-cycles, but disallow them to

have a common edge with relatively short cycles.

The purpose of this paper is to prove the following

Theorem 1 Every planar graph without4-cycles adjacent to3- and4-cycles is(3, 1)∗-choosable.

Clearly, Theorem 1 implies Corollary 1 which is a common strengthening of the results in [6, 3].

Corollary 1 Every planar graph without4-cycles is(3, 1)∗-choosable.

Moreover, Theorem 1 partially answers Question 1, since adjacent triangles can be regarded as a

4-cycle adjacent to a3-cycle.

2 Notation

A vertex of degreek (resp. at leastk, at mostk) will be called ak-vertex(resp.k+-vertex, k−-vertex).

A similar notation will be used for cycles and faces. Atriangle is synonymous with a 3-cycle. For

f ∈ F (G), we useb(f) to denote the boundary walk off and writef = [u1u2 · · ·un] if u1, u2, · · · , un

are the boundary vertices off in cyclic order. For anyv ∈ V (G), we letv1, v2, · · · , vd(v) denote the

neighbors ofv in a cyclic order. Letfi be the face withvvi andvvi+1 as two boundary edges for

i = 1, 2, · · · , d(v), where indices are taken modulod(v). Moreover, we lett(v) denote the number of

3-faces incident tov and letn3(v) denote the number of3-vertices adjacent tov.

An m-facef = [v1v2 · · · vm] is called an(a1, a2, · · · , am)-faceif the degree of the vertexvi is ai

for i = 1, 2, · · · , m. Supposev is a4-vertex incident to a4−-facef and adjacent to two3-vertices not

on b(f). If d(f) = 3, then we callv a light 4-vertex. Otherwise, we callv asoft4-vertex ifd(f) = 4.

A vertexv is called anS-vertexif it is either a3-vertex or a light4-vertex. Moreover, we say a3-face

f = [v1v2v3] is an(a1, ∗, a3)-face if d(vi) = ai for eachi ∈ {1, 3} andv2 is anS-vertex. Supposev

is a5-vertex incident to two 3-facesf1 = [vv1v2] andf3 = [vv3v4]. Let v5 be the neighbour ofv not

belonging to the3-faces. Ifd(v5) = 3 andf1 is a(5, ∗, 4)-face, then we callv abad5-vertex.

For all figures in the following section, a vertex is represented by a solid circle when all of its

incident edges are drawn; otherwise it is represented by a hollow circle. Moreover, we use a hollow

square to denote anS-vertex.
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Figure 1: A light4-vertexv, a soft4-vertexw and a bad5-vertexu.

3 Proof of Theorem 1

The proof of Theorem 1 is done by reducible configurations anddischarging procedure. Suppose the

theorem is not true. LetG be a counterexample with the least number of vertices and edges embedded

in the plane. Thus,G is connected. We will apply a discharging procedure to reacha contradiction.

We first define a weight functionω on the vertices and faces ofG by lettingω(v) = 3d(v)− 10 if

v ∈ V (G) andω(f) = 2d(f)− 10 if f ∈ F (G). It follows from Euler’s formula|V (G)| − |E(G)|+

|F (G)| = 2 and the relation
∑

v∈V (G) d(v) =
∑

f∈F (G) d(f) = 2|E(G)| that the total sum of weights

of the vertices and faces is equal to

∑

v∈V (G)

(3d(v)− 10) +
∑

f∈F (G)

(2d(f)− 10) = −20.

We then design appropriate discharging rules and redistribute weights accordingly. Once the dis-

charging is finished, a new weight functionω∗ is produced. The total sum of weights is kept fixed

when the discharging is in process. Nevertheless, after thedischarging is complete, the new weight

function satisfiesω∗(x) ≥ 0 for all x ∈ V (G)∪F (G). This leads to the following obvious contradic-

tion,

−20 =
∑

x∈V (G)∪F (G)

ω(x) =
∑

x∈V (G)∪F (G)

ω∗(x) ≥ 0

and hence demonstrates that no such counterexample can exist.

3.1 Reducible configurations ofG

In this section, we will establish structural properties ofG. More precisely, we prove that some

configurations are reducible. Namely, they cannot appear inG because of the minimality ofG. Since

G does not contain a4-cycle adjacent to ani-cycle, wherei = 3, 4, by hypothesis, the following fact

is easy to observe and will be frequently used throughout this paper without further notice.

Observation 1 G does not contain the following structures:
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(a) adjacent3-cycles;

(b) a 4-cycle adjacent to a3-cycle;

(c) a 4-cycle adjacent to a4-cycle.

We first present Lemma 1, whose proof was provided in [6].

Lemma 1 [6]

(A1) δ(G) ≥ 3.

(A2) No two adjacent3-vertices.

(A3) There is no(3, 4, 4)-face.

Before showing Lemmas 2-7, we need to introduce some useful concepts, which were firstly de-

fined by Zhang in [12].

