
About a class of Hadamard Propelinear Codes. ⋆
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Universitat Autònoma de Barcelona
josep.rifa@deic.uab.cat,emilio.suarez@deic.uab.cat

Abstract. This article aims to explore the algebraic structure of Hadamard prope-
linear codes, which are not abelian in general but they have good algebraic and com-
binatorial properties. Concretely, we construct a subclass of Hadamard propelinear
codes which enlarges the Hadamard Z2Z4Q8-codes. Several papers have been devoted
to the relations between difference sets, t-designs, cocyclic-matrices and Hadamard
groups, and we present a link between them and a class of Hadamard propelinear
codes, which will be called full propelinear. Finally, as an exemplification, we go over
Hadamard codes of length sixteen giving a propelinear structure for all of them.
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1 Introduction

The discovery of the existence of a quaternary structure in some relevant
families of codes with better parameters than any linear code [9] has raised the
interest in the study of these codes and more generally on codes with a group
structure. Propelinear codes issued from the idea of study the relationship
between completely regular codes and regular graphs. Any propelinear code
is associated to a group structure, for instance Z2Z4-linear codes ([6,9]) are
propelinear codes. An important subclass of propelinear codes are those which
are translation invariant, which were charaterized as Z2Z4Q8-code in [14]. The
goal of this article is to study the algebraic properties of a kind of propelinear,
which we call full propelinear.

In Section 2, we present the preliminaries of propelinear codes and the con-
nections between the difference sets, t-designs, Hadamard groups, and cocyclic
matrices. In Section 3, we construct the subclass of Hadamard full propelinear
codes and anaylize some of the algebraic properties of these codes, while con-
cluding that all Hadamard codes of length sixteen are Hadamard propelinear
codes.
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2 Preliminaries

We denote by Z, Zr, Fq, the ring of integers, the ring of integers modulo r
and any representation of a finite field with q elements, respectively. Any sub-
set C of Fn

2 is called a binary code. It is denoted by dH(·, ·) and wtH(·) the
Hamming distance and the Hamming weight on Fn

q , respectively. We write
dH(C) for the minimum distance of a linear code C, which is equal to its
minimum weight, for C a linear subspace. A [n, k, d] linear code C over Fq is a
k-dimensional subspace of Fn

q . The elements of C are called codewords. If the
code is not linear we will call (n,M, d) a code of length n, cardinality M and
minimum distance equal to d. The parameter d determine the error-correcting
capability of C which is given by e =

⌊
d−1
2

⌋
. For a word v in Fn

q , the support
of v, denoted by Supp(v), is defined as the set of its nonzero positions.
Let Sn denote the symmetric group of permutations of the set {1, . . . , n}. For
any π ∈ Sn and any vector v ∈ Fn

2 , v = (v1, v2, . . . , vn), we write π(v) to denote
(vπ−1(1), vπ−1(2), . . . , vπ−1(n)). The isometries of a code C (distance preserving
bijective mappings from C to C) form a group, Iso(C). We will call Perm(C)
the group of coordinate permutations stabilizing C. Two binary codes C1, C2

of length n are said to be isomorphic if there is a coordinate permutation
π ∈ Sn such that C2 = {π(x) : x ∈ C1}. They are said to be equivalent if
there is a vector y ∈ Fn

2 and a π ∈ Sn such C2 = {y + π(x) : x ∈ C1}.
The rank of a binary code C is the dimension of the linear span of the code-
words of C. The kernel K of a binary code C is the set of words which keeps
the code invariant by translation, so K(C) = {z ∈ Fn

2 : C+z = C}. Assuming
the all zero vector is in C we have that the kernel is a linear subspace and the
dimension of K(C) will be denoted by by k(C) or simply k.

Definition 1. [15] A binary code C of length n has a propelinear structure
if for each codeword x ∈ C there exists πx ∈ Sn satisfying the following
conditions:

1. For all x, y ∈ C, x+ πx(y) ∈ C,
2. For all x, y ∈ C, πxπy = πz, where z = x+ πx(y).

For all x ∈ C and for all y ∈ Fn
2 , denote by ∗ the binary operation such

that x ∗ y = x + πx(y). Then, (C, ∗) acts over Fn
2 and, specifically, it is a

group, which is not abelian in general. The vector 0 is always a codeword
and π0 is the identity permutation. Hence, 0 is the identity element in C and
x−1 = π−1

x (x), for all x ∈ C [15]. We call (C, ∗) a propelinear code if it can
be provided with a propelinear structure.

