
ar
X

iv
:1

50
2.

01
14

7v
1 

 [
m

at
h.

C
O

] 
 4

 F
eb

 2
01

5

MINIMUM DEGREES AND CODEGREES OF MINIMAL

RAMSEY 3-UNIFORM HYPERGRAPHS

DENNIS CLEMENS AND YURY PERSON

Abstract. A uniform hypergraph H is called k-Ramsey for a hypergraph F ,
if no matter how one colors the edges of H with k colors, there is always a
monochromatic copy of F . We say that H is minimal k-Ramsey for F , if
H is k-Ramsey for F but every proper subhypergraph of H is not. Burr,
Erdős and Lovasz [S. A. Burr, P. Erdős, and L. Lovász, On graphs of Ramsey

type, Ars Combinatoria 1 (1976), no. 1, 167–190] studied various parameters

of minimal Ramsey graphs. In this paper we initiate the study of minimum
degrees and codegrees of minimal Ramsey 3-uniform hypergraphs. We show
that the smallest minimum vertex degree over all minimal k-Ramsey 3-uniform

hypergraphs for K
(3)
t

is exponential in some polynomial in k and t. We also
study the smallest possible minimum codegrees over minimal 2-Ramsey 3-

uniform hypergraphs.

1. Introduction and New Results

A graph G is said to be Ramsey for a graph F if no matter how one colors the
edges ofG with two colors, say red and blue, there is a monochromatic copy of F (we
write G −→ (F )2 for this). A classical result of Ramsey [12] states that for every
F there is an integer n such that Kn is Ramsey for F . Moreover, generalizations
to more than two colors and to hypergraphs hold as well [12]. We say that G is
minimal Ramsey for F if G is Ramsey for F but every proper subgraph of G is
not. More generally, we denote by Mk(F ) the set of minimal graphs G with the
property that no matter how one colors the edges of G with k colors, there is a
monochromatic copy of F in it, and refer to these as minimal k-Ramsey graphs
for F . There are many challenging open questions concerning the study of various
parameters of minimal k-Ramsey graphs for various F . The most studied ones
are the classical (vertex) Ramsey numbers rk(F ) := minG∈Mk(F ) v(G) and the size
Ramsey number r̂k(F ) := minG∈Mk(F ) e(G), where v(G) is the number of vertices
in G and e(G) is its number of edges. To determine the classical Ramsey number
r2(Kt) is a notorously difficult problem and essentially the best known bounds are
2(1+o(1))t/2 and 2(2+o(1))t due to Spencer [14] and Conlon [3].

Burr, Erdős and Lovász [1] were the first to study other possible parameters of
the class M2(Kt). In particular they determined the minimum degree s2(Kt) :=
minG∈M2(Kt) δ(G) = (t − 1)2 which looks surprising given the exponential bound
on the minimum degree of Kn with Kn −→ (Kt)2 and n = r2(Kt) (it is not
difficult to see that such Kn is indeed minimal 2-Ramsey for Kt). Generalizing
their results, Fox, Grinshpun, Liebenau, Person and Szabó [7] studied the minimum
degree sk(Kt) := minG∈Mk(Kt) δ(G) for more colors showing a general bound on

sk(Kt) ≤ 8(t− 1)6k3 and proving quasiquadratic bounds in k on sk(Kt) for fixed t.
Further results concerning minimal Ramsey graphs were studied in [2, 9, 13, 15, 8].

In this paper we initiate the study of minimal Ramsey 3-uniform hypergraphs and
provide first bounds on various notions of minimum degrees for minimal Ramsey
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hypergraphs. Generally, an r-uniform hypergraph H is a tuple (V,E) with vertex

set V and E ⊆
(

V
r

)

being its edge set. We define link(v), the link of a vertex v ∈ V ,
to be the edges of H that contain v, minus the vertex v (thus, these form an (r−1)-
uniform hypergraph). Formally, the edge set of link(v) is {e \ {v} : v ∈ e ∈ E}.
The random r-uniform hypergraph H(r)(n, p) is the probability space of all labeled
r-uniform hypergraphs on the vertex set [n] where each edge exists with probability
p independently of the other edges. In this paper we will be dealing exclusively with
3-uniform hypergraphs, thus the links of their vertices are just the edges of some
graph.

Ramsey’s theorem holds for r-uniform hypergraphs as well as shown originally by
Ramsey himself [12], and we writeG −→ (F )k, if no matter how one colors the edges
of the r-uniform hypergraph G, there is a monochromatic copy of F . We denote by

K
(r)
t the complete r-uniform hypergraph with t vertices, i.e. K

(3)
t = ([t],

(

[t]
r

)

), and

by the hypergraph Ramsey number rk(F ) the smallest n such that K
(r)
n −→ (F )k.

While in the graph case the known bounds on r2(Kt) are only polynomially far

apart, already in the case of 3-uniform hypergraphs the bounds on r2(K
(r)
t ) differ

in one exponent: 2c1t
2

≤ r2(K
(3)
t ) ≤ 22

c2t

for some absolute positive constants c1

and c2. More generally, it holds tr−1(c1t
2) ≤ r2(K

(r)
t ) ≤ tr(c2t) for some absolute

constants c1 = c1(r), c2 = c2(r) > 0 and where ti(x) is the tower function defined
by t1(x) := x, ti(x) := 2ti−1(x). For further information on hypergraph Ramsey
numbers we refer the reader to the standard book on Ramsey theory [10] and for
newer results to the work of Conlon, Fox and Sudakov [4].

Given ℓ ∈ [r − 1], we define the degree deg(S) of an ℓ-set S in an r-uniform
hypergraph H = (V,E) as the number of edges that contain S and the minimum
ℓ-degree δℓ(H) := minS∈(Vℓ )

deg(S). For two vertices u and v we simply write

deg(u, v) for the codegree deg({u, v}).
Similar to the graph case we extend verbatim the notion of minimal Ramsey

graphs to minimal Ramsey r-uniform hypergraphs Mk(F ) in a natural way. That
is, Mk(F ) is the set of all minimal k-Ramsey r-uniform hypergraphsH with H −→
(F )k. We define

sk,ℓ(K
(r)
t ) := min

G∈Mk(K
(r)
t )

δℓ(G), (1)

which extends the introduced graph parameter s2(Kt). It will be shown actually

that s2,2(K
(3)
t ) is zero and thus it makes sense to ask for the second smallest value

of the codegrees. This motivates the following parameter s′k,ℓ(K
(r)
t ):

s′k,ℓ(K
(r)
t ) := min

G∈Mk(K
(r)
t )

(

min

{

degG(S) : S ∈

(

V (G)

ℓ

)

, degG(S) > 0

})

.

We prove the following results on the minimum degree and codegree of minimal

Ramsey 3-uniform hypergraphs for cliques K
(3)
t .

Theorem 1. The following holds for all t ≥ 4 and k ≥ 2

2
1
2kt(1−o(1)) ≤

(

rk(Kt−1)

2

)

≤ sk,1(K
(3)
t ) ≤ k20kt

4

. (2)

For the lower bound see [4].