Definition 1 For S ⊆ V (G), let G[S] denote the subgraph ofG induced byS. We simply write

G − S = G[V (G) \ S]. Let L be an arbitrary list assignment ofG, andπ be an(L, 1)∗-coloring of

G − S. For eachv ∈ S, let Lπ(v) = L(v) \ {π(u) : u ∈ NG−S(v)}, and we callLπ an induced

assignmentof G[S] from π. We also say thatπ can be extended toG if G[S] admits an(Lπ, 1)
∗-

coloring.

v

1
v

2
v

3
v

4
v

5v

Figure 2: The configuration (Q) in Lemma 2.

Lemma 2 Suppose thatG contains the configuration(Q), depicted in Figure 2. Letπ be an(L, 1)∗-

coloring ofG− S, whereS = {v, v1, v2, v3, v4}. Denote byLπ an induced list assignment ofG[S]. If

|Lπ(vi)| ≥ 1 for eachi ∈ {1, · · · , 4}, thenπ can be extended to the whole graphG.

Proof. Since|Lπ(vi)| ≥ 1 for eachi ∈ {1, · · · , 4}, we can color eachvi with a colorπ(vi) ∈ Lπ(vi)

properly. Note that|Lπ(v)| ≥ 2. If there exists a color inLπ(v) which appears at most once on the

set{v1, v2, v3, v4}, then we assign such a color tov. It is easy to check that the resulting coloring is

5



an (L, 1)∗-coloring and thus we are done. Otherwise, w.l.o.g., supposeL(v) = {1, 2, 3}, π(v5) = 1,

and each color in{2, 3} appears exactly twice on the set{v1, v2, v3, v4}. W.l.o.g., supposeπ(v1) = 2.

By definition, we see thatv1 is either a3-vertex or a light4-vertex. We label two steps in the proof

for future reference.

(i) If d(v1) = 3, then|Lπ(v1)| ≥ 2. We may assign color2 to v and then recolorv1 with a color in

Lπ(v1) \ {2}.

(ii) If v1 is a light4-vertex, denote byx1, y1 the other two neighbors which are different fromv

andv2. Erase the color ofv1, color v with 2, and recolorx1 andy1 with a color different from its

neighbors. We can do this sinced(x1) = d(y1) = 3 by definition. Next, we will show how to extend

the resulting coloring, denoted byπ′, toG. If π′(v2) /∈ {π′(x1), π
′(y1)}, then colorv1 with a color in

L(v1) \ {2, π
′(x1)}. Otherwise, we colorv1 with a color inL(v1) \ {2, π′(v2)}. In each case, one can

easily check that the obtained coloring ofG is an(L, 1)∗-coloring.

Therefore, we complete the proof of Lemma 2. ✷

Lemma 3 G satisfies the following.

(B1) A 4-vertex is adjacent to at most two3-vertices.

(B2) There is no(4−, 4−, 4−)-face.

(B3) There is no(5+, 4, 4)-face which is incident to two light4-vertices.

(B4) There is no5-vertex incident to a(5, ∗, 4)-facef and adjacent to two3-vertices not onb(f).

(B5) There is no6-vertex incident to two(6, 4−, 4−)-faces and one(6, ∗, 4)-face.

Proof. LetL be a list assignment such that|L(v)| = 3 for all v ∈ V (G). We make use of contradiction

to show (B1)-(B5).

(B1) Suppose thatv is adjacent to three3-verticesv1, v2 andv3. DenoteG′ = G−{v, v1, v2, v3}. By

the minimality ofG, G′ admits an(L, 1)∗-coloringπ. LetLπ be an induced list assignment of

G − G′. It is easy to deduce that|Lπ(v)| ≥ 2 and|Lπ(vi)| ≥ 1 for eachi ∈ {1, 2, 3}. So for

eachvi, we assign the colorπ(vi) ∈ Lπ(vi) to it. Now we observe that there exists a color in

Lπ(v) appearing at most once on the set{v1, v2, v3}. We colorv with such a color. The obtained

coloring is an(L, 1)∗-coloring ofG. This contradicts the choice ofG.

(B2) It suffices to prove thatG does not contain a(4, 4, 4)-face by (A3). Supposef = [v1v2v3]

is a 3-face withd(v1) = d(v2) = d(v3) = 4. For eachi ∈ {1, 2, 3}, let xi, yi denote the

other two neighbors ofvi not onb(f). Denote byG′ the graph obtained fromG by deleting
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edgev1v2. By the minimality ofG, G′ has an(L, 1)∗-coloring π. If π(v1) 6= π(v2), then

G itself is (L, 1)∗-colorable and thus we are done. Otherwise, supposeπ(v1) = π(v2). If π

is not an(L, 1)∗-coloring of the whole graphG, then without loss of generality, assume that

π(v1) = π(v2) = π(x1) = 1 andπ(v3) = 2. Moreover, none ofx1’s neighbors exceptv1 is

colored with 1. First, we recolor eachvi with a colorπ′(vi) in L(vi) \ {π(xi), π(yi)}, where

i ∈ {1, 2, 3}. We should point out thatπ′(vi) may be the same asπ(vi), but it does not matter.

