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Abstract

A list assignment of a grap¥ is a functionL that assigns a list(v) of colors to each vertex
v € V(G). An (L,d)*-coloring is a mappingr that assigns a colar(v) € L(v) to each vertex
v € V(G) so that at mostl neighbors ofv receive colorr(v). A graphG is said to be(k, d)*-
choosable if it admits afL, d)*-coloring for every list assignment with |L(v)| > k for all
v € V(G). In 2001, Lih et al. [[6] proved that planar graphs withdutand/-cycles arg(3,1)*-
choosable, wheree {5,6,7}. Later, Dong and Xu[3] proved that planar graphs withbuand
[-cycles arg3, 1)*-choosable, wheree {8,9}.

There exist planar graphs containidgycles that are not3, 1)*-choosable (Crown, Crown
and Woodall, 1986 ]1]). This partly explains the fact thaglhabove known sufficient conditions
for the (3, 1)*-choosability of planar graphs thiecycles are completely forbidden. In this paper
we allow 4-cycles nonadjacent to relatively short cycles. More @@y we prove that every
planar graph without-cycles adjacent t8- and4-cycles is(3, 1)*-choosable. This is a common
strengthening of all above mentioned results. Moreovercasaequence we give a partial answer
to a question of Xu and Zhang [11] and show that every plaregplgwithoutd-cycles is(3,1)*-
choosable.
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1 Introduction

All graphs considered in this paper are finite, loopless \aititout multiple edges. Alane graphs a
particular drawing of a planar graph in the Euclidean pl&we.a graphz, we useV (G), E(G), |G|,
|E(G)| andd(G) to denote its vertex set, edge set, order, size and minimgneegrespectively. For
v € V(G), Ng(v) denotes the set of neighborswin G. If there is no confusion about the context,
we write N (v) for Ng(v).
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A k-coloring of G is a mappingr from V' (G) to a color sef 1,2, - -- , k} such thatr(z) # 7(y)
for any adjacent vertices andy. A graph isk-colorable if it has &-coloring. Cowen, Cowen, and
Woodall [1] consideredefectivecolorings of graphs. A grapfi is said to bel-improperk-colorable
or simply, (k, d)*-colorable if the vertices ofG can be colored witlk colors in such a way that each
vertex has at most neighbors receiving the same color as itself. Obviously;,&)*-coloring is an
ordinary propetk-coloring.

A list assignmenof G is a functionL that assigns a list(v) of colors to each vertex € V(G).
An L-coloring with impropriety of integet, or simply an(L, d)*-coloring, of GG is a mappingr that
assigns a color(v) € L(v) to each vertex € V(G) so that at most neighbors ofv receive color
m(v). A graph isk-choosablewith impropriety of integerd, or simply (k, d)*-choosable if there
exists an(L, d)*-coloring for every list assignmerit with |L(v)| > k for all v € V(G). Clearly,

a (k,0)*-choosable is the ordinarg-choosability introduced by Ef$, Rubin and Taylor [5] and
independently by Vizindg [10].

The concept of list improper coloring was independentlyddticed by Skrekovski[7] and Eaton
and Hull [4]. They proved that every planar graph(3s2)*-choosable and every outerplanar graph
is (2,2)*-choosable. These are both improvement of the results showf@] which say that every
planar graph ig3, 2)*-colorable and every outerplanar graph2s2)*-colorable. Letg(G) denote
the girth of a graphG, i.e., the length of a shortest cycle ¢h The (k, d)*-choosability of planar
graphG with giveng(G) has been studied by Skrekovski ifi [9]. He proved that eveapan graph
G is (2,1)*-choosable ifg(G) > 9, (2,2)*-choosable ifg(G) > 7, (2,3)*-choosable ify(G) > 6,
and(2, d)*-choosable ifl > 4 andg(G) > 5. Recently, Cushing and Kierstead [2] proved that every
planar graph ig4,1)*-choosable. So it would be interesting to investigate tHéc#nt conditions
of (3,1)*-choosability of subfamilies of planar graphs where sonmeilfas of cycles are forbidden.
Skrekovski proved in[8] that every planar graph withdutycles is(3, 1)*-choosable. Lih et al 6]
proved that planar graphs withott andi-cycles are(3, 1)*-choosable, wheré € {5,6,7}. Later,
Dong and Xu [[3] proved that planar graphs withadtand [-cycles are(3, 1)*-choosable, where
[ € {8,9}. Moreover, Xu and Zhang [11] asked the following question:

Question 1 Is it true that every planar graph without adjacent trianglis (3, 1)*-choosable?

Recall that there is a planar graph containirgycles that is not3, 1)*-colorable [1]. Therefore,
while describing(3, 1)*-choosability planar graphs, one must impose these or ttesdgctions on
4-cycles. Note that in all previously known sufficient comatits for the(3, 1)*-choosability of planar



graphs, thet-cycles are completely forbidden. In this paper we allbaycles, but disallow them to
have a common edge with relatively short cycles.
The purpose of this paper is to prove the following

Theorem 1 Every planar graph without-cycles adjacent t8- and4-cycles is(3, 1)*-choosable.
Clearly, Theoremll implies Corollaky 1 which is a commonmsgteening of the results inl[6] 3].
Corollary 1 Every planar graph without-cycles is(3, 1)*-choosable.