Theorem 2. Let t ≥ 4 be an integer. Then,

s2,2(K
(3)
t ) = 0 and s′2,2(K

(3)
t ) = (t− 2)2.

Observe that with s′2,2 we ask for the smallest positive codegree, while for s2,2 we
also allow the codegree to be zero. This in particular means that in any minimal
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2-Ramsey hypergraph H for K
(3)
t we have that a pair of vertices u and v are either

not contained in a common edge or have codegree at least (t− 2)2.

Methods. The methods we are going to use are generalizations of signal senders
introduced first by Burr, Erdős and Lovász in [1], and generalized later by Burr,
Nešetřil and Rödl [2] and by Rödl and Siggers [13], that we combine with proba-
bilistic arguments analyzing certain properties of random 3-uniform hypergraphs.

Organization of the paper. In the next section, Section 2, we generalize “al-
most” Ramsey graphs, i.e. graphs whose edge colorings without a monochromatic
copy of some complete graph Kt impose certain color pattern, first introduced by
Burr, Erdős and Lovász [1] to hypergraphs. Then we study in Section 3 the vertex

degree for minimal k-Ramsey 3-uniform hypergraphs for K
(3)
t , while in Section 4

we look into the case of codegrees in minimal 2-Ramsey 3-uniform hypergraphs for

K
(3)
t .

2. BEL-Gadgets for 3-uniform hypergraphs

First we show a lemma that asserts the existence of a 3-uniform hypergraph H
and two edges f , e ∈ E(H) with |f ∩ e| = 2 and e(H [e ∪ f ]) = 2 so that H is

not k-Ramsey for K
(3)
t with the property that any k-coloring of E(H) without a

monochromatic K
(3)
t colors the edges e and f differently. We will refer to such

hypergraphs that impose certain structure on K
(3)
t -free colorings as BEL-gadgets.

Moreover, we refer in the following to a coloring without a monochromatic copy of
F as an F -free coloring.

Lemma 3. Let t ≥ 4 and k ≥ 2 be integers. Then there exist a 3-uniform hyper-
graph H and two edges eH, fH ∈ E(H) with |fH ∩ eH| = 2 and e(H[eH ∪ fH]) = 2
such that the following properties hold:

(1) H 6→
(

K
(3)
t

)

k
,

(2) for every k-coloring c of E(H) which avoids monochromatic copies of K
(3)
t we

have that c(eH) 6= c(fH).

Proof. Set m = rk(K
(3)
t ) and define a hypergraph F ′ on the vertex set [m] as

follows: delete from K
(3)
m all edges that contain vertices m − 1 and m. It is easy

to see that then F ′ 6−→ (K
(3)
t )k. Indeed, fix a k-coloring of E(K

(3)
m−1) without

a monochromatic K
(3)
t , then extend this coloring to E(F ′) by coloring each edge

(x, y,m) with the color of (x, y,m− 1). Since every copy of K
(3)
t in F ′ may contain

at most one of the vertices m− 1 and m, we see F ′ 6−→ (K
(3)
t )k.

Define Fi := ([m], E(F ′) ∪ {{j,m− 1,m} : j ≤ i}) and set F := Fℓ where ℓ is

maximal such that Fℓ is not k-Ramsey for K
(3)
t but Fℓ+1 is (this is possible since

Fm−2 = K
(3)
m is k-Ramsey for K

(3)
t by the choice of m = rk(K

(3)
t )).

For a coloring ψ : E(F ) → [k] without a monochromatic copy of K
(3)
t we define

an admissible pattern (a1, . . . , ak), where ai denotes the number of edges in the
color i containing both vertices m− 1 and m. Moreover, with P we denote the set
of all admissible patterns. In particular, by the choice of ℓ we have that P 6= ∅.

Notice that
∑

i∈[k] ai = ℓ for every (a1, . . . , ak) ∈ P , and ac 6∈ {0, ℓ} for every

c ∈ [k]. Indeed if, say, there is a pattern (a1, . . . , ak) ∈ P with aj = 0 for some
j ∈ [k], then we could take a corresponding k-coloring of the edges of Fℓ avoid-

ing monochromatic copies of K
(3)
t with pattern (a1, . . . , ak), which then we would

extend to a k-coloring of E(Fℓ+1) without a monochromatic copy of K
(3)
t just by
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coloring the edge {ℓ+ 1,m− 1,m} in color j. Indeed, this new edge cannot parti-

cipate in a monochromatic copy of K
(3)
t in this coloring, as its color is j, while all

other edges containing both m− 1 and m have colors different from j. But this is
a contradiction to the definition of ℓ.

Moreover, notice that the following holds: If ϕ : [ℓ] → [k] is a coloring of the first
ℓ vertices of F such that (|ϕ−1(1)|, . . . , |ϕ−1(k)|) ∈ P , then there exists a coloring

c : E(F ) → [k] avoiding monochromatic copies of K
(3)
t such that c(i,m − 1,m) =

ϕ(i) for every i ∈ [ℓ].
Now, let H be an ℓ-uniform hypergraph. We say that a coloring ψ : V (H) → [k]

is admissible, if for every edge e ∈ E(H) we have (c1, . . . , ck) ∈ P where ci denotes
the number of vertices in e colored i.

Now we proceed analogously to Claim 2 from [1]. We find an ℓ-uniform hy-
pergraph H∗ with girth(H∗) ≥ 3 (this means that any two distinct edges e and
f satisfy |e ∩ f | ≤ 1) and two vertices x, y ∈ V (H∗) with degH∗(x, y) = 0 such
that there exist admissible colorings for H∗ and in every such coloring the color of
x differs from the color of y. For completeness we provide this elegant argument
here. We start with an ℓ-uniform hypergraph H with girth(H) ≥ 3 and chromatic
number χ(H) ≥ k + 1. It was shown that such hypergraphs exist by Erdős and
Hajnal in [6].

Then, as every k-coloring of the vertices ofH yields a monochromatic edge, while
(ℓ, 0, . . . , 0),. . . ,(0, . . . , 0, ℓ) /∈ P , H does not have admissible colorings. Now, we
can take a subhypergraph H ′ of H which is minimal (with respect to the number
of edges) for the property of not having admissible k-colorings. For an arbitrary
edge f = {x1, . . . , xℓ} ∈ H ′ and arbitrary vertices y1, . . . , yℓ 6∈ V (H ′), we define
a sequence of hypergraphs Hi on V (H ′) ∪ {y1, . . . , yi} with Hi = H ′ − f + fi,
where fi = {y1, . . . , yi, xi+1, . . . , xℓ}. By the definition, H0 = H ′ does not have
admissible colorings while Hℓ does, so there is a minimal index i ∈ [ℓ] such that
Hi−1 does not have admissible colorings, but Hi does. We now set H∗ = Hi and
x := xi, y := yi. It is clear that girth(H∗) ≥ 3, degH∗(x, y) = 0 and that H∗ has
admissible colorings. Moreover, for any such admissible k-coloring x and y need
to have distinct colors as otherwise, by taking an admissible coloring of Hi with x
and y colored the same and then identifying x with y would yield an admissible
coloring of Hi−1, a contradiction.