Note that if at most two ofπ′(v1), π
′(v2), π

′(v3) are equal then the resulting coloring is an

(L, 1)∗-coloring and thus we are done. Otherwise, suppose thatπ′(v1) = π′(v2) = π′(v3).

Sinceπ′(v1) 6= 1 and1 ∈ L(v1), we may further reassign color 1 tov1 to obtain an(L, 1)∗-

coloring ofG. This contradicts the choice ofG.

(B3) Supposef = [v1v2v3] is a (5+, 4, 4)-face incident to two light4-verticesv2 andv3. By defi-

nition, we see that eachvi (i ∈ {2, 3}) is incident to two other3-vertices, denoted byxi and

yi, which are not onb(f). Let G′ denote the graph obtained fromG by deleting edgev2v3.

Obviously,G′ has an(L, 1)∗-coloringπ by the minimality ofG. Similarly, if π(v2) 6= π(v3),

thenG itself is (L, 1)∗-colorable and thus we are done. Otherwise, supposeπ(v2) = π(v3).

If π is not an(L, 1)∗-coloring ofG, then w.l.o.g., assume thatπ(v2) = π(v3) = π(x2) = 1

andπ(v1) = 2. Erase the color ofv2 and recolory2 with a colora ∈ L(y2) different from its

neighbors. IfL(v2) 6= {1, 2, a}, then colorv2 with a color inL(v2) \ {1, 2, a}. Otherwise, color

v2 with a. It is easy to verify that the resulting coloring is an(L, 1)∗-coloring ofG, which is a

contradiction.

(B4) Suppose that a5-vertexv is incident to a(5, ∗, 4)-facef1 = [vv1v2] and adjacent to two3-

verticesv3 andv4. LetG′ = G− {v, v1, v2, v3, v4}. By the minimality ofG, G′ has an(L, 1)∗-

coloringπ. LetLπ be an induced list assignment ofG − G′. Obviously,|Lπ(vi)| ≥ 1 for each

i ∈ {1, · · · , 4} and|Lπ(v)| ≥ 2. By Lemma 2,π can be extended toG, which is a contradiction.

(B5) Suppose that a6-vertexv is incident to two(6, 4−, 4−)-facesf1, f3 and one(6, ∗, 4)-facef5 such

thatd(vi) ≤ 4 for eachi = {1, 2, 3, 4}, d(v6) = 4 andv5 is anS-vertex. Namely,v5 is either

a 3-vertex or a light4-vertex. LetG′ = G − {v, v1, v2, · · · , v6}. By minimality,G′ admits an

(L, 1)∗-coloringπ. Denote byLπ an induced list assignment ofG−G′. It is easy to verify that

|Lπ(vi)| ≥ 1 for eachi ∈ {1, · · · , 6} and|Lπ(v)| ≥ 3. So we can colorvi with π(vi) ∈ Lπ(vi)

for eachi ∈ {1, 2, · · · , 6}. If there exists a colora ∈ Lπ(v) appearing at most once on the set

{v1, v2, · · · , v6}, then we further assign colora to v and thus obtain an(L, 1)∗-coloring ofG.
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Otherwise, each color inLπ(v) appears exactly twice on the set{v1, v2, · · · , v6}. Sincev5 is an

S-vertex, we can apply versions of arguments (i) and (ii) in the proof of Lemma 2 to obtain an

(L, 1)∗-coloring ofG. ✷

Lemma 4 Suppose thatf = [uvxy] is a (3, 4, m, 4)-face. Then

(F1)m 6= 3.

(F2)x cannot be a soft4-vertex.

Proof. (F1) Suppose to the contrary thatm = 3. Let G′ = G − {u, v, x, y}. By the minimality of

G, G′ admits an(L, 1)∗-coloringπ. Let Lπ be an induced list assignment ofG − G′. Notice that

|Lπ(y)| ≥ 1, |Lπ(v)| ≥ 1, |Lπ(u)| ≥ 2 and|Lπ(x)| ≥ 2. First, we colorv with a ∈ Lπ(v) and color

y with b ∈ Lπ(y). Then coloru with c ∈ Lπ(u) \ {a} andx with d ∈ Lπ(x) \ {b}. One can easily

check that the resulting coloring ofG is an(L, 1)∗-coloring. This contradicts the assumption ofG.

(F2) Suppose to the contrary thatx is a soft4-vertex. By definition,x has other two neighbors

whose degree are both 3, sayx1 andx2. Observe that neitherx1 nor x2 is on b(f). Let G′ = G −

{u, v, x, y, x1, x2}. Obviously,G′ admits an(L, 1)∗-coloringπ. LetLπ be an induced list assignment

of G − G′. For eachw ∈ {v, y, x1, x2}, we deduce that|Lπ(w)| ≥ 1. Moreover,|Lπ(u)| ≥ 2. We

first colorw with π(w) ∈ Lπ(w) and coloru with a color inLπ(u) \ {π(v)}. If at least one ofx1 and

x2 has the same color asπ(v), we can colorx with a color different from that ofv andy. Otherwise,

we can colorx with a color different fromx1 andy. Therefore, we achieve an(L, 1)∗-coloring ofG,

which is a contradiction. ✷

vu

x y

1
u

2u

1v

2v

Figure 3: Adjacent soft4-verticesu andv.