Moreover, Theorerl1 partially answers Quesfibn 1, sincacadit triangles can be regarded as a
4-cycle adjacent to a-cycle.

2 Notation

A vertex of degreé: (resp. at least, at mostk) will be called ak-vertex(resp.k™-vertex k~-vertey.

A similar notation will be used for cycles and faces.trlangle is synonymous with a 3-cycle. For
f € F(G), we usé( f) to denote the boundary walk gfand writef = [ujug - - - w,] if uy, ug, -+ uy,
are the boundary vertices ¢fin cyclic order. For any € V(G), we letvy, vy, - - - , vq(,) denote the
neighbors ofv in a cyclic order. Letf; be the face withvv; andvv;; as two boundary edges for
i=1,2,---,d(v), where indices are taken modultw). Moreover, we let(v) denote the number of
3-faces incident t@ and letn;(v) denote the number Gfvertices adjacent to.

An m-face f = [vjvy---v,,] is called an(ay, as, - - - , a,,)-faceif the degree of the vertex; is ;

fori=1,2,---,m. Suppose is a4-vertex incident to @ -face f and adjacent to twd-vertices not
onb(f). If d(f) = 3, then we calb alight 4-vertex. Otherwise, we call asoft4-vertex ifd(f) = 4.
A vertexw is called anS-vertexif it is either a3-vertex or a lighti-vertex. Moreover, we say&face
f = [vivgus] is an(ay, *, ag)-face ifd(v;) = a; for eachi € {1, 3} andw, is anS-vertex. Suppose
is ab-vertex incident to two 3-facef = [vvvo] and f3 = [vugv,]. Letvs be the neighbour of not
belonging to the3-faces. Ifd(vs) = 3 and f; is a(5, x, 4)-face, then we call abad5-vertex.

For all figures in the following section, a vertex is repreasdnby a solid circle when all of its
incident edges are drawn; otherwise it is represented bylasoircle. Moreover, we use a hollow
square to denote a$rvertex.



Figure 1: A light4-vertexv, a soft4-vertexw and a bad-vertexu.
3 Proof of Theorem[1

The proof of Theoreml1 is done by reducible configurationsdiacharging procedure. Suppose the
theorem is not true. L&t be a counterexample with the least number of vertices anelsseigbedded
in the plane. Thug;/ is connected. We will apply a discharging procedure to reachntradiction.

We first define a weight function on the vertices and faces 6fby lettingw(v) = 3d(v) — 10 if
v e V(G)andw(f) =2d(f) — 10if f € F(G). It follows from Euler’s formulaV (G)| — |E(G)| +
|[F(G)| = 2and the relation () d(v) = >~ e p(q) A(f) = 2|E(G)] that the total sum of weights
of the vertices and faces is equal to

D (3d(v) —10)+ Y (2d(f) — 10) = —20.

VeV (G) fer(@)

We then design appropriate discharging rules and redisériveights accordingly. Once the dis-
charging is finished, a new weight functiari is produced. The total sum of weights is kept fixed
when the discharging is in process. Nevertheless, aftedidoharging is complete, the new weight
function satisfiess*(z) > 0 for allz € V(G) U F(G). This leads to the following obvious contradic-

—20 = Z w(x) = Z w(z) >0

2eV(G)UF(G) zeV(G)UF(G)
and hence demonstrates that no such counterexample can exis

tion,

3.1 Reducible configurations of7

In this section, we will establish structural propertiescaf More precisely, we prove that some
configurations are reducible. Namely, they cannot appe@rbecause of the minimality a¥. Since
G does not contain &-cycle adjacent to afrcycle, where = 3, 4, by hypothesis, the following fact
is easy to observe and will be frequently used throughostghper without further notice.

Observation 1 G does not contain the following structures:

4



(a) adjacent3-cycles;
(b) a4-cycle adjacent to &-cycle;
(c) a4-cycle adjacent to d-cycle.

We first present Lemnid 1, whose proof was providedlin [6].

Lemma 1 [6]

(A1) 6(G) > 3.

(A2) No two adjacens-vertices.
(A3) There is na(3, 4, 4)-face.

Before showing Lemmads[2-7, we need to introduce some usefidepts, which were firstly de-
fined by Zhang in[[12].

Definition 1 For S C V(G), let G[S] denote the subgraph @f induced byS. We simply write
G — S = G[V(G)\ S]. Let L be an arbitrary list assignment 6f, and= be an(L, 1)*-coloring of
G — S. Foreachw € S, let L(v) = L(v) \ {m(u) : v € Ng_g(v)}, and we callL, aninduced
assignmenbf G[S] from 7. We also say that can be extended t&' if G[S] admits an(L,, 1)*-

coloring.

Figure 2: The configuration (Q) in Lemrha 2.