Finally, we define a 3-uniform hypergraph H as follows. First we introduce for
each e ∈ E(H∗) a set Ve := e ∪ {m− 1,m} ∪ ({e} × {ℓ + 1, . . . ,m− 2}) and then
we define a 3-uniform hypergraph Fe which is a copy of F = Fℓ that contains all
vertices from e as follows:

Fe :=

(

Ve,

(

Ve
3

)

\ {{(e, i),m− 1,m} : i = ℓ+ 1, . . . ,m− 2}

)

.

The hypergraph H is then the union over all Fe’s: H := ∪e∈E(H∗)Fe. In other
words, we obtain H by placing Fe, a copy of F , for each edge e ∈ E(H∗) so that
the vertices {1, . . . , ℓ} of F are identified with e. Further, we set eH = {m−1,m, x}
and fH = {m−1,m, y}. Before showing that H, eH and fH fulfill the requirements
(1) and (2), we establish the following claim.

Claim 4. Any copy K of K
(3)
t in H is contained in Fe for some e ∈ E(H∗).

Proof. Assume first V (K) \ ({m − 1,m} ∪ V (H∗)) 6= ∅ holds. Thus K contains a
vertex of the form (e, s), whose link is a graph on m− 1 vertices which must form
the set Ve \{(e, s)}, by construction of H. This, with H[Ve] = Fe, then implies that
K ⊆ Fe.

From now on we may assume that V (K) ⊆ V (H∗) ∪ {m − 1,m}. First we

assume that K ∼= K
(3)
4 and m − 1,m ∈ V (K). Thus, the remaining two vertices,
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call them a and b, must lie in some edge e ∈ E(H∗) (since {m, a, b} is an edge
in H [V (H∗) ∪ {m− 1,m}]), which implies K ⊆ Fe. Finally, we may assume that

|V (K) ∩ V (H∗)| ≥ 3 and setting S := V (K) ∩ V (H∗) we have K[S] ∼= K
(3)
s , s ≥ 3.

Since H [V (H∗)] consists of cliques K
(3)
ℓ that intersect in at most one vertex as

girth(H∗) ≥ 3, this implies that S has to be contained in some e ∈ E(H∗). Again
this yields K ⊆ Fe. �

Recall that we defined eH = {m − 1,m, x} and fH = {m − 1,m, y}. By con-
struction of H and since degH∗(x, y) = 0, it is clear that {x, y,m−1} and {x, y,m}
are nonedges in H. We now prove that this choice of H, eH and fH fulfills the
requirements (1) and (2) of our lemma:

(1) By construction there exists an admissible coloring c : V (H∗) → [k]. Notice
that two hypergraphs Fe and Ff for distinct e, f ∈ E(H∗) have in common
both vertices m− 1 and m and additionally at most one further vertex v (and
if so also the edge {v,m − 1,m}), by construction and since girth(H∗) ≥ 3.
Since H consists of copies of F that intersect pairwise in at most one edge
(containing both vertices m − 1 and m), we can find colorings of these copies

without monochromatic K
(3)
t so that these colorings agree on common edges

{v,m− 1,m}. Indeed, for every edge e ∈ E(H∗) we have an admissible color
pattern (d1, . . . , dk) ∈ P which depends on c. Thus, there exists a coloring

ϕe : E(Fe) → [k] without monochromatic K
(3)
t so that ϕe({v,m−1,m}) = c(v)

for all v ∈ e.
We need to show that the union of ϕe over all e ∈ E(H∗) gives us a k-coloring

ϕ of E(H) without monochromatic copies of K
(3)
t . By Claim 4, any copy of

K
(3)
t is contained in Fe for some e ∈ E(H∗). Since E(Fe) does not contain any

monochromatic K
(3)
t under ϕe, the requirement (1) is verified.

(2) Now, let c : E(H) → [k] be a coloring on the edge set of H which avoids

monochromatic copies of K
(3)
t . Define ϕ : V (H∗) → [k] with ϕ(v) := c({v,m−

1,m}). Then ϕ is an admissible coloring of H∗ and thus, by the properties of
H∗ we know that c(eH) = ϕ(x) 6= ϕ(y) = c(fH). �

We introduce the following definition of a path in hypergraphs. In an r-uniform
path (or r-path for short notation) with t edges e1,. . . ,et the vertices of ∪i∈[t]ei
are ordered linearly and the edges are consecutive segments with the property that
ei∩ei+1 6= ∅ for all i ∈ [t−1]. We will refer to the edges e1 and et as ends of such a
path. In particular, in our notation the path is a vertex-connected subhypergraph
of a so-called tight path on the vertex set ∪i∈[t]ei (where in a tight path it is
|ei ∩ ei+1| = r − 1).

Further we say that two edges e and f have distance distH(e, f) := s in H if any
r-uniform path in H with ends e and f contains at least s vertices and there exists
at least one such path with exactly s vertices. We call a path from e to f with
distH(e, f) vertices a shortest path. If no such path exists, we set distH(e, f) := ∞.

First we show a lemma that allows us to obtain a “rainbow star”.

Lemma 5. Let t ≥ 4 and k ≥ 2 be integers. Then there exist a 3-uniform hyper-
graph H, a 2-element set S ⊆ V (H) and edges e1, . . . , ek ∈ E(H) with ei ∩ ej = S
(for all i 6= j ∈ [k]), |∪i∈[k] ei| = k+2 and e(H[∪i∈[k]ei]) = k such that the following
properties hold:

(1) H 6→
(

K
(3)
t

)

k
,

(2) for every k-coloring c of E(H) which avoids monochromatic copies of K
(3)
t we

have that {c(ei) : i ∈ [k]} = [k], that is the colors of eis are all distinct.
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Proof. Take
(

k
2

)

vertex-disjoint copies (Hij)1≤i<j≤k of the hypergraph H′ as guar-
anteed to us by Lemma 3, and let eij and fij be the corresponding edges of H′ that
satisfy Property (2) of Lemma 3. We start with the hypergraphH on the vertex set
[k+2] and with edge set {{i, k + 1, k + 2} : i ∈ [k]}, and we set S := {k+1, k+2}.

We construct the hypergraph H as follows. For each i < j ∈ [k] we identify the
vertices k + 1 and k + 2 (arbitrarily) with the two vertices from Cij := eij ∩ fij
and the only vertex from eij \ Cij is identified with i while the only vertex from
fij \ Cij is identified with j. Otherwise the hypergraphs Hij don’t intersect each
other in further vertices. We claim that the properties from Lemma 5 are satisfied.

Indeed, since Hij 6→
(

K
(3)
t

)

k
and by the symmetry of the colors, we can assume

that there is a K
(3)
t -free coloring ϕij of Hij such that ϕ(eij) = i and ϕ(fij) = j

(and i < j). We obtain the coloring ϕ of H by coloring the corresponding edges
according to appropriate ϕijs. This is possible since the edge {i, k + 1, k + 2} is
identified with eij and fℓi for ℓ < i < j, and these are colored with the color i. The

coloring ϕ is K
(3)
t -free, since each copy of K

(3)
t is contained in one of the Hijs. To

see Property (2), we use the Property (2) of Lemma 3, which asserts that in any

K
(3)
t -free coloring of H the edges {i, k + 1, k + 2} and {j, k + 1, k + 2} are colored

differently (with i < j). �

The next lemma allows us to construct a BEL-gadget that colors two edges the
same.