Lemma 5 There is no adjacent soft4-vertices.

Proof. Suppose to the contrary thatu andv are adjacent soft4-vertices such that[uxyv] is a4-face

andu1, u2, v1, v2 are3-vertices, which is depicted in Figure 3. By Observation 1(b), ui cannot be

coincided withvj , wherei, j ∈ {1, 2}. Let G′ = G − {u1, u2, v1, v2, u, v}. For eachi ∈ {1, 2},
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we colorui andvi with a color inLπ(ui) andLπ(vi), respectively. IfL(u) 6= {π(x), π(u1), π(u2)},

then coloru with a ∈ L(u) \ {π(x), π(u1), π(u2)}. It is easy to see that there exists at least one

color in L(v) \ {π(y)} which appears at most once on the set{u, v1, v2}. So we may assign such

a color tov. Now suppose thatL(u) = {π(x), π(u1), π(u2)}. By symmetry, we may suppose that

L(v) = {π(y), π(v1), π(v2)}. This implies thatπ(v1) 6= π(v2). Thus, we can first coloru with π(u1)

and then assign a color inL(v) \ {π(u1), π(y)} to v. ✷

Lemma 6 Supposev is a 5-vertex incident to two3-facesf1 = [vv1v2] andf3 = [vv3v4]. Let v5 be

the neighbour ofv not belonging tof1 andf3. Then the following holds.

(C1) If f1 andf3 are both(5, 4−, 4−)-faces, thend(v5) ≥ 4.

(C2) If f1 is a (5, ∗, 4)-face andf3 is a (5, ∗, 4+)-face, thend(v5) ≥ 4.

(C3) f1 andf3 cannot be both(5, ∗, 4)-faces.

Proof. In each of following cases, we will show that an(L, 1)∗-coloring ofG′ ⊂ G can be extended

to G, which is a contradiction.

(C1) We only need to show thatd(v5) 6= 3 sinceδ(G) ≥ 3 by (A1). Suppose thatv5 is a3-vertex. Let

G′ = G− {v, v1, · · · , v5}. By the minimality ofG, G′ has an(L, 1)∗-coloringπ. LetLπ be an

induced list assignment ofG−G′. It is easy to deduce that|Lπ(vi)| ≥ 1 for eachi ∈ {1, · · · , 5}

and |Lπ(v)| ≥ 3. So we first color eachvi with π(vi) ∈ Lπ(vi). Observe that there exists a

colora ∈ Lπ(v) that appears at most once on the set{v1, v2, · · · , v5}. Therefore, we can color

v with a to obtain an(L, 1)∗-coloring ofG.

(C2) Suppose thatd(v2) = 4, d(v5) = 3 andv1 andv3 are bothS-vertices. By definition, we see that

vi is either a3-vertex or a light4-vertex, wherei ∈ {1, 3}. Let G′ = G − {v, v1, v2, v3, v5}.

By the minimality ofG, G′ has an(L, 1)∗-coloringπ. LetLπ be an induced list assignment of

G−G′. The proof is split into two cases in light of the conditions of v3.

– Assumev3 is a3-vertex. It is easy to calculate that|Lπ(vi)| ≥ 1 for eachi ∈ {1, 2, 3, 5}

and|Lπ(v)| ≥ 2. By Lemma 2,π can be extended toG.

– Assumev3 is a light4-vertex. By definition, letx3, y3 denote the other two neighbors of

v3 not onb(f3). Recolorx3 andy3 with a color different from its neighbors. Next, we

will show how to extend the resulting coloringπ′ to G. DenoteLπ′ be the induced as-

signment ofG − G′. Notice that|Lπ′(vi)| ≥ 1 for eachi ∈ {1, 2, 5}. If |Lπ′(v3)| ≥

1, then by Lemma 2,π′ can be extended toG. Otherwise, we derive thatL(v3) =

9



{π′(x3), π
′(y3), π

′(v4)}. First we assign a color inLπ′(vi) to eachvi, wherei ∈ {1, 2, 5}.

It is easy to see that there is at least one color, saya, belonging toL(v) \ {π′(v4)} that

appears at most once on the set{v1, v2, v5}. We assign such a colora to v. Then colorv3

with a color in{π′(x3), π
′(y3)} but different froma.

(C3) Suppose thatf1 andf3 are both(5, ∗, 4)-faces such thatd(v2) = d(v4) = 4 andv1 andv3 are

S-vertices. LetG′ = G − {v, v1, · · · , v4}. Obviously,G′ has an(L, 1)∗-coloring π by the

minimality of G. Let Lπ be an induced list assignment ofG − G′. We assert thatvi satisfies

that |Lπ(vi)| ≥ 1 for eachi ∈ {1, · · · , 4} and|Lπ(v)| ≥ 2. By Lemma 2, we can extendπ to

the whole graphG successfully. ✷

v

1
v

2
v

3v

u

w

1
w

2
w

3w

Figure 4: The configuration in Lemma 7.