Definition 2. The action of a group, G on a set X is regular if it is both
transitive and semiregular. Transitivity requires that for all x, y ∈ X, there is
some g ∈ G such that gx = y. Semiregularity requires that the stabilizers of
all points be trivial. Obviously, if G acts regularly on X then |G| = |X|.
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Proposition 1. [11] Let (C, ∗) be a group. C is a propelinear code if and only
if Iso(C) contains a regular subgroup acting transitively on C.

Definition 3. A Hadamard matrix is an 4n×4n matrix H containing entries
from the set {1,−1}, with the property that:

HHT = 4nI,

where I means the identity matrix.

Let H be a normalized Hadamard matrix of order 4n, so a matrix with all the
entries in the first row and first column equal to +1. let H ′ be the matrix H
after removing the first row and the first column. Let B = 1

2(H
′ + J), where

J is the all one matrix. Hadamard matrices of order 4n (n > 1), can be used
to create an special family of 2-designs.
A set T of vectors v ∈ Fn of weight w is a t-design, t-(n,w, λ), if for any vector
z ∈ Fn

2 of weight t, 1 ≤ t ≤ w, there are precisely λ vectors vi, i = 1, . . . , λ
from T, each of them covering z. A square divisible (n,m,w, λ)-design consists
of a set of nm points and a set of nm blocks, where each point is in w blocks
and each block consists of w points. Further, the point set is partitioned into
n point classes of m points each, such that two points in distinct classes are
both contained in precisely λ blocks, and no block contains distinct points in
the same class. A 2-(n,w, λ)-design is just a divisible (n, 1, w, λ)-design.
Thus, note that the before defined matrix B is the incidence matrix of a 2-
(4n− 1, 2n− 1, n− 1) design, and we can take it as an alternative definition
for a Hadamard matrix [1]. Let H be a 4n× 4n Hadamard matrix, and A the
incidence matrix defined by A = 1

2(H+J). Write Ā for the complement of A.
Then

Φ =

(
A Ā
Ā A

)
is the incidence matrix of a divisible (4n, 2, 4n, 2n)-design.

Elliott and Butson [5] define a relative (v,m, k, λ)-difference set in a
group G relative to a normal subgroup N , where |G| = vm and |N | = m.
This is a subset D of G such that |D| = k and the multiset of quotients
d1d

−1
2 of distinct elements d1, d2 ∈ D contains each element of G\N exactly λ

times, and contains no elements of N. Thus k(k− 1) = λm(v− 1) and v ̸= 2k.
Equivalently, |D∩xD| = λ, for all x ∈ G\N . Let R be a relative (4n, 2, 4n, 2n)-
difference set in a group G of order 8n relative to a normal subgroup N ≃ Z2

of G. Such a group is called a Hadamard group of order 8n [8]. In other
words, G is a Hadamard group of order 8n and identity element e, if it is a
finite group containing a 4n-subset D and an element u (called Hadamard
subset corresponding to u), such that

• D and uD are disjoints,
• aD and D intersect exactly in 2n elements, for any a ∈ G, a ̸= u, a ̸= e.
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• aD and {b, bu} intersect exactly in one element, for any a, b ∈ G.

Let G be a finite group of order 4n and let ⟨−1⟩ ≃ Z2. A (normalized,
binary, two-dimensional) cocycle is a set map ψ : G × G → Z2 satisfying
ψ(e, e) = 1 and

ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k), for all g, h, k ∈ G.

A cocycle over G is naturally displayed as a cocyclic matrix M ; that is,
under some fixed ordering of the elements of G which indexes rows, and some
(possibly different) fixed ordering of the elements of G which indexes columns,
the entry in the (g, h)th position of the cocyclic matrix is ψ(g, h), for all
g, h ∈ G.
The connection between cohomology theory and Hadamard matrices afforded
by cocyclic matrices was introduced by de Launey and Horadam. Furthermore,
in [3] it is stated that the existence of a normal relative (4n, 2, 4n, 2n) difference
set is equivalent to the existence of a cocyclic Hadamard matrix of order 4n.
In [7], Flannery proved that the concepts of Hadamard group and cocyclic
Hadamard matrix are equivalent.