Lemma 6. Let t ≥ 4 and k ≥ 2 be integers. Then there exist a 3-uniform hy-
pergraph H and edges e and f with |e ∩ f | = 2 and e(H[e ∪ f ]) = 2 such that the
following properties hold:

(1) H 6→
(

K
(3)
t

)

k
,

(2) for every k-coloring c of E(H) which avoids monochromatic copies of K
(3)
t we

have that c(e) = c(f).

Proof. We take two vertex-disjoint copies of H1 and H2 as asserted by Lemma 5,
along with the corresponding edges e1,1,. . . , e1,k for H1 and e2,1,. . . , e2,k for H2

respectively. Recall that there exist S1 and S2 such that eℓ,i ∩ eℓ,j = Sℓ for all
i < j ∈ [k] and ℓ ∈ [2]. We obtain the hypergraph H by identifying the edge e1,i
with e2,i for all 2 ≤ i ≤ k such that the vertices from S1 are identified with those
from S2.

We set e := e1,1 and f := e2,1 and claim that H fulfills the requirements. By
the symmetry of the colors, we may assume that eℓ,i may be colored with the color
i for all i ∈ [k] and ℓ ∈ [2], and then we may extend the coloring by coloring

the (otherwise disjoint) copies H1 and H2 separately. Since any copy of K
(3)
t is

contained fully either in H1 or in H2, we see H 6→
(

K
(3)
t

)

k
. On the other hand,

any K
(3)
t -free coloring ϕ of H is a K

(3)
t -free coloring of H1 and H2, and from the

properties from Lemma 5 we have that the edges eℓ,1,. . . , eℓ,k are colored differently
for each ℓ ∈ [2] and, by the construction, ϕ(e1,i) = ϕ(e2,i) for all 2 ≤ i ≤ k. Thus,
we also have ϕ(e1,1) = ϕ(e2,1). �

Finally, we construct BEL-gadgets with monochromatic edges in every K
(3)
t -free

coloring that are “far” from each other.

Lemma 7. Let s, t ≥ 4 and k ≥ 2 be integers. There exist a 3-uniform hypergraph
H and two edges e, f ∈ E(H) such that the following properties hold:

(1) H 6→
(

K
(3)
t

)

k
,
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(2) e and f have distance at least s, and

(3) for every k-coloring ϕ on E(H) which avoids monochromatic copies of K
(3)
t we

have that ϕ(e) = ϕ(f).

Proof. First we construct a hypergraph H which is not k-Ramsey for K
(3)
t , but

contains two edges e and f at distance 5 that are colored the same by any k-

coloring of E(H) without monochromatic K
(3)
t . We apply Lemma 6 twice and

obtain 3-uniform hypergraphs H1 with edges eH1 = {a, b, x1} and fH1 = {a, b, y1}
and H2 with edges eH2 = {c, d, x2} and fH2 = {c, d, y2} respectively. Furthermore,
we may assume V (H1) ∩ V (H2) = ∅. We define a new hypergraph H by taking
both H1 and H2 and identifying y1 with d, b with c, and a with y2. Observe that

in H any copy of K
(3)
t is completely contained within one of the Hi’s. This implies

that H 6→ (K
(3)
t )k. Indeed, according to Lemma 3 we can color H1 and H2 without

monochromatic K
(3)
t . Moreover, by swapping the colors appropriately if necessary,

we may do so that the edges fH1 ∈ E(H1) and fH2 ∈ E(H2) receive the same color.

This gives us a K
(3)
t -free coloring of E(H).

Next we use the Property (2) of Lemma 6 which asserts that any K
(3)
t -free

coloring colors the edges {a, b, x1} and {a, b, y1} the same, and the colors of {c, d, x2}
and {c, d, y2} are the same as well. Since {a, b, y1} = {c, d, y2} in H, the edges

f := {c, d, x2} and e := {a, b, x1} are colored the same through any K
(3)
t -free

coloring of H. We thus arrived at a hypergraph H that satisfies the following
properties:

(a ) there are two edges e and f at distance 5,

(b ) H 6→
(

K
(3)
t

)

k
,

(c ) for every k-coloring c on E(H) which avoids monochromatic copies of K
(3)
t we

have that c(e) = c(f).

Next we proceed iteratively. We take two isomorphic hypergraphs H1 and H2,
along with edges e1, f1 and e2, f2 respectively, which satisfy (b ) and (c ). Assuming
that distH1(e1, f1) = d = distH2(e2, f2) for some d ≥ 5, we now aim to construct a
hypergraphH ′, along with edges e, f , such that (b ) and (c ) hold and distH′(e, f) ≥
d+ 1. For the construction, we identify the edge f1 with e2 such that none of the
vertices of e1 and f2 are identified, and we set e = e1 and f = f2. This way the
properties (b ) and (c ) are naturally preserved in H ′.

Thus, it remains to show that the distance between e1 and f2 is at least d + 1
in H ′. Let v1, . . . , vℓ be the vertices of a shortest path from e1 to f2 in H ′ in
the linear order, i.e. {v1, v2, v3} = e1 and {vℓ−2, vℓ−1, vℓ} = f2. Let i ≥ 4 be the
smallest index such that vi 6∈ V (H1). If i < d − 1, then we have vi−1 ∈ f1 and in
case {vi−3, vi−2, vi−1} 6∈ E(H1) holds then we additionally have {vi−4, vi−3, vi−2} ∈
E(H1) and vi−2 ∈ f1. In any case we would obtain a 3-path from e1 to f1 with at
most d − 1 vertices which consists of some edges of P contained in {v1, . . . , vi−1}
and of the edge f1, a contradiction to distH1(e1, f1) = d. Thus we may assume
i ≥ d − 1. If, additionally, d > 5 then it follows, that none of the vertices from f2
are among {v1, . . . , vi−1} resulting in distH′(e1, f2) ≥ d + 1. If d = 5, then since
none of the vertices of e1 and f2 are identified, distH′ (e1, f2) ≥ 6 > d. �

Now we are in position to build non-Ramsey hypergraphs which assert more

structure in any K
(3)
t -free coloring.

Theorem 8. Let k ≥ 2 and t ≥ 4 be integers. Let H be a 3-uniform hypergraph with

H 6→
(

K
(3)
t

)

k
and let c : E(H) → [k] be a k-coloring which avoids monochromatic



MINIMAL RAMSEY HYPERGRAPHS 8

copies of K
(3)
t . Then, there exists a 3-uniform hypergraph H with the following

properties:

(1) H 6→
(

K
(3)
t

)

k
,

(2) H contains H as an induced subhypergraph, and

(3) for every coloring ϕ : E(H) → [k] without a monochromatic copy of K
(3)
t , the

coloring of H under ϕ agrees with the coloring c, up to a permutation of the k
colors.

