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Abstract

The (A, D) (degree/diameter) problem consists of finding the largest possible num-
ber of vertices n among all the graphs with maximum degree A and diameter D. We
consider the (A, D) problem for maximal planar bipartite graphs, that are simple
planar graphs in which every face is a quadrangle. We obtain that for the (A, 2)
problem, the number of vertices is n = A+2; and for the (A, 3) problem, n = 3A—1
if A is odd and n = 3A — 2 if A is even. Then, we study the general case (A, D)
and obtain that an upper bound on n is approximately 3(2D + 1)(A — 2)P/2] and
another one is C(A — 2)LP/2) if A > D and C is a sufficiently large constant. Our
upper bound improve for our kind of graphs the one given by Fellows, Hell and
Seyffarth for general planar graphs. We also give a lower bound on n for maximal
planar bipartite graphs, which is approximately (A — 2)* if D = 2k, and 3(A — 3)*
if D=2k+ 1, for A and D sufficiently large in both cases.
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1 Introduction

We consider simple graphs G = G(V, E) that are bipartite, planar and with
the maximum possible number of edges. In a bipartite graph, each cycle has
an even length. If a graph can be drawn on the plane without any crossing of
its edges, then the graph is called planar. A planar bipartite graph is maximal
if when we add a new edge, the graph obtained is no longer planar or bipartite.
A maximal planar bipartite graph divides the plane only into quadrangles (see
Ringel [7]). From the Euler characteristic |V |—|E|+4|F| = 2, which relates the
numbers of vertices n = |V|, edges |E| and faces |F| in a planar embedding
of GG, and the fact that each face is incident to four edges, one obtains the
well-known relations |E| =2n — 4 and |F| =n — 2.

The (A, D) problem consists of finding the maximum possible number of
vertices n = |V in a graph G with maximum degree A and diameter D. This
is a prominent topic in graph theory, with results obtained for many cases.
Information about this problem for graphs in general can be found in the
comprehensive survey by Miller and Sirdi (6] and for planar graphs also on
the web page by Loz, Pérez-Rosés, and Pineda-Villavicencio [5].

We study the (A, D) problem for maximal planar bipartite graphs. In
this text, we omit most of the proofs because of lack of space. We show in
Section 2, that in the (A, 2) problem n = A + 2 and that only the complete
bipartite graph K A satisfies this equation. Moreover, we solve the (A, 3)
problem and prove that n = 3A — 1 if A is odd, and n = 3A — 2 if A is even.
In Section 3, we study the general case (A, D) and obtain that n is bounded
from above by approximately 3(2D + 1)(A — 2)P/2]. For the case A > D, we
also obtain the upper bound n < C(A — 2)LP/21 for some constant C. Our
upper bound improve for our kind of graphs the one given by Fellows, Hell
and Seyffarth for general planar graphs. We also give a lower bound on n for
maximal planar bipartite graphs, which is approximately (A — 2)* if D = 2k,
and 3(A —3)* if D = 2k +1, for A and D sufficiently large in both cases. The
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precise bounds are given in that section.

2 The (A,2) and (A, 3) problems in maximal planar bi-
partite graphs
For maximal planar bipartite graphs with diameter D = 2, we solve the (A, 2)

problem with the following result.

Proposition 2.1 Consider a maximal planar bipartite graph G with diameter
D = 2, mazimum degree A and mazimum number of vertices n, then n =
A + 2. The only graph that satisfies this equation is the complete bipartite
graph Ks a.

For maximal planar bipartite graphs with diameter D = 3, our main result
is the following.

Theorem 2.2 Consider a maximal planar bipartite graph G with diameter
D = 3, maximum degree A and maximum number of vertices n, then

3A —1if A is odd,

3A — 2 if A is even.

n =

3 The (A, D) problem in maximal planar bipartite graphs

3.1 An upper bound

Fellows, Hell and Seyffarth [2] obtained bounds on the (A, D) problem for
planar graphs applying the following theorem by Lipton and Tarjan [4].

Theorem 3.1 ([4]) Let G be a planar graph on n vertices containing a span-
ning tree of radius r. Then V(G) can be partitioned into sets A, B and C such
that no edges join vertices in A with vertices in B, |A] < 2n, |B| < 2n, and
|IC| < 2r+1.

Clearly, this theorem also holds for maximal planar bipartite graphs. We
give an upper bound on the number of vertices for this kind of graphs. The
cases D = 2 and D = 3 are studied in Section 2. No maximal planar bipartite
graphs with A = 3 has more than n = 8 vertices. Therefore, we assume that
D >4 and A > 4.

Our aim is to give an upper bound on n, computing from each vertex of
C' the maximum possible number of vertices at distance at most [ D/2]|. We



Figure 1. An almost maximal subgraph for A = 4.

build a subgraph adding vertices at distance ¢ from a given (root) vertex of
C in step i (0 < i < |D/2]), to obtain a planar bipartite graph (which is
almost maximal, meaning that all its interior faces are quadrangles), as shown
in Fig. 1. This is done in a similar way to the tree built to find the Moore
bound (see Miller and Siran [6]).