Lemma 2 Suppose thaf contains the configuratio(), depicted in Figur€]2. Let be an(L, 1)*-
coloring of G — S, whereS = {v, vy, v5, v3,v4}. Denote byL, an induced list assignment 6f5]. If
|L.(v;)| > 1foreachi € {1,---,4}, thent can be extended to the whole gra@h

Proof. Since|L.(v;)| > 1 for eachi € {1,---,4}, we can color each; with a colorr(v;) € L. (v;)
properly. Note thatL,(v)| > 2. If there exists a color if.,(v) which appears at most once on the
set{vy, v9, v3,v4}, then we assign such a colorto It is easy to check that the resulting coloring is
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an(L, 1)*-coloring and thus we are done. Otherwise, w.l.0.g., suppos) = {1,2,3}, m(vs) = 1,
and each color if2, 3} appears exactly twice on the et v5, v, v4}. W..0.9., suppose(v,) = 2.

By definition, we see that; is either a3-vertex or a lighti-vertex. We label two steps in the proof
for future reference.

(i) If d(vy) = 3, then|L.(v1)| > 2. We may assign coldr to v and then recolop; with a color in
La(v1) \ {2}.

(i) If vy is a light4-vertex, denote by, y; the other two neighbors which are different fram
andv,. Erase the color of;, colorv with 2, and recolorz; andy; with a color different from its
neighbors. We can do this sindér;) = d(y,) = 3 by definition. Next, we will show how to extend
the resulting coloring, denoted ly, to G. If 7'(ve) ¢ {7’(21), 7' (y1)}, then colorv; with a color in
L(vy) \ {2, 7'(x1)}. Otherwise, we color; with a color inL(v;) \ {2, 7'(v2)}. In each case, one can
easily check that the obtained coloring@fis an(Z, 1)*-coloring.

Therefore, we complete the proof of LemMia 2. O

Lemma 3 G satisfies the following.

(B1) A 4-vertex is adjacent to at most tvdevertices.

(B2) There isng4—,4~,4~)-face.

(B3) There is nd 5%, 4, 4)-face which is incident to two light-vertices.

(B4) There is nd-vertex incident to &5, *, 4)-face f and adjacent to twa-vertices not orb( f).
(B5) There is nd@-vertex incident to twg6, 4, 4~ )-faces and oné6, x, 4)-face.

Proof. Let L be a listassignment such tha{v)| = 3 forall v € V(G). We make use of contradiction
to show (B1)-(B5).

(B1) Suppose thatis adjacent to threg-verticesv,, v, andvs. DenoteG’ = G — {v, vy, v2, v3}. By
the minimality of G, G’ admits an(L, 1)*-coloring=. Let L, be an induced list assignment of
G — G'. Itis easy to deduce thak . (v)| > 2 and|L,(v;)| > 1 for eachi € {1,2,3}. So for
eachv;, we assign the color(v;) € L.(v;) to it. Now we observe that there exists a color in
L.(v) appearing at most once on the §et, v, v3}. We colorv with such a color. The obtained
coloring is an(L, 1)*-coloring of G. This contradicts the choice 6f.

(B2) It suffices to prove that? does not contain &, 4,4)-face by (A3). Suppos¢ = [viv5v5]
is a3-face withd(v,) = d(vy) = d(vs) = 4. For eachi € {1,2,3}, let z;, y; denote the
other two neighbors of; not onb(f). Denote byG’ the graph obtained frorty by deleting



(B3)

(B4)

(BS)

edgev,v,. By the minimality of G, G’ has an(L, 1)*-coloring 7. If 7(v1) # m(v2), then

G itself is (L, 1)*-colorable and thus we are done. Otherwise, suppdsg = m(vq). If ™

is not an(L, 1)*-coloring of the whole grapld:, then without loss of generality, assume that
m(vy) = m(vy) = m(xy) = 1 andw(vs) = 2. Moreover, none of:;’s neighbors except; is
colored with 1. First, we recolor eaeh with a color#’(v;) in L(v;) \ {m(x;), 7(y;)}, where

i € {1,2,3}. We should point out that'(v;) may be the same agv,), but it does not matter.
Note that if at most two oft’(v,), 7' (ve), 7’ (v3) are equal then the resulting coloring is an
(L, 1)*-coloring and thus we are done. Otherwise, supposerttiat) = 7'(vy) = 7'(v3).
Sincen’(vy) # 1 and1 € L(v;), we may further reassign color 1 tg to obtain an(L, 1)*-
coloring of G. This contradicts the choice 6f.

Supposef = [v vqus] is a(bt, 4, 4)-face incident to two lighti-verticesv, andvs. By defi-

nition, we see that each (i € {2,3}) is incident to two otheB-vertices, denoted by; and

y;, wWhich are not orb(f). Let G’ denote the graph obtained fro by deleting edges;vs.

Obviously,G’ has an(L, 1)*-coloring = by the minimality ofGG. Similarly, if 7(vs) # 7(v3),

thenG itself is (L, 1)*-colorable and thus we are done. Otherwise, supptse = 7(v3).