(4) If there are two vertices a, b ∈ V (H) with degH(a, b) = 0 then degH(a, b) = 0
as well.

(5) If |V (H)| ≥ 4 then for every vertex x ∈ V (H) \ V (H) there exists a vertex
y ∈ V (H) such that degH(x, y) = 0.

Proof. Let a hypergraph H and a K
(3)
t -free coloring c be given according to the

theorem. We take a hypergraph H′ as asserted to us by Lemma 5, along with the
edges e′1,. . . , e

′
k, such that V (H)∩V (H′) = ∅. Moreover, let H ′ be given according

to Lemma 7, along with edges e′ and f ′ of distance at least 7. Then, for every edge
g ∈ E(H), we take a copy Hg of the hypergraph H ′ on a set of new vertices, along
with edges eg and fg representing e′ and f ′. We identify the edge g with eg and
if g is colored i under the coloring c then we identify fg with e′i. We denote the
obtained hypergraph by H.

We verify the desired properties one by one.

(1) It is easily seen that every copy F of K
(3)
t is contained either in H or in

H′ or in some Hg with g ∈ E(H). Indeed, if such a copy contains a vertex
x ∈ V (Hg) \ (eg ∪ fg) for some g ∈ E(H), then every other vertex v ∈ V (F )
needs to share an edge with x, which by construction needs to be part of Hg.
Thus, V (F ) ⊆ V (Hg) and F ⊆ H[V (Hg)] = Hg. Otherwise, F contains no such
vertices x, and therefore, V (F ) ⊆ V (H)∪V (H′). By construction ofH we know
that distHg

(eg, fg) ≥ 7 for all g ∈ E(H) and thus degH[V (H)∪V (H′)](u, v) = 0

for every u ∈ V (H) and v ∈ V (H′), which yields F ⊆ H or F ⊆ H′.
Now, we color E(H) according to c. As V (H) ∩ V (H′) = ∅ we can easily

extend c to a K
(3)
t -free coloring of E(H) ∪ E(H′) such that e′i is colored i for

each i ∈ [k]. Here we use that by Lemma 5, the edges e′1,. . . , e
′
k have different

colors in any K
(3)
t -free coloring. Moreover, observe that for every g ∈ E(H) we

then have that eg and fg receive the same color.

Next, we can extend further the above coloring to a K
(3)
t -free coloring of

E(H), by Lemma 7 and since the Hgs have only already colored edges from

{e′1, . . . , e
′
k} in common. Thus, H 6→

(

K
(3)
t

)

k
.

(2) H occurs as an induced subhypergraph in H since distHg
(eg, fg) ≥ 6 and thus

eg ∩ fg = ∅ for all g ∈ E(H).

(3) Given any K
(3)
t -free coloring ϕ of H, it holds by Lemma 5 that e′1,. . . , e

′
k are

colored differently. Moreover, by Lemma 7, the edges fg and eg are colored the
same (for each g ∈ e(H)) in such a way that the ith color class of H under c
obtains the color ϕ(e′i) for each i ∈ [k].

(4) Suppose that degH(a, b) = 0 for some two distinct vertices a, b ∈ V (H). By
construction, any two of the auxiliary hypergraphs (i.e. H′, H , Hgs) overlap
only in one edge (if at all). This way it follows that degH(a, b) = 0.

(5) Finally, take some x ∈ V (H) \ V (H). If x ∈ V (H′) \
(

∪g∈E(H)V (Hg)
)

, then
degH(x, y) = 0 for all y ∈ V (H). If x ∈ V (Hg) for some g ∈ E(H), then
again, by construction of H, we have that x 6∈ g ⊆ V (H) and therefore every
y ∈ V (H) \ g satisfies degH(x, y) = 0. �
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3. Minimum degrees of minimal Ramsey 3-uniform hypergraphs

Before we prove Theorem 1, we first show the existence of an appropriate BEL-
gadget which will be crucial for the upper bound (2) in Theorem 1.

Lemma 9. Let t ≥ 4 and k ≥ 2 be integers. There is a 3-uniform hypergraph H on

n = k10kt
4

vertices, which can be written as an edge-disjoint union of k 3-uniform
hypergraphs H1, . . . , Hk with the following properties:

(a ) for every i ∈ [k], Hi contains no copies of K
(3)
t , and

(b ) for any coloring c of the edges of the complete graph Kn with k colors there
exists a color x ∈ [k] and k sets S1, . . . , Sk that induce copies of Kt−1 in

color x under the coloring c such that H1[S1] ∼= . . . ∼= Hk[Sk] ∼= K
(3)
t−1.

Before we proceed we state a simple quantitative version of Ramsey’s theorem.

Fact 10. Let n ≥ rk(ℓ). Then, in any k-coloring of E(Kn) there are at least

nℓ

k(rk(ℓ))ℓ

monochromatic copies of Kℓ in the same color.

Proof. Fix an arbitrary red-blue-coloring ϕ of E(Kn). First observe that we find
in any subset of rk(ℓ) vertices of Kn a monochromatic Kℓ. We estimate pairs of
subsets of [n] of the form (R,L) with |R| = rk(ℓ), |L| = ℓ and L ⊆ R such that

all edges from
(

L
2

)

are colored the same. As a lower bound we obtain
(

n
rk(ℓ)

)

, while

the upper bound is the number of monochromatic copies of Kℓ under ϕ times the
number of rk(ℓ)-sets containing a particular copy (which is

(

n−ℓ
rk(ℓ)−ℓ

)

). This yields

that there are at least
(

n− ℓ

rk(ℓ)− ℓ

)−1(
n

rk(ℓ)

)

=
n · . . . · (n− ℓ+ 1)

rk(ℓ) · . . . (rk(ℓ)− ℓ+ 1)
≥

(

n

rk(ℓ)

)ℓ

monochromatic Kℓs. Hence the claim follows. �

The rough idea of the proof of Lemma 9 is to take k random hypergraphs of
appropriate density on the same vertex set and then show that even after deleting

common edges and edges that lie in copies of K
(3)
t we are left with k edge-disjoint

hypergraphs that satisfy condition (b ). We now turn to the details.

Proof of Lemma 9. We choose with foresight

p := C · n
−6

(t−1)(t−2) , where C := k100k/t and n = k10kt
4

. (3)

We use the simple upper bound on rk(t) ≤ kkt−2k+1 and we define f(t) := k−kt2

so that, with Fact 10, there are at least f(t) · nt−1 monochromatic copies of Kt−1

in one of the colors in any k-coloring of the edges of Kn.
We take k independent random 3-uniform hypergraphsH ′

1, . . . , H
′
k ∼ H(3)(n, p),

i ∈ [k], on the vertex set [n], and we observe first that

E(e(H ′
i ∩H

′
j)) =

(

n

3

)

p2, E(e(H ′
i)) =

(

n

3

)

p and

E(number of copies of K
(3)
t in H ′

i) =

(

n

t

)

p(
t
3)

for all i 6= j ∈ [k].
For i ∈ [k], we denote by E′

i the (random) set of edges in H ′
i that either belong

to some copy of K
(3)
t in H ′

i or to the edge set of some hypergraph H ′
j , j ∈ [k] \ {i}.