Lemma 7 There is no3-face incident to two bad5-vertices.

Proof. Suppose to the contrary that there is a3-face [uvw] incident to two bad5-verticesv andw,

depicted in Figure 4. LetG′ = G − {v, w, v1, v2, v3, w1, w2, w3}. By the minimality ofG, G′ has

an (L, 1)∗-coloringπ. Let Lπ be an induced list assignment ofG − G′. Since eachwi has at most

two neighbors inG′, we deduce that|Lπ(wi)| ≥ 1 for eachi ∈ {1, 2, 3}. So we first color eachwi

with a colorπ(wi) ∈ Lπ(wi). If |Lπ(w)| ≥ 1, namelyL(w) 6= {π(u), π(w1), π(w2), π(w3)}, then by

Lemma 2 we may easy extendπ toG, since|Lπ(vi)| ≥ 1 for eachi ∈ {1, 2, 3}. Otherwise, we deduce

that there exists a colora in L(w) \ {π(u)} that is the same asπ(wi∗) for some fixedi∗ ∈ {1, 2, 3}.

Color w with a andvi with a colorπ(vi) ∈ Lπ(vi) firstly, wherei ∈ {1, 2, 3}. For our simplicity,

denoteV ∗ = {v1, v2, v3, w}.

First, suppose that there is a color, sayb ∈ L(v)\{π(u)}, appearing at most once on the setV ∗. We

assign such a colorb to v. If b 6= a, the obtained coloring is obvious an(L, 1)∗-coloring. Otherwise,

assume thatb = a. Now we erase the colora from w. One may check that the resulting coloring,

sayπ′, satisfies that each ofv, w1, w2, w3 has at least one possible color inG − G′. In other words,

|Lπ′(s)| ≥ 1 for eachs ∈ {v, w1, w2, w3}. Hence, by Lemma 2, we can easily extendπ′ to G.

10



Now, w.l.o.g., suppose thatL(v) = {1, 2, 3}, π(u) = 1, π(w) = 2 and each color in{2, 3} appears

exactly twice on the setV ∗. It implies thatπ(v1) ∈ {2, 3}. We apply versions of discussion (i) and

(ii) in the proof of Lemma 2. After doing that, one may check that nowv is colored withπ(v2) and

v1 is recolored with a new color, sayα. There are two cases left to discuss: ifπ(v2) = 3, namely the

new color ofv is 3, then the obtained coloring is an(L, 1)∗-coloring and thus we are done; otherwise,

we uncolorw. Again, it is easy to see that the resulting coloring, sayπ′′, satisfies that|Lπ′′(s)| ≥ 1

for eachs ∈ {v, w1, w2, w3}. Therefore, we can easily extendπ′′ toG successfully by Lemma 2.✷

3.2 Discharging progress

We now apply a discharging procedure to reach a contradiction. Suppose thatu is adjacent to a3-

vertexv such thatuv is not incident to any3-faces. We callv a free3-vertex if t(v) = 0 and apendant

3-vertex if t(v) = 1. For simplicity, we useν3(u) to denote the number of free3-vertices adjacent to

u andp3(u) to denote the number of pendant3-vertices ofu. Suppose thatv is a soft4-vertex such

thatf1 = [vv1uv2] is a4-face andd(v3) = d(v4) = 3. If the opposite face tof1 via v, i.e.,f3, is of

degree at least5, then we callv a weak4-vertex. We notice that every weak4-vertex is soft but not

vice versa.

For x ∈ V (G) andy ∈ F (G), let τ(x → y) denote the amount of weights transferred fromx

to y. Suppose thatf = [v1v2v3] is a 3-face. We use(d(v1), d(v2), d(v3)) → (c1, c2, c3) to denote

τ(vi → f) = ci for i = 1, 2, 3. Our discharging rules are defined as follows:

(R1) Letf = [v1v2v3] be a3-face. We set

(R1.1)(3, 4, 5+) → (0, 1, 3);

(R1.2)(3, 5+, 5+) → (0, 2, 2);

(R1.3)

(4, 4, 5+) →

{

(0, 1, 3) if v1 is a light4-vertex;

(1, 1, 2) if neitherv1 norv2 is a light4-vertex.

(R1.4)

(4, 5+, 5+) →

{

(1, 1, 2) if v2 is a bad5-vertex;

(0, 2, 2) if neitherv2 norv3 is a bad5-vertex.

(R1.5)

(5+, 5+, 5+) →

{

(1, 3
2
, 3
2
) if v1 is a bad5-vertex;

(4
3
, 4
3
, 4
3
) if none ofv1, v2, v3 is a bad5-vertex.

(R2) Suppose thatv is a5+-vertex incident to a4-facef = [vv1uv2]. Then
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(R2.1)τ(v → f) = 1 if d(v1) ≥ 4 andd(v2) ≥ 4;

(R2.2)τ(v → f) = 4
3

otherwise.