If 7 is not an(L, 1)*-coloring of G, then w.l.o.g., assume thatvy) = 7(v3) = w(z3) = 1

andr(v;) = 2. Erase the color of, and recolory, with a colora € L(y-) different from its
neighbors. IfL(ve) # {1, 2, a}, then color, with a color inL(v9) \ {1, 2, a}. Otherwise, color
vy With a. It is easy to verify that the resulting coloring is éh, 1)*-coloring of G, which is a
contradiction.

Suppose that &-vertexv is incident to a(5, x,4)-face f; = [vviv] and adjacent to twa-
verticesvs andvy. Let G’ = G — {v, vy, va, v3,v4}. By the minimality of G, G’ has an(L, 1)*-
coloringr. Let L, be an induced list assignment@f— G'. Obviously,|L,(v;)| > 1 for each
ie{l,---,4}and|L,(v)| > 2. By LemmdZ2; can be extended G, which is a contradiction.

Suppose that@vertexv is incident to twa(6, 4, 4~ )-facesf;, f3 and ong6, x, 4)-face f; such
thatd(v;) < 4 for eachi = {1,2, 3,4}, d(vs) = 4 andvs; is anS-vertex. Namelyyps is either

a 3-vertex or a lightd-vertex. LetG’ = G — {v, vy, v9, -+ ,v6}. By minimality, G’ admits an
(L, 1)*-coloringr. Denote byL, an induced list assignment 6f — G'. It is easy to verify that
|L.(v;)| > 1foreachi € {1,---,6} and|L,(v)| > 3. So we can colov; with 7 (v;) € L.(v;)

for eachi € {1,2,---,6}. If there exists a colot € L,(v) appearing at most once on the set
{v1,vq,- -+ ,v6}, then we further assign colarto v and thus obtain atL, 1)*-coloring of G.



Otherwise, each color ih.(v) appears exactly twice on the det, v, - - - , vg}. Sincevs is an
S-vertex, we can apply versions of arguments (i) and (ii) & pnoof of Lemmal2 to obtain an
(L, 1)*-coloring of G. O

Lemma 4 Suppose thaf = [uvzy]is a(3,4,m,4)-face. Then
(F1)m # 3.
(F2) x cannot be a soft-vertex.

Proof. (F1) Suppose to the contrary that= 3. LetG' = G — {u, v, x,y}. By the minimality of
G, G’ admits an(L, 1)*-coloring 7. Let L, be an induced list assignment 6f — G’. Notice that
|L.(y)| > 1, |Lr(v)| > 1, |L.(u)| > 2 and|L.(z)| > 2. First, we color with a € L,(v) and color
y with b € L.(y). Then coloru with ¢ € L.(u) \ {a} andxz with d € L,.(z) \ {b}. One can easily
check that the resulting coloring 6f is an(L, 1)*-coloring. This contradicts the assumption(af
(F2) Suppose to the contrary thatis a soft4-vertex. By definition,z has other two neighbors
whose degree are both 3, sayandz,. Observe that neither; nor z, is onb(f). LetG' = G —
{u,v,z,y, 1, x2}. Obviously,G" admits an(L, 1)*-coloringr. Let L, be an induced list assignment
of G — G'. For eachw € {v,y,x, x5}, we deduce thatl.(w)| > 1. Moreover,|L,(u)| > 2. We
first colorw with w(w) € L, (w) and coloru with a color inL, (u) \ {w(v)}. If at least one ofr; and
x9 has the same color agv), we can color: with a color different from that of andy. Otherwise,
we can colorz with a color different fromr; andy. Therefore, we achieve dii, 1)*-coloring of G,

which is a contradiction. O

Figure 3: Adjacent soft-verticesu anduv.

Lemma 5 There is no adjacent softvertices.

Proof. Suppose to the contrary thatandv are adjacent soft-vertices such thduzyv] is a4-face
andu, us, vy, vo are 3-vertices, which is depicted in Figuké 3. By Observafidon)1(h cannot be
coincided withv;, wherei, 5 € {1,2}. LetG' = G — {uy, us,v1,v9,u,v}. For eachi € {1,2},
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we coloru; andv; with a color inL,(u;) and L. (v;), respectively. IfL(u) # {m(x), 7 (u1), 7(us)},
then coloru with a € L(u) \ {n(z),7(u1),7(u2)}. It is easy to see that there exists at least one
color in L(v) \ {n(y)} which appears at most once on the §etv,,v,}. So we may assign such
a color tov. Now suppose that(u) = {n(z), 7 (u1), 7(uz)}. By symmetry, we may suppose that
L(v) = {n(y),n(v1), 7(ve)}. This implies thatr(v,) # m(vy). Thus, we can first colok with 7 (u;)

and then assign a color ix(v) \ {m(u1), 7(y)} tow. O

Lemma 6 Suppose is a 5-vertex incident to tw@-facesf; = [vv,v,] and f3 = [vvgvy]. Letvs be
the neighbour ot not belonging tof; and f5. Then the following holds.