We set Hi := H ′
i \ E

′
i. Obviously, H1,. . . , Hk satisfy (a ). To prove the lemma, it
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thus remains to show that (b ) is satisfied with positive probability. This will be
immediate from the following two claims.

Claim 11. With probability larger than 3/5, the following holds. Each H ′
i contains

at most 0.2 · f(t) · nt−1p(
t−1
3 ) copies of K

(3)
t−1 that contain an edge from E′

i.

Proof. Fix an i ∈ [k]. We first consider the number X of copies of K
(3)
t−1 in H ′

i that

contain an edge e which is part of some copy of K
(3)
t in H ′

i . For a pair (T1, T2) of
subsets of [n] with |T1| = t− 1 and |T2| = t we define the indicator variable I(T1,T2)

by

I(T1,T2) :=

{

1, if H ′
i [T1]

∼= K
(3)
t−1 and H ′

i[T2]
∼= K

(3)
t

0, else

and observe that

X ≤
t−1
∑

s=3

∑

(T1,T2):
|T1∩T2|=s

I(T1,T2). (4)

By the linearity of expectation it follows that

E(X) ≤
t−1
∑

s=3

nt−1 ·

(

t− 1

s

)

· nt−s · p(
t−1
3 )+(t3)−(

s

3)

≤ 2tn2t−1p(
t−1
3 )+(t3)

t−1
∑

s=3

n−sp−(
s

3). (5)

Each term above is dominated by the sum of its first and last summand. Indeed,

let g(s) := n−sp−(
s

3), then for 3 ≤ s ≤ t− 2, we have

g(3)

g(s)
= ns−3 · p(

s
3)−1 =

[

np
s2+2

6

]s−3

≥
[

np
s(s+1)

6

]s−3

≥
[

np
(t−1)(t−2)

6

]s−3

≥ 1.

Thus, we obtain E(X) ≤ 2tn2t−1p(
t−1
3 )+(t3) · t ·

(

g(3) + g(t − 1)
)

. And we further

upper bound E(X) with (3) by

E(X) ≤ t2tnt−1p(
t−1
3 )

(

ntp(
t
3)n−3p−1 + ntp(

t
3)n−t+1p−(

t−1
3 )

)

(3)
= t2tnt−1p(

t−1
3 )

(

C(
t

3)n−3p−1 + n−2C(
t−1
2 )

)

(3)

≤ t2tnt−1p(
t−1
3 )

(

k50kt
2/3 + k50kt

)

n−2

(3)

≤ 2t+log2 t+1k50kt
2/3k−20kt4nt−1p(

t−1
3 ) ≤

1

50k
f(t)nt−1p(

t−1
3 ). (6)

So, by Markov’s inequality, with probability at least 1− 1
5k we have,

X ≤ 0.1f(t)nt−1p(
t−1
3 ).

Next, consider the number Y of copies of K
(3)
t−1s in H ′

i that contain an edge e

from the intersection E(H ′
i) ∩ E(H ′

j) for a fixed j 6= i. For a subset S ∈
(

[n]
t−1

)

and

an edge e ∈
(

S
3

)

let

I(S,e) :=

{

1, if H ′
i[S]

∼= K
(3)
t−1 and e ∈ E(H ′

j)

0, else
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so that Y ≤
∑

(S,e) I(S,e). Then,

E(Y ) ≤ nt−1

(

t− 1

3

)

· p(
t−1
3 )+1 (3)

= nt−1p(
t−1
3 )

(

t− 1

3

)

k100k/tk−
60kt4

(t−1)(t−2)

≤ nt−1p(
t−1
3 )t3k25kk−60kt2 ≤

1

50k3
f(t)nt−1p(

t−1
3 ).

By Markov’s inequality, with probability at least 1− 1
5k2 we then have

Y ≤
1

10k
f(t)nt−1p(

t−1
3 ).

In particular, with probability at least 3/5 it holds for all i ∈ [k] that H ′
i contains at

most 0.2 · f(t) · nt−1p(
t−1
3 ) copies of K

(3)
t−1 that contain an edge from E′

i. Therefore
the claim follows. �

Claim 12. The following holds with probability at least 2/3. For every coloring
ψ : E(Kn) → [k] there is a color x such that for every i ∈ [k], there are at least

0.5f(t)nt−1p(
t−1
3 ) monochromatic copies F of Kt−1 in color x with

(

V (F )
3

)

⊆ E(H ′
i).

Proof. Fix an i ∈ [k]. Let ψ : E(Kn) → [k] be an arbitrary coloring. Then there
is a color x such that there are at least f(t)nt−1 monochromatic copies of Kt−1

under coloring ψ which all have the same color x (by Fact 10). We fix a family F =
{F1, . . . , Fm} of exactly m = f(t)nt−1 such copies (say lexicographically smallest

ones). Now, denote with XF ,i the number of such Fj ∈ F with
(

V (Fj)
3

)

⊆ E(H ′
i).

For every Fj ∈ F let

XFj ,i =

{

1, if
(

V (Fj)
3

)

⊆ E(H ′
i)

0, else

and observe that XF ,i =
∑

F∈F XF,i. We define λ := E(XF ,i) = f(t)nt−1 · p(
t−1
3 ).

Observe that by exploiting the choice of p and n in (3) we obtain

λ = k−kt2nt−1C(
t−1
3 )n−t+3 = k−kt2k50k(t−1)(t−2)(t−3)/(3t)n2. (7)

Let

∆i :=
∑

F,F ′∈F

(V (F )
3 )∩(V (F ′)

3 )6=∅

E(XF,iXF ′,i).

Next we estimate ∆i as follows (since each XF,i counts a copy of the complete
3-uniform hypergraph on the vertex set V (F ), we can classify pairs of these copies
according to the number s of common vertices):

∆i ≤ |F|
t−1
∑

s=3

(

t− 1

s

)

nt−1−sp2(
t−1
3 )−(s3) ≤ f(t) · n2t−2p2(

t−1
3 )2t

t−1
∑

s=3

n−sp−(
s

3),

and thus exactly as in the previous claim, Claim 11, we estimate the sum by

t
(

n−3p−1 + n−t+1p−(
t−1
3 )

)

, which leads to the upper bound

∆i ≤ t2tλ
(

nt−1p(
t−1
3 )n−3p−1 + nt−1p(

t−1
3 )n−t+1p−(

t−1
3 )

)

=

t2tλ
(

C(
t−1
3 )(pn)−1 + 1

)

(3)
= 2t+log2 tλ

(

k
100k

t [(t−1
3 )−1]k−10kt4+ 60kt4

(t−1)(t−2) + 1

)

≤ 22tλ.

(8)
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Now with Janson’s inequality (see e.g. Theorem 2.14 in [11]) we obtain

P(XF ,i ≤ 0.5λ) ≤ exp(−λ2/(8∆i))
(8)

≤ exp(−2−2t−3λ)

(7)

≤ exp(−2−2t−3k−kt2+50k(t−1)(t−2)(t−3)/(3t)n2) ≤

exp(−2−2t−3k−kt2+50kt2/32n2) ≤ exp(−k−2t−3+9t2/8n2) ≤ exp(−k7n2).