(R3) Suppose thatv is a non-weak4-vertex incident to a4-facef = [vv1uv2].

(R3.1) Assumed(v1) = d(v2) = 3. Then

(R3.1.1)τ(v → f) = 4
3

if the opposite face tof via v is of degree3;

(R3.1.2)τ(v → f) = 2
3

otherwise.

(R3.2) Assumed(v1) ≥ 4 andd(v2) ≥ 4. Then

(R3.2.1)τ(v → f) = 1 if at least one ofv1 andv2 is a soft4-vertex;

(R3.2.2)τ(v → f) = 2
3

otherwise.

(R3.3) Assumed(v1) = 3 andd(v2) ≥ 4. Thenτ(v → f) = 2
3
.

(R4) Every4+-vertex sends1 to each pendant3-vertex and1
3

to each free3-vertex.

According to (R3), we notice that a weak4-vertex does not send any charge.

We first consider the faces. Letf be ak-face.

Casek = 3. Initially ω(f) = −4. Let f = [v1v2v3] with d(v1) ≤ d(v2) ≤ d(v3). By (A1),

d(v1) ≥ 3. If d(v1) = 3, thend(v2) ≥ 4 by (A2). Together with (B2), we deduce thatf is either a

(3, 4, 5+)-face, a(3, 5+, 5+)-face, a(4, 4, 5+)-face, a(4, 5+, 5+)-face or a(5+, 5+, 5+)-face. It follows

from (B3) and Lemma 7 that every possibility is indeed covered by rule (R1). Obviously,f takes

charge 4 in total from its incident vertices. Therefore,ω∗(f) = −4 + 4 = 0.

Casek = 4. Clearly,w(f) = −2. Assume thatf = [vxuy] is a 4-face. By (A2), there are no

adjacent3-vertices inG. It follows thatf is incident to at most two3-vertices. By symmetry, we have

to discuss three cases depending on the conditions of these3-vertices.

• d(x) = d(y) = 3. By (F1), we deduce that at least one ofu andv is of degree at least5.

Moreover, if one ofu andv is a4-vertex, sayv, we claim thatv cannot be weak by definition

and (B1). Hence,ω∗(f) ≥ −2 + 4
3
+ 2

3
= 0 by (R2) and (R3).

• d(x) = 3 andd(y) ≥ 4. Note thatu andv are both4+-vertices. Similarly, neitheru nor v can

be a weak4-vertex. It follows from (R3.3) and (R2) that each ofu andv sends charge at least2
3

to f . So if one of them is a5+-vertex, sayv, then by (R2) we have thatτ(v → f) = 4
3

and thus

f gets 2
3
+ 4

3
= 2 in total from incident vertices off . Otherwise, supposed(u) = d(v) = 4.

Now by (F2),y cannot be a soft4-vertex and thus not weak. Hence,ω∗(f) ≥ −2 + 2
3
× 3 = 0

by (R3.2).
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• d(x) ≥ 4 andd(y) ≥ 4. Namely,f is a (4+, 4+, 4+, 4+)-face. If at most one ofu, v, x, y is a

weak4-vertex, thenω∗(f) ≥ −2+ 2
3
×3 = 0. Otherwise, by Lemma 5, assume thatv andu are

weak4-vertices and thus soft. We see thatτ(x → f) = τ(y → f) = 1 by (R3.2.1) and (R2.1)

which implies thatω∗(f) ≥ −2 + 1× 2 = 0.

Casek ≥ 5. Thenω∗(f) = ω(f) = 2d(f)− 10 ≥ 0.

Now we consider the vertices. Letv be ak-vertex withk ≥ 3 by (A1). Forv ∈ V (G), we use

m4(v) to denote the number of4-faces incident tov. So by Observation 1 (a) and (b), we derive that

t(v) ≤ ⌊d(v)
2
⌋ andm4(v) ≤ ⌊d(v)

2
⌋. Furthermore,t(v) +m4(v) ≤ ⌊d(v)

2
⌋ by Observation 1 (c).

Observation 2 Supposev is a 4+-vertex which is incident to a3-facef . Then, by (R1), we have the

following:

(a) τ(v → f) ≤ 1 if d(v) = 4;

(b) τ(v → f) ∈ {3, 2, 3
2
, 4
3
, 1} if d(v) ≥ 5; moreover, ifτ(v → f) = 3 thenf is a (5+, ∗, 4)-face.

Casek = 3. Thenω(v) = −1. Clearly,t(v) ≤ 1. If t(v) = 1, then there exists a neighbor ofv,

sayu, so thatv is a pendant3-vertex ofu. By (A2), d(u) ≥ 4. Thus,ω∗(v) = −1 + 1 = 0 by (R4).

Otherwise, we obtain thatω∗(v) = −1 + 1
3
× 3 = 0 by (R4).