(CL)If f1 and f5 are both(5,4~, 47)-faces, thenl(vs) > 4.

(C2)If fiisa(b,*,4)-face andfs; is a(5, x,4™)-face, theni(vs) > 4.

(C3) f1 and f3 cannot be both5, x, 4)-faces.

Proof. In each of following cases, we will show that éh, 1)*-coloring of G’ C G can be extended
to G, which is a contradiction.

(C1) We only need to show thdtvs) # 3 sinced(G) > 3 by (Al). Suppose that; is a3-vertex. Let
G' =G —{v,vy,---,vs}. By the minimality ofG, G’ has an(L, 1)*-coloring~. Let L, be an
induced list assignment 6f — G'. Itis easy to deduce that ;. (v;)| > 1 foreachi € {1,--- ,5}
and|L,(v)| > 3. So we first color each; with 7(v;) € L,(v;). Observe that there exists a
colora € L,(v) that appears at most once on the{gt v,, - - - , v5}. Therefore, we can color
v with @ to obtain anL, 1)*-coloring of G.

(C2) Suppose that(vy) = 4, d(vs) = 3 andv; andws are bothS-vertices. By definition, we see that
v; Is either a3-vertex or a lightd-vertex, where € {1,3}. LetG' = G — {v,v1, v9, v3, v5}.
By the minimality of G, G’ has an(L, 1)*-coloringr. Let L, be an induced list assignment of
G — G'. The proof is split into two cases in light of the conditiorisg.

— Assumeus is a3-vertex. It is easy to calculate thdt,(v;)| > 1 for eachi € {1,2,3,5}
and|L.(v)| > 2. By Lemmd2,r can be extended 6.

— Assumeus is a light4-vertex. By definition, letrs, y3 denote the other two neighbors of
vz hot onb(f3). Recolorxs andys with a color different from its neighbors. Next, we
will show how to extend the resulting coloring to G. DenoteL ., be the induced as-
signment ofG — G’. Notice that|L, (v;)| > 1 for eachi € {1,2,5}. If |L.(v3)] >
1, then by Lemmadl2s’ can be extended t¢:. Otherwise, we derive thak(vs) =
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{n'(x3), 7 (y3), 7' (vs4)}. First we assign a color if,.(v;) to eachv;, wherei € {1,2,5}.
It is easy to see that there is at least one color,;sdyelonging toL(v) \ {7'(v4)} that
appears at most once on the §et, vo, v5}. We assign such a colarto v. Then colorvg

with a color in{7’(x3), 7’(y3)} but different froma.

(C3) Suppose thaf; and f; are both(5, , 4)-faces such thaf(v,) = d(v4) = 4 andv; andwvs are
S-vertices. LetG’ = G — {v,vy,--- ,v4}. Obviously,G' has an(L, 1)*-coloring = by the
minimality of G. Let L, be an induced list assignment Gf— G’. We assert that; satisfies
that|L,(v;)| > 1 for eachi € {1,---,4} and|L.(v)| > 2. By Lemmd2, we can extendto
the whole grapfiz successfully. O

Figure 4: The configuration in Lemria 7.

Lemma 7 There is na3-face incident to two bad-vertices.

Proof. Suppose to the contrary that there i8-8ace [uvw] incident to two bad-verticesv andw,
depicted in Figurél4. Let’ = G — {v,w,vq,vq, v3, w1, W, ws}. By the minimality of G, G’ has
an (L, 1)*-coloring. Let L, be an induced list assignment@f— G'. Since eachv; has at most
two neighbors inG’, we deduce thatZ, (w;)| > 1 for eachi € {1,2,3}. So we first color eachy;
with a colorm(w;) € Ly (w;). If |[L.(w)| > 1, namelyL(w) # {m(u), (w1 ), 7(ws), 7(ws)}, then by
Lemmd2 we may easy extendo G, since| L. (v;)| > 1 for eachi € {1, 2, 3}. Otherwise, we deduce
that there exists a colarin L(w) \ {7(u)} that is the same as(w;) for some fixed* € {1,2,3}.
Color w with @ andv; with a colorn(v;) € L.(v;) firstly, wherei € {1,2,3}. For our simplicity,
denotel’* = {vy, vy, v3, w}.

First, suppose that there is a color, $ay L(v) \ {7 (u)}, appearing at most once on the Bét We
assign such a coldrto v. If b # a, the obtained coloring is obvious &h, 1)*-coloring. Otherwise,
assume that = a. Now we erase the colar from w. One may check that the resulting coloring,
sayn’, satisfies that each aof w;, w,, w3 has at least one possible color@Gh— G’. In other words,
|L.(s)| > 1 foreachs € {v, wy, wq, w3}. Hence, by Lemm@al2, we can easily exterido G.
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Now, w.l.0.g., suppose thdt(v) = {1,2,3}, 7(u) = 1, 7(w) = 2 and each color i§2, 3} appears
exactly twice on the sét™. It implies thatr(v,) € {2,3}. We apply versions of discussion (i) and
(i) in the proof of Lemmd[R. After doing that, one may checktthoww is colored withr(v,) and
vy is recolored with a new color, say. There are two cases left to discussr{is) = 3, namely the
new color ofv is 3, then the obtained coloring is &#, 1)*-coloring and thus we are done; otherwise,
we uncolorw. Again, it is easy to see that the resulting coloring, sé&ysatisfies thatL,..(s)| > 1

for eachs € {v, w;, ws, ws}. Therefore, we can easily extentl to G successfully by Lemmid 2.0