This tells us that for the color x with probability at least 1 − k exp(−k7n2) all

graphs H ′
i, i ∈ [k], contain at least 0.5 · f(t) · nt−1p(

t−1
3 ) copies F of Kt−1 in color

x and with
(

V (F )
3

)

⊆ E(H ′
i). Since there are k(

n
2) different colorings of E(Kn),

we may apply the union bound to see that the probability that there is a coloring

ψ : E(Kn) → {red, blue} not satisfying the claim is at most k(
n
2) · k exp(−k7n2) <

1/3. �

With positive probability the Claims 11 and 12 hold. So fix H ′
1, . . . , H

′
k that

satisfy the assertions of these claims. Recall that Hi = H ′
i \E

′
i and we only need to

verify (b ) as H1,. . . , Hk obviously satisfy (a ). Let ψ : E(Kn) → [k] be an arbitrary
coloring. Claim 12 asserts that there is a color x such that for every i ∈ [k], there

are at least 0.5·f(t)·nt−1p(
t−1
3 ) monochromatic copies F ofKt−1 in color x and such

that
(

V (F )
3

)

⊆ E(H ′
i). By Claim 11, for each i ∈ [k], at most 0.2 · f(t) · nt−1p(

t−1
3 )

of these copies satisfy
(

V (F )
3

)

6⊆ E(Hi), and thus condition (b ) is satisfied. �

3.1. Proof of Theorem 1. A lower bound on sk,1(K
(3)
t ). The proof of the lower

bound is easy. In fact, it follows from the bound on the Ramsey number rk(Kt) ≥

k(1+o(1))t/2 and is as follows. Take a minimal k-Ramsey hypergraph H for K
(3)
t

such that δ(H) = sk,1(K
(3)
t ) and let v ∈ V (H) be a vertex of minimum degree.

By minimality of H, we have H \ {v} 6−→ (K
(3)
t )k and fix an edge coloring ϕ that

certifies this. Since H −→ (K
(3)
t )k it follows that the link graph linkH(v) is Ramsey:

linkH(v) −→ (Kt−1)k. Therefore: sk,1(K
(3)
t ) = deg(v) ≥ r̂k(Kt−1) =

(

rk(Kt−1)
2

)

≥

k(1+o(1))t, where r̂k(Kℓ) is the size-Ramsey number for Kℓ and it was shown by

Erdős, Faudree, Rousseau and Schelp [5] that r̂k(Kℓ) =
(

rk(Kℓ)
2

)

.

An upper bound on sk,1(K
(3)
t ). Let H be the 3-uniform hypergraph as asserted by

Lemma 9 along with the hypergraphs H1, . . . , Hk that satisfy the conditions (a )

and (b ). We fix the following K
(3)
t -free k-coloring c of E(H): we color all edges

from Hi with color i ∈ [k]. Let further H′ be the hypergraph as guaranteed by
Theorem 8 for given H and c. We define the hypergraph H by adding to H′ a new

vertex v whose link is linkH(v) :=
(

V (H)
2

)

. So degH(v) =
(

n
2

)

< k20kt
4

as asserted

by Lemma 9. In the following we argue that H′ 6−→ (K
(3)
t )k but H −→ (K

(3)
t )k.

It then follows immediately that every Ramsey subhypergraph of H (in particular

minimal Ramsey subhypergraph ofH) forK
(3)
t needs to contain the vertex v, whose

degree is less than k20kt
4

. Thus, once these two properties are proven, the upper
bound follows.

In fact, H′ 6−→ (K
(3)
t )k is asserted by Theorem 8. So, we only need to focus

on showing that H −→ (K
(3)
t )k. For contradiction, suppose that there is a color-

ing ϕ : E(H) → [k] without monochromatic copies of K
(3)
t . We then know by the

Property (3) from Theorem 8 that E(H1), . . . , E(Hk) are all colored monochro-
matically, but in different colors. W.l.o.g. we may assume that, for each i ∈ [k],

Hi is colored with the color i. Now, we define a coloring ψ :
(

V (H)
2

)

→ [k] with
ψ({u1, u2}) = ϕ({u1, u2, v}). Then, according to Lemma 9 there is a color x and
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the sets S1, . . . , Sk ∈
(

V (H)
t−1

)

such that
(

S1

2

)

, . . . ,
(

Sk

k

)

are monochromatic under ψ

in color x, while for every i ∈ [k] we have that H [Si] ∼= K
(3)
t−1 is colored i. But this

implies immediately that we found a monochromatic clique H[Sx ∪ {v}] ∼= K
(3)
t in

color x. A contradiction. �

4. Minimum codegrees of minimal Ramsey 3-uniform hypergraphs

In this section we prove Theorem 2 by showing that s2,2(K
(3)
t ) = 0 and that

s′2,2(K
(3)
t ) = (t − 2)2. Our proof strategy is similar to that of [1, 7]: for the lower

bound we rather provide an adhoc argument, while for the upper bound we employ
the BEL-gadgets, Theorem 8, combined with a natural construction that we “plant”
via a BEL-gadget (which is an almost Ramsey hypergraph).

Proof of Theorem 2.

Lower bound argument for s′2,2. We first prove that s′2,2(K
(3)
t ) ≥ (t − 2)2. Take a

minimal 2-Ramsey hypergraph H for K
(3)
t . Fix any two vertices u and v ∈ V (H)

with degH(u, v) > 0. We aim to show that degH(u, v) ≥ (t − 2)2. So, assume the
opposite, i.e. degH(u, v) < (t− 2)2.

Let H ′ be the subhypergraph obtained from H by deleting all edges containing

both vertices u and v. Since H is Ramsey-minimal, H ′ 6→
(

K
(3)
t

)

2
. Thus, there is a

coloring c with red and blue of E(H ′) which does not create a monochromatic copy

of K
(3)
t . Define N(u, v) := {w ∈ V (H) : {u, v, w} ∈ E(H)}, thus degH(u, v) =

|N(u, v)|. Take a longest sequence B1,. . . ,Bk of vertex disjoint sets of size t − 2
in N(u, v), such that both Bi ∪ {u} and Bi ∪ {v} span only blue edges under the
coloring c in H . By assumption on the codegree degH(u, v), we know that k < t−2.

Next we can extend the coloring c as follows. For each edge e = {u, v, w} ∈ E(H)
with w ∈

⋃

Bi we set c(e) = red, while for all other edges e = {u, v, w} ∈ E(H) we
set c(e) = blue. We claim that under this coloring there is no monochromatic copy

of K
(3)
t in H . Indeed, if there were a monochromatic subgraph F isomorphic to

K
(3)
t , then necessarily u, v ∈ V (F ) (since E(H ′) were colored without monochro-

matic K
(3)
t ). If F is red, then by construction F can have at most one vertex

from each of the sets Bi and no vertex from N(u, v) \
⋃

Bi, so |V (F )| < t, a con-
tradiction. If F is blue, then it cannot contain vertices from

⋃

Bi, and therefore
V (F ) ⊆ (N(u, v) \

⋃

Bi) ∪ {u, v}. But then, we could extend the sequence of Bis
by the set V (F ) \ {u, v}, in contradiction to its maximality. So, under the assump-

tion degH(u, v) < (t − 2)2 we conclude that H 6→ (K
(3)
t )2, a contradiction. Thus,

we need to have degH(u, v) ≥ (t − 2)2 for every u, v ∈ V with degH(u, v) > 0.