Let n; be the number of vertices at distance ¢ (for 0 < ¢ < |D/2]). For
the case A > 4 and D > 4, n; follows the recurrence

n; = (A —2)n;_1 — n;_s,

with ¢ > 3. Solving this recurrence equation with a generating function, we
obtain

A <A—2+\/A(A—4)>i_(A—Q—\/A(A—AL))Z'
2

A(A — 1) 2

|D/2]
Thus, the total number of vertices n = Z n; is obtained as the difference
i=0
of two geometric series. With this result, and with a similar approach as
in Fellows, Hell, and Seyffarth [2], that is using Theorem 3.1, we obtain the
following theorem.

Theorem 3.2 Let G be a maximal planar bipartite graph on n vertices with
maximum degree A > 4 and diameter D > 4. Then,
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Figure 2. Plot of the log (base 10) of the number of vertices n with respect to
the diameter D according to our bound given by Eq. (1) (black points) and the
one by Fellows, Hell and Seyffarth given by Eq. (2) (grey points), for A = 5 and
4< D <42
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which is approximately 3(2D+1) [(A — Q)LD/QJ + 1} if A is sufficiently large.

The upper bound given by Fellows, Hell and Seyffarth [2] for planar graphs

is

n < 3(2D + 1)(2AP/2 1), (2)
As our graphs are planar, this bound also applies to maximal planar bipartite
graphs, but our bound is much better for this kind of graphs. See an example
for A =5 in Fig. 2, with the values of our bound given by Theorem 3.2 and
the one by Fellows, Hell and Seyffarth.

We also give an alternative upper bound for the (A, D) problem of the
form n < C(A — 2)[P/21 for some constant C', which improves the bound of
Theorem 3.2 by a factor D, when D is even and sufficiently large. However,
it remains for further research to determine the smallest value of C' for which

(1)



this bound holds. It is based on the following theorem of Chepoi, Estellon,
and Vaxes [1]. The ball of center v € G and radius k consists of all vertices of
G at distance at most k from v.

Theorem 3.3 ([1]) There exists a constant C' such that any planar graph G
of diameter D < 2k can be covered with at most C' balls of radius k.

As for a lower bound for Theorem 3.3, Gavoille, Peleg, Raspaud, and
Sopena in [3] presented a family of planar graphs which requires C' > 4.

Corollary 3.4 There exists a constant C' such that each mazimal planar bi-

partite graph G with mazximum degree A and diameter D has at most n <
C(A — 2)IP721 yertices.

We further strengthen the bound for the (A, D) problem given in Corol-
lary 3.4 to C(A — 2)LP/21 for the case D odd and A > D. We use the
N-separator theorem by Tishchenko [8,9] to obtain the following result.

Theorem 3.5 There exists a constant C' such that each maximal planar bi-
partite graph G with maximum degree A and diameter D, for A > D, has at
most n < C(A — 2)P/2 yertices.

3.2 A lower bound

In this section we present maximal planar bipartite graphs Ga p, with given
maximum degree A and diameter D, which have a large number n = n(Ga p)
of vertices.

The graph which attains the bound of Theorem 3.6 (@) is based on the one
depicted in Fig. 1; from a given root vertex we build a planar bipartite graph
adding the maximum number of vertices at distance ¢ from the root in step i
(for 0 < i < D/2). We draw this graph on a sphere, with the root placed on
the north pole and the vertices at distance D/2 from the root are placed on
the equator. Then we add a copy of this graph on the lower hemisphere, with
the root on the south pole, and such that the vertices at distance D/2 from
the south pole are identified with those already placed on the equator. For the
bounds (b) and (¢) of Theorem 3.6, we use an iterative construction: We start
with the graph on the left of Fig. 3 and then we substitute the dotted edges
by complete bipartite subgraphs Ky, (where the value of ¢ differs according to
the subcases of Theorem 3.6). The generic step of this construction is shown
on the right of Fig 3. In each step of this construction, the diameter of the
graph increases by 2 units.



Theorem 3.6a) For any diameter D = 2k (k > 1) and mazimum degree A
(A > 5), there exists a mazimal planar bipartite graph Ga p whose number
of vertices n(Gap) is

A(A—2+\/m>k+A(A—2—\/A(A—4)>k 8

(A — 4)2k A4

which is approzimately (A — 2)*, for A and D sufficiently large.

(b) For any diameter D = 2k+1 (k > 1) and odd maximum degree A (A >9),
there exists a mazximal planar bipartite graph Ga p whose number of vertices

n(Ga,p) is
n(Gaz) =3A -1 for D =3,
n(Gas) = 3A% — 21A + 26 for D =5,
n(Ganisr) = BA% — 21A + 26 + SATDADEI 2D o ) = 9 +1

and k > 2,

which is approzimately 3(A — 3)%, for A and D sufficiently large.

(¢) For any diameter D = 2k + 1 (k > 1) and even mazimum degree A (A >
10), there ezists a maximal planar bipartite graph Ga p whose number of
vertices n(Ga p) is

n(Gas) =3A -2 for D =3,

n(Gas) = 3A% — 22A + 26 for D =5,

n(Gapker) = 307 — 22A + 26 + BA2DEIAIID g5 p = 9k + 1
and k > 2,

which is approzimately 3(A — 3)*, for A and D sufficiently large.
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Figure 3. The iterative construction.
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