3.2 Discharging progress

We now apply a discharging procedure to reach a contradict8uppose that is adjacent to &-
vertexv such thatw is not incident to ang-faces. We call afree3-vertex ift(v) = 0 and apendant
3-vertex ift(v) = 1. For simplicity, we uses;(u) to denote the number of frelevertices adjacent to
u andps(u) to denote the number of pendantertices ofu. Suppose that is a soft4-vertex such
that f; = [vvjuw,| is a4-face andd(v;) = d(vs) = 3. If the opposite face tg; via v, i.e., f3, is of
degree at least, then we callv a weak4-vertex. We notice that every wedkvertex is soft but not
vice versa.

Forx € V(G) andy € F(G), let7(z — y) denote the amount of weights transferred from
to y. Suppose thaf = [v v9v5] is a 3-face. We uséd(vy),d(vs),d(vs)) — (c1,cq,c3) to denote
T(v; = f) = ¢; fori = 1,2, 3. Our discharging rules are defined as follows:

(R1) Let f = [vjv903] be a3-face. We set
(R1.1)(3,4,5%) — (0,1,3);
(R1.2)(3,5%,57) — (0,2,2);

(R1.3)
(4.4.5%) (0,1,3) if vy is alight4-vertex;
) — . ) ) _
(1,1,2) if neitherv; norus is a light4-vertex.
(R1.4)
(454 5%) (1,1,2) if vy is a badb-vertex;
I I — i ) .
(0,2,2) if neithervs norus is a bads-vertex.
(R1.5)
(5% 5+ 59) (1,2,3) if vy is a bads-vertex;
) ) — . .
(4,2,3) if none ofvy, vy, v5 is @ bads-vertex.

(R2) Suppose thatis a5"-vertex incident to a-face f = [vv,uvs]. Then
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(R2.1)7(v — f) =1if d(vy) > 4 andd(vq) > 4;
(R2.2)7(v — f) = 5 otherwise.
(R3) Suppose thatis a non-weakd-vertex incident to a-face f = [vvuws).
(R3.1) Assumel(v,) = d(v2) = 3. Then
(R3.1.)7r(v — f
(R3.1.2)7(v — f

) % if the opposite face tg via v is of degrees;

)
(R3.2) Assumel(vy) > 4 andd(vs) > 4. Then

)

)

2 otherwise.

(R3.2.1)7(v — f) = 1if at least one of; andu, is a softd-vertex;
(R3.2.2)7(v — f) = 2 otherwise.
(R3.3) Assumel(v;) = 3 andd(v,) > 4. Thent(v — f) = 2.

(R4) Every4"-vertex sends to each pendar-vertex and% to each freg3-vertex.

According to (R3), we notice that a wedkvertex does not send any charge.
We first consider the faces. Lé¢tbe ak-face.

Casek = 3. Initially w(f) = —4. Let f = [viveus] with d(v1) < d(v2) < d(vs). By (Al),
d(vy) > 3. If d(v1) = 3, thend(vs) > 4 by (A2). Together with (B2), we deduce thatis either a
(3,4,5%)-face, a3,5",51)-face, a4, 4, 5%)-face, a(4,5",5")-face ora5*, 5%, 51)-face. It follows
from (B3) and Lemmal7 that every possibility is indeed coudog rule (R1). Obviously/ takes
charge 4 in total from its incident vertices. Therefaré(f) = —4 +4 = 0.

Casek = 4. Clearly,w(f) = —2. Assume thalf = [vzuy| is a4-face. By (A2), there are no
adjacenB-vertices inG. It follows that f is incident to at most tw8-vertices. By symmetry, we have
to discuss three cases depending on the conditions of 3hestices.

e d(x) = d(y) = 3. By (F1), we deduce that at least onewfndv is of degree at least.
Moreover, if one ofu andwv is a4-vertex, say, we claim thaty cannot be weak by definition
and (B1). Hencey*(f) > —2+ 4 + 2 = 0 by (R2) and (R3).

e d(z) = 3andd(y) > 4. Note thatu andv are bothd*-vertices. Similarly, neithex norv can
be a weakl-vertex. It follows from (R3.3) and (R2) that eachivofindv sends charge at Iea%t
to f. So if one of them is &"-vertex, say, then by (R2) we have tha{v — f) = § and thus
f getsZ + 2 = 2in total from incident vertices of. Otherwise, suppos&u) = d(v) = 4.
Now by (F2),y cannot be a soft-vertex and thus not weak. Heneg,(f) > —2 + % x3=0
by (R3.2).
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e d(r) > 4andd(y) > 4. Namely, f isa (4,41 47 47)-face. If at most one of,, v, x,y is a
weak4-vertex, thenv*(f) > —2+ 2 x 3 = 0. Otherwise, by Lemnia5, assume thatndu are
weak4-vertices and thus soft. We see thét — f) = 7(y — f) = 1 by (R3.2.1) and (R2.1)
which implies thato*(f) > =2+ 1 x 2 = 0.