Therefore, s′2,2(K
(3)
t ) ≥ (t− 2)2.

Upper bound argument for s′2,2. First we provide a hypergraph H with a prescribed

coloring of E(H) without a monochromatic K
(3)
t . We set V (H) := [(t−2)2]∪{a, b}

and we further partition the vertices of [(t− 2)2] into (t− 2) equal-sized sets V1,. . . ,
Vt−2. Next we choose the edges for H as follows:

E(H) :=

t−2
⋃

i

(

Vi
3

)

∪

{

e ∪ {w} : e ∈

(

Vi
2

)

for some i ∈ [t− 2], w ∈ {a, b}

}

∪

{

f : f ∈

(

[(t− 2)2]

3

)

, |f ∩ Vi| ≤ 1 ∀i ∈ [t− 2]

}

∪

{

e ∪ {w} : e ∈

(

[(t− 2)2]

2

)

, |e ∩ Vi| ≤ 1 ∀i ∈ [t− 2], w ∈ {a, b}

}

.

(9)
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Thus, H is obtained from the clique K
(3)
(t−2)2+2 on the vertex set

⋃

Vi∪{a, b}, where

we delete all edges that contain both a and b and moreover we delete all edges that
cross exactly two different Vis and contain neither a nor b. Next we provide a red-
blue-coloring c of the edges of H as follows: the edges contained in Vi ∪ {a} and in
Vi ∪{b} for i ∈ [t− 2] are colored blue, while the other edges of H are colored red –
thus the edges in the first line of (9) are colored blue, while the edges defined in the
second and third line of (9) are colored red. It is immediate that such a coloring

does not yield a monochromatic copy of K
(3)
t . Indeed, a blue copy of K

(3)
s cannot

use vertices from different sets Vi and, since degH(a, b) = 0, it also cannot contain

both vertices a, b, which gives s ≤ t − 1. Similarly, a red copy of K
(3)
s can use at

most one vertex from each Vi and, as degH(a, b) = 0, it also cannot contain both
vertices a, b, which again gives s ≤ t− 1.

Applying Theorem 8 to the colored hypergraph H for this coloring c, we obtain a
3-uniform hypergraph H which contains H as an induced hypergraph, which is not

2-Ramsey for K
(3)
t and such that any red-blue K

(3)
t -free coloring ϕ of E(H) agrees

on E(H) with the coloring c up to permutation of the two colors. Also, Theorem 8
asserts that degH(a, b) = 0. Next we define H′ by adding to H all (t − 2)2 edges
{a, b, u} where u ∈ [(t− 2)2].

Let us see why H′ −→ (K
(3)
t )2. Fix any coloring ϕ of E(H′) and assume that

no copy of K
(3)
t is monochromatic in H′ under ϕ. Since H ⊆ H′, it follows that the

color pattern c as described above (up to permutation) is enforced in H . Assume
w.l.o.g. that E(H) is colored according to c. Then if there is a set Vi such that all

edges {v, a, b} are colored blue for all v ∈ Vi this would yield a blue copy of K
(3)
t .

So, assume that for every Vi there is at least one edge {vi, a, b} which is colored red

for some vi ∈ Vi. Then {a, b, v1, . . . , vt−2} forms a red clique K
(3)
t . Thus, in any

case, we find a monochromatic copy of K
(3)
t , i.e. H −→ (K

(3)
t )2. Moreover, since

H is not 2-Ramsey for K
(3)
t , any minimal 2-Ramsey subhypergraph of H′ must

contain edges that contain both a and b. This shows s′2,2(K
(3)
t ) ≤ (t− 2)2.

In fact, notice that by the previous discussion of the lower bound on s′2,2, any

such minimal 2-Ramsey subhypergraph of H′ must contain all the (t − 2)2 edges
that contain both a and b. This will be important in the following proof.

Showing s2,2(K
(3)
t ) = 0. This looks surprising at the first sight since taking K

(3)
n

with n = r2(K
(3)
t ) and then deleting all edges that contain two distinguished vertices

gives a non-Ramsey hypergraph (which suggests s2,2(K
(3)
t ) > 0). However this is

not the case and it will follow from the above construction of the hypergraph H′.

As argued above, any minimal Ramsey subhypergraph of H′ for K
(3)
t has to

contain all (t−2)2 edges that contain a and b. Thus, any such minimal hypergraph

H′′ contains all vertices of H . Next we argue that H′′[V (H)] 6−→ (K
(3)
t )2. Indeed,

by construction of H′, we observe that H′[V (H)] ⊇ H′′[V (H)] contains exactly

(t− 2) + (t− 2)t−2 copies of K
(3)
t , namely exactly (t− 2) ones that are induced on

Vi ∪ {a, b} for some i ∈ [t − 2], and (t − 2)t−2 ones that contain one vertex from

each of the Vis and additionally a and b. There are no further copies of K
(3)
t since

H [
⋃

Vi] contains only copies of K
(3)
t−2 which either cross all Vis or are equal to some

H [Vi]. It is now easy to see that H′[V (H)] 6−→ (K
(3)
t )2 as follows. We can color

the edges of H′′[V (H)] uniformly at random with colors red and blue. Then, the

expected number of monochromatic copies ofK
(3)
t is [(t−2)+(t−2)t−2]·21−(

t
3) < 1,

as t ≥ 4, i.e. there exists a 2-coloring which avoids monochromatic copies of K
(3)
t .

Thus, H′′ has to contain at least one further vertex x 6∈ V (H). Then, since
|V (H)| = (t − 2)2 + 2 ≥ 6, it follows by Property (5) of Theorem 8 that there
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exists a vertex y ∈ V (H) such that 0 = degH′(x, y) ≥ degH′′(x, y). Therefore,

s2,2(K
(3)
t ) = 0. �

5. concluding remarks

In this paper we studied the smallest minimum degree and codegree of minimal

Ramsey 3-uniform hypergraphs for complete hypergraphsK
(3)
t , t ≥ 4. In particular

we showed that the smallest minimum degree s2,1(K
(3)
t ) of minimal 2-Ramsey 3-

uniform hypergraph lies between 2t and 240t
4

. It would be interesting to determine
the right order of the exponent. We leave the study of minimal Ramsey r-uniform
hypergraphs for r ≥ 4 for future work.
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minimal Ramsey graphs for multiple colours, preprint, 18 pages. 1, 4
8. , What is Ramsey-equivalent to a clique?, J. Comb. Theory Ser. B 109 (2014), 120–133.

1
9. J. Fox and K. Lin, The minimum degree of Ramsey-minimal graphs, J. Graph Theory 54

(2006), 167–177. 1
10. R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, second ed., Wiley-

Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New
York, 1990, A Wiley-Interscience Publication. 1
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