Definition 4. Any binary (2n, 4n, n)-code is called a Hadamard code. Furhter,
C is said to be a Hadamard propelinear code if it is a Hadamard code and also
a propelinear code.

In [12] it was computed all possible values for two structural parameters
(rank and dimension of the kernel) of a binary Hadamard code of length a
power of two. Our interest is to deal with Hadamard codes with some kind of
algebraic structure. The most basic structure is coming from groups of order
8 which, apart from those composed by Z2 and Z4, are the cyclic Z8, the
dihedral D8 and the quaternionic Q8. The next proposition summarizes the
results we obtained.

Proposition 2. (The propelinear structures for Q8, D8, Z8)

1. The minimum lenght n for which a Hadamard propelinear structure ex-
ists for Q8 = ⟨a,b : a4 = e,a2 = b2,ab = bab−1 = a−1⟩ is n = 4.
Furthermore, this structure is unique (up to isomorphism) and is given
by:

a = (0, 1, 0, 1),b = (0, 1, 1, 0), πa = (1, 2)(3, 4), πb = (1, 3)(2, 4).

2. The unique Hadamard propelinear structure of length n for the dihedral
D8 = ⟨a, b : a4 = e, b2 = e, ab = bab−1 = a−1⟩ is given by:

a = (1, 1, 0, 0), b = (0, 1, 1, 0), πa = (1, 4)(2, 3), πb = (1, 4)(2, 3).

Furthermore, there are only two propelinear structures of length 3 (up to
isomorphism) given by:
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a = (1, 1, 0), b = (1, 0, 0), πa = (23), πb = (23).

a = (1, 0, 0), b = (0, 0, 1), πa = (12), πb = (12).

3. There is no any Hadamard propelinear structure for the cyclic group Z8 =
⟨a : a8 = e⟩. Although, there is a unique propelinear structure (up to
isomorphism) of length 4 given by:

a = (1, 1, 1, 0), πa = (1, 2, 3, 4).

3 Hadamard Full Propelinear Codes

In this section we introduce the concept of Hadamard full propelinear code
C. These codes have the property that the associated permutation πx to each
x ∈ C do not have any fix point, except for x ∈ {e,u}. We show that the
above definition is equivalent to the well known concepts of Hadamard group,
2-cocyclic matrices and relative difference sets. The section concludes showing
that all binary Hadamard codes of length 16 are full propelinear.

Definition 5. A Hadamard full propelinear code is a Hadamard propelinear
code C such that for every a ∈ C, a ̸= e, a ̸= u the permutation πa has not
any fixed coordinate and πe = πu = I.

Lemma 1. In a Hadamard full propelinear code (C, ∗) let u be the all one
vector. Then vector u is central in C and πu = I.

Let C be a Hadamard full propelinear code of length 4n. Define Dj ⊂ C
the subset of all vectors in C such that the jth coordinate is zero. Vectors in
C have 4n coordinates and we can associate each one of them to a vector in
Dj . Let x ∈ Dj such that πx(ej) = ex, where, for i ∈ {1, . . . , 4n}, ei means
the unitary vector with only one nonzero coordinate at the position ith. The
position where ex is nonzero is the associated coordinate to vector x. This
association is well defined, for a vector y ̸= x the associated coordinate is
ey ̸= ex. Let k the position where ex has the nonzero coordinate. Note that
either Dk = x ∗ Dj or Dk = u ∗ x ∗ Dj depending on the value of the kth
coordinate of vector x. Calling δx,j = e when the value of the kth coordinate
of vector x is zero and δx,j = u when the value of the kth coordinate of vector
x is one, we have Dk = δx,j ∗ x ∗Dj , for x ∈ Dj .