Casek > 5. Thenw*(f) = w(f) = 2d(f) — 10 > 0.

Now we consider the vertices. Letbe ak-vertex withk > 3 by (Al). Forv € V(G), we use
my(v) to denote the number @ffaces incident t@. So by Observationl1 (a) and (b), we derive that
t(v) < L%”)J andmy(v) < L%”)j. Furthermoret(v) + my(v) < L@j by Observatiofll (c).

Observation 2 Suppose is a4"-vertex which is incident to &-face f. Then, by (R1), we have the
following:
@71(v—f)<1lifd(v)=4;

(b) (v — f) € {3,2,2,5,1} if d(v) > 5; moreover, ifr(v — f) = 3thenfisa (5", 4)-face.

Casek = 3. Thenw(v) = —1. Clearly,t(v) < 1. If t(v) = 1, then there exists a neighbor of
sayu, so thatv is a pendans-vertex ofu. By (A2), d(u) > 4. Thus,w*(v) = -1+ 1 = 0 by (R4).
Otherwise, we obtain that*(v) = —1 + 3 x 3 = 0 by (R4).

Casek = 4. Thenw(v) = 2. Note thatt(v) < 2. If t(v) = 2, thenmy(v) = 0 andps(v) = 0. So
w*(v) > 2 —1x 2 = 0 by Observatiohl2 (a). lf(v) = 0, thennz(v) < 2 by (B1) andmy(v) < 2.
We need to consider following cases.

e my(v) = 2. W.lo.g., assume that; = [vvuvy] and f3 = [vvswu,] are incidentd-faces.
Obviously,p3(v) = 0 by Observatioi]l (b). However;(v) < 2 by (B1). By (R3),v sends
charge at most 1 tg¢;, wherei = 1,3. If n3(v) = 0, thenvs(v) = 0 and thusw*(v) >
2—1x2=0. If n3(v) = 1, saywv; is a3-vertex, thenr(v — f1) < 2 by (R3.3) and thus
w*(v) > 2—2—1—1 = 0by (R4). Now suppose that;(v) = 2. By symmetry, we have
two cases depending on the conditions of these dwertices. Ifd(v;) = d(vy) = 3, then
(v = fi1) = 2 by (R3.1.2). By (B1),u; anduv, are bothd*-vertices. Moreover, neither;
nor v, is a soft4-vertex according to Lemmda 5. So by (R3.2.2)p — f3) < % Hence
w*(v) > 2 — 2 — 2 — 1 x 2=0. Otherwise, suppose thédtv;) = d(v;) = 3, wherei € {1,2}
andj € {3,4}. We derive that*(v) > 2 — 2 x 2 — 3 x 2 =0 by (R3.3).

e my(v) = 1. W.l.o.g, assume thal f;) = 4. Thisimplies thati(f;) > 5. Again,7(v — f;) <1
by (R3). Ifn3(v) < 1then we have that*(v) > 2—1—1 = 0 by (R4). So in what follows, we
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assume thats(v) = 2. If d(vs3) = d(v4) = 3 thenv is a weakd-vertex, implying that sends
nothing tof;. Sow*(v) > 2 —1 x 2 = 0 by (R4). Ifd(v,) = d(v2) = 3, thenps(v) = 0 by
Observatiofill (b). We deduce that(v) > 2—2 —1 x 2 = 2 by (R3.1.2) and (R4). Otherwise,
supposel(v;) = d(v;) = 3, wherei € {1,2} andj € {3,4}. It follows immediately from
(R3.3)and (R4) that*(v) >2— 2 —1— 1 = 0.

e my(v) = 0. Obviouslyw*(v) > 2 —1 x 2 = 0 by (R4).