Casek = 4. Thenω(v) = 2. Note thatt(v) ≤ 2. If t(v) = 2, thenm4(v) = 0 andp3(v) = 0. So

ω∗(v) ≥ 2 − 1 × 2 = 0 by Observation 2 (a). Ift(v) = 0, thenn3(v) ≤ 2 by (B1) andm4(v) ≤ 2.

We need to consider following cases.

• m4(v) = 2. W.l.o.g., assume thatf1 = [vv1uv2] and f3 = [vv3wv4] are incident4-faces.

Obviously,p3(v) = 0 by Observation 1 (b). However,ν3(v) ≤ 2 by (B1). By (R3),v sends

charge at most 1 tofi, wherei = 1, 3. If n3(v) = 0, thenν3(v) = 0 and thusω∗(v) ≥

2 − 1 × 2 = 0. If n3(v) = 1, sayv1 is a 3-vertex, thenτ(v → f1) ≤ 2
3

by (R3.3) and thus

ω∗(v) ≥ 2 − 2
3
− 1 − 1

3
= 0 by (R4). Now suppose thatn3(v) = 2. By symmetry, we have

two cases depending on the conditions of these two3-vertices. Ifd(v1) = d(v2) = 3, then

τ(v → f1) = 2
3

by (R3.1.2). By (B1),v3 andv4 are both4+-vertices. Moreover, neitherv3

nor v4 is a soft4-vertex according to Lemma 5. So by (R3.2.2),τ(v → f3) ≤ 2
3
. Hence

ω∗(v) ≥ 2− 2
3
− 2

3
− 1

3
× 2 = 0. Otherwise, suppose thatd(vi) = d(vj) = 3, wherei ∈ {1, 2}

andj ∈ {3, 4}. We derive thatω∗(v) ≥ 2− 2
3
× 2− 1

3
× 2 = 0 by (R3.3).

• m4(v) = 1. W.l.o.g, assume thatd(f1) = 4. This implies thatd(f3) ≥ 5. Again,τ(v → f1) ≤ 1

by (R3). Ifn3(v) ≤ 1 then we have thatω∗(v) ≥ 2−1−1 = 0 by (R4). So in what follows, we
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assume thatn3(v) = 2. If d(v3) = d(v4) = 3 thenv is a weak4-vertex, implying thatv sends

nothing tof1. Soω∗(v) ≥ 2 − 1 × 2 = 0 by (R4). If d(v1) = d(v2) = 3, thenp3(v) = 0 by

Observation 1 (b). We deduce thatω∗(v) ≥ 2− 2
3
− 1

3
×2 = 2

3
by (R3.1.2) and (R4). Otherwise,

supposed(vi) = d(vj) = 3, wherei ∈ {1, 2} andj ∈ {3, 4}. It follows immediately from

(R3.3)and (R4) thatω∗(v) ≥ 2− 2
3
− 1− 1

3
= 0.

• m4(v) = 0. Obviously,ω∗(v) ≥ 2− 1× 2 = 0 by (R4).

Now, in the following, we consider the caset(v) = 1. Assume thatf1 is a3-face. By (A1) and

(B2), f1 is either a(4, 3, 5+)-face, a(4, 4, 5+)-face or a(4, 5+, 5+)-face. Observe thatm4(v) ≤ 1.

First assume thatm4(v) = 0. If f1 is a (4, 3, 5+)-face, thenp3(v) ≤ 1 by (B1) and henceω∗(v) ≥

2−1−1 = 0 by Observation 2 (a) and (R2). Next suppose thatf1 is a(4, 4, 5+)-face. Ifn3(v) = 2, then

v is a light4-vertex. By (R1.3), we see thatv sends nothing tof1 and thereforeω∗(v) ≥ 2−1×2 = 0

by (R4). Otherwise, at most one ofv3, v4 is a3-vertex and henceω∗(v) ≥ 2−1−1 = 0 by Observation

2 (a) and (R4). Finally, we suppose thatf1 is a(4, 5+, 5+)-face. If neitherv1 norv2 is a bad5-vertex,

thenv sends nothing tof1 by (R1.4) and thusω∗(v) ≥ 2−1×2 = 0 by (R4). Otherwise, one ofv1 and

v2 is a bad5-vertex. If follows directly from (C2) thatn3(v) ≤ 1. Therefore,ω∗(v) ≥ 2− 1 − 1 = 0

by (R2). Now suppose thatm4(v) = 1. By Observation 1 (c), we may assume thatf3 = [vv3wv4] is

a 4-face. In this case,p3(v) = 0. If d(v3) = d(v4) = 3, thenτ(v → f3) =
4
3

by (R3.1.1). It follows

from (B1) and (C2) thatf is neither a(4, 3, 5+)-face nor a(4, 5, 5+)-face such thatv2 is a bad5-vertex.

So we deduce thatf1 gets nothing fromv by (R1.3), which implies thatω∗(v) ≥ 2 − 4
3
− 1

3
× 2 = 0.