LetH be the normalized Hadamard matrix corresponding to C and assume
that the columns and the rows of H are indexed by the elements in D1. The
(y, x)-entry of H is zero if vector y belongs to Dk, where πx(e1) = ek, so

(y, x)-entry of H is zero if and only if y ∗ x−1 ∗ δx,1 ∈ D1. (1)
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Proposition 3. Let (C, ∗) be a Hadamard propelinear code of length 4n. Let
D1 the set of codewords with a zero in the first coordinate. Then for any a ∈ C
we have |D1 ∩ a ∗D1| ∈ {0, 4n, 2n}.

If C is a Hadamard full propelinear code of length 4n then C is a Hadamard
group in the sense of [8] and D1 is a Hadamard set corresponding to u.

Proof.

1. If a ∈ D1 and πa does not include the first position then a ∗D1 = D1 and
|D1 ∩ a ∗D1| = 4n.

2. If a /∈ D1 and πa does not include the first position then a ∗D1 = u ∗D1

and |D1 ∩ a ∗D1| = 0.
3. If πa includes the first position, say that πa(e1) = ek then Dk = δa,1∗a∗D1

and |D1 ∩ a ∗D1| = 2n.

If C is a full propelinear code the previous first two items show that |D1 ∩
a ∗D1| = 4n if and only if a = e and |D1 ∩ a ∗D1| = 0 if and only if a = u.
Hence, in this case, C is a Hadamard group.

Proposition 4. Let G be a Hadamard group with D as a Hadamard subset.
Then G is a Hadamard full propelinear code.

Proof. Let G a Hadamard group of order 8n with Hadamard subset D. We
can construct an 4n× 4n matrix H, where the rows and columns are indexed
by the elements in D. The entry (a, b) of H is 0 or 1, depending on whether
ab−1δb,1 ∈ D, where δb,1 was defined in (1). Matrix H is a Hadamard matrix
and G can be equipped with a full propelinear structure. For any a ∈ G
define πa(x) = a + xa, where x ∈ G. The map πa acts as a permutation on
the coordinates. Specifically, coordinate given by b is moved to coordinate
ba after πa. To show this, take two vectors x, y with the same value on the
coordinate given by b, so xb−1 and yb−1 simultaneously belong (respectively,
does not belong) to D. Consider the values of (a + xa) and (a + ya) on the
coordinate given by ba. This pair of values agrees or does not agree like the
values of xa and ya on the same coordinate and these last ones agree or do
not agree depending on whether xa(ba)−1 and ya(ba)−1 simultaneously belong
(respectively, do not belong) to D. Thus, we reached the same condition that
the starting one. Also we see that πa(e) = a+ ea = e. Finally, we can define
the propelinear structure on G given by a ∗ b = a + πa(b) = ba. This proves
the statement.

It is well known that there are five inequivalent Hadamard codes of length
16. One of them is linear, another is a Z2Z4-linear code and the other three
cannot be realized as Z2Z4-linear codes, [6]. However, one of those can be
realized as a Z2Z4Q8-code, more specifically, as a pure Q8-code [4]. As an
exemplification of the concepts of the current paper we present the last two
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as Hadamard full propelinear codes. The group structure of these two prope-
linear codes correspond to a generalized quaternion group of order 32. This
generalized quaternion group is given by Q32 = ⟨a,b : a16 = e,a8 = b2,ab =
bab−1 = a−1⟩. To construct these propelinear codes take a,b ∈ F16

2 and their
corresponding permutations πa, πb ∈ S4.
The code C with rank equal to 8 and dimension of the kernel 2 is given by:

a = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1),
b = (0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1),
πa = (8, 7, 6, 5, 4, 3, 2, 1)(16, 15, 14, 13, 12, 11, 10, 9),
πb = (1, 9)(2, 16)(3, 15)(4, 14)(5, 13)(6, 12)(7, 11)(8, 10).

and the remainder elements are computed giving the code C = ⟨a,b⟩.
The code D = ⟨a,b⟩, with rank equal to 8 and dimension of the kernel 1, is
computed taking:

a = (1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0),
b = (0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0),
πa = (8, 7, 6, 5, 4, 3, 2, 1)(9, 10, 11, 12, 13, 14, 15, 16),
πb = (1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16).

Note that in both cases, the group Π = {πx : x ∈ G}, where G is either C or
D, is the dihedral group of order 16.
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