Now, in the following, we consider the cas@e) = 1. Assume thaf; is a3-face. By (Al) and
(B2), f is either a(4, 3,5")-face, a(4,4,5")-face or a(4,5%,5%)-face. Observe that,(v) < 1.
First assume thati,(v) = 0. If f; is a(4,3,5")-face, therps(v) < 1 by (B1) and hence*(v) >
2—1—1 = 0 by Observatiofl2 (a) and (R2). Next suppose thas a(4, 4, 57)-face. Ifnz(v) = 2, then
v is a light4-vertex. By (R1.3), we see thatsends nothing tg; and therefore*(v) >2—-1x2 =10
by (R4). Otherwise, at most one@f, v, is a3-vertex and hence*(v) > 2—1—1 = 0 by Observation
(a) and (R4). Finally, we suppose thatis a(4, 5", 57)-face. If neithew; noru, is a bads-vertex,
thenv sends nothing tg; by (R1.4) and thus*(v) > 2—1x2 = 0 by (R4). Otherwise, one of, and
v is a bad>-vertex. If follows directly from (C2) that;(v) < 1. Thereforew*(v) >2—-1—-1=10
by (R2). Now suppose that,(v) = 1. By Observatiofill (c), we may assume tliat= [vvswuy] is
a4-face. In this caseys(v) = 0. If d(vs) = d(vs) = 3, thent(v — f;) = 3 by (R3.1.1). It follows
from (B1) and (C2) thaf is neither g4, 3, 5*)-face nor g4, 5, 5*)-face such that, is a bad>-vertex.
So we deduce that gets nothing fromv by (R1.3), which implies that*(v) > 2 — 5 — § x 2 = 0.
If exactly one ofvs, v, is a3-vertex, thenr(v — f3) < 2 by (R3,3). Thusw*(v) >2—-1—-2—2 =0
by Observatiofl2 (a) and (R4). Otherwise, we supposevthat are both of degree at least 4. In this
caseys(v) = 0 and hencev*(v) > 2 — 1 — 1 = 0 by (R3.2) and Observatidn 2 (a).

Casek = 5. Thenw(v) = 5. Also, t(v) < 2. we have three cases to discuss.

Assumet(v) = 0. If my(v) = 0, thenw*(v) > 5 —1 x5 = 0 by (R4). If my(v) = 1, then
p3(v) < 3. Thusw*(v) > 5 — § —1x3-2x % = 0 by (R2) and (R4). Now suppose that,(v) = 2.
By Observatiofill (c), we assert thg{v) < 1. Sow*(v) >5— 35 x2—1 x4 —1=0.

Next assume(v) = 1, say f;. Thent(v — f1) < 3 by Observatiofil2 (b). Moreover, equality
holds iff f; is a (b, x,4)-face. So ifr(v — f1) = 3 then at most one ofs, vy, v5 IS a 3-vertex by
(B4). Furthermoremy(v) < 1. Whenmy(v) = 0, we deduce that*(v) > 5 -3 -1 = 1by
(R4). Whenmy(v) = 1, by symmetry, say; is a4-face, we have two cases to discusisifv) = 1,
namely,vs is a3-vertex, thenr(v — f3) < 1 by (R2) and neither; norv, takes charge from. Thus

w*(v) > 5—3—1—1=0; otherwisep;(v) = 0 and we haves*(v) > 5—-3 — 3 — 1 = 1. Now
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suppose that(v — f1) < 2. By (R2) and (R4)w*(v) > 5—2—1x3 = 0if my(v) = 0 and
w'(v) >5—-2—35—-1-2x1=0if my(v) = 1.

Now assume(v) = 2. By symmetry, assumg and f; are both3-faces. Observe that,(v) = 0.
For simplicity, denoter(v — f;) = oy and7(v — f3) = 09. Leto = max{oy,09}. If 0 < 2,
thenw*(v) > 5 —2x 2—1 = 0 by (R2). Now assume that = 3, i.e., f; gets charge} from
v. It means thaff; is a (5, , 4)-face by Observation 2. By (C3); cannot be &5, *, 4)-face. This
implies thato, < 2. Moreover, ifvs is a3-vertex, thenf; is neither a(5, x,47)-face by (C2) nor a
(5,4,4)-face by (C1). It follows from (R1.4) and (R1.5) that < 1, sincev is a bads-vertex. Thus,
w*(v) >5—-3—-1—-1=0Dby (R2). Otherwise, we easily obtain that(v) > 5—-3 —2 = 0.

Casek > 6. Notice thatt(v) < L@j. If v is incident to ad-face f;, then by (R2) we inspeat
sends a charge at mc@to fi, while % to each ofv; andv, ;. SO we may consideras a vertex which
sends charge at mo§t+ 2 % % = 2to f;. So by (R4) and Observatidh 2, we have

w*(v) > 3d(v) — 10 = 3t(v) — 2my(v) — (d(v) — 2t(v) — 2my(v))

= 2d(v) — 10 — t(v) = 7(v)

If d(v) > 7, thenr(v) > 2d(v) =10 — 22 = 3d(v) —10 > 3 x7—10 = L > 0. Now suppose that
d(v) = 6. If t(v) < 2thent(v) > 2 x 6 —10—2 = 0. So, in what follows, assume thdv) = 3 and
d(f;) = 3fori =1,3,5. Clearly,m,(v) = 0. Similarly, if there are at most two &ffaces get charge
3 x 2 in total fromv, thenw*(v) > 8 — 2 x 3 — 2 = 0. Otherwise, supposgv — f;) = 3 for each
i € {1,3,5}. By Observatiofi2 (b), we assert thatis a (6, *, 4)-face. Noting that &6, x, 4)-face is
also a(6,4~,4~)-face, we may regard as a6-vertex which is incident to tw@6, 4,4~ )-faces and
one(6, x, 4)-face. However, it is impossible by (B5).

Therefore, we complete the proof of Theorieim 1. O
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