If exactly one ofv3, v4 is a3-vertex, thenτ(v → f3) ≤
2
3

by (R3,3). Thus,ω∗(v) ≥ 2−1− 2
3
− 1

3
= 0

by Observation 2 (a) and (R4). Otherwise, we suppose thatv3, v4 are both of degree at least 4. In this

case,ν3(v) = 0 and henceω∗(v) ≥ 2− 1− 1 = 0 by (R3.2) and Observation 2 (a).

Casek = 5. Thenω(v) = 5. Also, t(v) ≤ 2. we have three cases to discuss.

Assumet(v) = 0. If m4(v) = 0, thenω∗(v) ≥ 5 − 1 × 5 = 0 by (R4). If m4(v) = 1, then

p3(v) ≤ 3. Thusω∗(v) ≥ 5− 4
3
− 1× 3− 2× 1

3
= 0 by (R2) and (R4). Now suppose thatm4(v) = 2.

By Observation 1 (c), we assert thatp3(v) ≤ 1. Soω∗(v) ≥ 5− 4
3
× 2− 1

3
× 4− 1 = 0.

Next assumet(v) = 1, sayf1. Thenτ(v → f1) ≤ 3 by Observation 2 (b). Moreover, equality

holds iff f1 is a (5, ∗, 4)-face. So ifτ(v → f1) = 3 then at most one ofv3, v4, v5 is a 3-vertex by

(B4). Furthermore,m4(v) ≤ 1. Whenm4(v) = 0, we deduce thatω∗(v) ≥ 5 − 3 − 1 = 1 by

(R4). Whenm4(v) = 1, by symmetry, sayf3 is a4-face, we have two cases to discuss: ifp3(v) = 1,

namely,v5 is a3-vertex, thenτ(v → f3) ≤ 1 by (R2) and neitherv3 norv4 takes charge fromv. Thus

ω∗(v) ≥ 5 − 3 − 1 − 1 = 0; otherwise,p3(v) = 0 and we haveω∗(v) ≥ 5 − 3 − 4
3
− 1

3
= 1

3
. Now
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suppose thatτ(v → f1) ≤ 2. By (R2) and (R4),ω∗(v) ≥ 5 − 2 − 1 × 3 = 0 if m4(v) = 0 and

ω∗(v) ≥ 5− 2− 4
3
− 1− 2× 1

3
= 0 if m4(v) = 1.

Now assumet(v) = 2. By symmetry, assumef1 andf3 are both3-faces. Observe thatm4(v) = 0.

For simplicity, denoteτ(v → f1) = σ1 andτ(v → f3) = σ2. Let σ = max{σ1, σ2}. If σ ≤ 2,

thenω∗(v) ≥ 5 − 2 × 2 − 1 = 0 by (R2). Now assume thatσ = 3, i.e., f1 gets charge3 from

v. It means thatf1 is a (5, ∗, 4)-face by Observation 2. By (C3),f3 cannot be a(5, ∗, 4)-face. This

implies thatσ2 ≤ 2. Moreover, ifv5 is a3-vertex, thenf3 is neither a(5, ∗, 4+)-face by (C2) nor a

(5, 4, 4)-face by (C1). It follows from (R1.4) and (R1.5) thatσ2 ≤ 1, sincev is a bad5-vertex. Thus,

ω∗(v) ≥ 5− 3− 1− 1 = 0 by (R2). Otherwise, we easily obtain thatω∗(v) ≥ 5− 3− 2 = 0.

Casek ≥ 6. Notice thatt(v) ≤ ⌊d(v)
2
⌋. If v is incident to a4-facefi, then by (R2) we inspectv

sends a charge at most4
3

to fi, while 1
3

to each ofvi andvi+1. So we may considerv as a vertex which

sends charge at most4
3
+ 2× 1

3
= 2 to fi. So by (R4) and Observation 2, we have

ω∗(v) ≥ 3d(v)− 10− 3t(v)− 2m4(v)− (d(v)− 2t(v)− 2m4(v))

= 2d(v)− 10− t(v) ≡ τ(v)

If d(v) ≥ 7, thenτ(v) ≥ 2d(v)−10− d(v)
2

= 3
2
d(v)−10 ≥ 3

2
×7−10 = 1

2
> 0. Now suppose that

d(v) = 6. If t(v) ≤ 2 thenτ(v) ≥ 2× 6− 10− 2 = 0. So, in what follows, assume thatt(v) = 3 and

d(fi) = 3 for i = 1, 3, 5. Clearly,m4(v) = 0. Similarly, if there are at most two of3-faces get charge

3 × 2 in total fromv, thenω∗(v) ≥ 8 − 2 × 3 − 2 = 0. Otherwise, supposeτ(v → fi) = 3 for each

i ∈ {1, 3, 5}. By Observation 2 (b), we assert thatfi is a(6, ∗, 4)-face. Noting that a(6, ∗, 4)-face is

also a(6, 4−, 4−)-face, we may regardv as a6-vertex which is incident to two(6, 4−, 4−)-faces and

one(6, ∗, 4)-face. However, it is impossible by (B5).

Therefore, we complete the proof of Theorem 1. ✷
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