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Abstract

Let L be a set of n lines in the plane, and let C be a convex curve in the plane, like a
circle or a parabola. The zone of C in L, denoted Z(C,L), is defined as the set of all cells
in the arrangement A(L) that are intersected by C. Edelsbrunner et al. (1992) showed
that the complexity (total number of edges or vertices) of Z(C,L) is at most O(nα(n)),
where α is the inverse Ackermann function. They did this by translating the sequence
of edges of Z(C,L) into a sequence S that avoids the subsequence ababa. Whether the
worst-case complexity of Z(C,L) is only linear is a longstanding open problem.

Since the relaxation of the problem to pseudolines does have a Θ(nα(n)) bound, any
proof of O(n) for the case of straight lines must necessarily use geometric arguments.

In this paper we present some such geometric arguments. We show that, if C is a circle,
then certain configurations of straight-line segments with endpoints on C are impossible.
In particular, we show that there exists a Hart–Sharir sequence that cannot appear as a
subsequence of S.

The Hart–Sharir sequences are essentially the only known way to construct ababa-free
sequences of superlinear length. Hence, if it could be shown that every family of ababa-
free sequences of superlinear-length eventually contains all Hart–Sharir sequences, it would
follow that the complexity of Z(C,L) is O(n) whenever C is a circle.

1 Introduction

Let L be a set of n lines in the plane. The arrangement of L, denoted A(L), is the partition
of the plane into vertices, edges, and cells induced by L. Let C be another object in the
plane. The zone of C in L, denoted Z(C,L), is defined as the set of all cells in A(L) that
are intersected by C. The complexity of Z(C,L) is defined as the total number of edges, or
vertices, in it.

The celebrated zone theorem states that, if C is another line, then Z(C,L) has complexity
O(n) (Chazelle et al. [4]; see also Edelsbrunner et al. [6], Matoušek [15]).

If C is a convex curve, like a circle or a parabola, then Z(C,L) is known to have complexity
O(nα(n)), where α is the very-slow-growing inverse Ackermann function (Edelsbrunner et
al. [6]; see also Bern et al. [3], Sharir and Agarwal [24]). More specifically, the outer zone
of Z(C,L) (the part that lies outside the convex hull of C) is known to have complexity
O(n), whereas the complexity of the inner zone is only known to be O(nα(n)). Whether the
complexity of the inner zone is linear as well is a longstanding open problem [3, 24].

∗An extended abstract of this paper appeared in EuroComb 2015 (Electronic Notes in Discrete Mathematics
49:221–231, 2015).
†gabrieln@ariel.ac.il. Department of Computer Science, Ariel University, Ariel, Israel.
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The gap between the upper and the lower bound is completely negligible for all practical
purposes, but the question is interesting from a purely mathematical point of view.

In this paper we make progress towards proving that the inner zone of a circle in an
arrangement of lines has linear complexity. Since we find it easier to work with a parabola
than with a circle, throughout this paper we will take C to be the parabola y = x2. The two
problems are equivalent by a projective transformation, as we will explain.

1.1 Davenport–Schinzel sequences and their generalizations

Let S be a finite sequence of symbols, and let s ≥ 1 be a parameter. Then S is called a
Davenport–Schinzel sequence of order s if every two adjacent symbols in S are distinct, and if
S does not contain any alternation a · · · b · · · a · · · b · · · of length s+ 2 for two distinct symbols
a 6= b. Hence, for s = 1 the “forbidden pattern” is aba, for s = 2 it is abab, for s = 3 it is
ababa, and so on.

The maximum length of a Davenport–Schinzel sequence of order s that contains only n
distinct symbols is denoted λs(n). For s ≤ 2 we have λ1(n) = n and λ2(n) = 2n−1. However,
for fixed s ≥ 3, λs(n) is slightly superlinear in n.

DS sequences of order 3 The case s = 3 is the one most relevant to us. Hart and
Sharir [9] (see also [16, 24]) constructed a family of sequences that achieve the lower bound1

λ3(n) ≥ nα(n) − O(n); and they also proved the asymptotically matching upper bound
λ3(n) ≤ O(nα(n)). Klazar [12] subsequently improved the upper bound to λ3(n) ≤ 2nα(n) +
O(n

√
α(n)) (recently, Pettie [21] improved the lower-order term to O(n)).

Nivasch [16] showed that λ3(n) ≥ 2nα(n)−O(n). Hence, λ3(n) = 2nα(n)±O(n). Nivasch’s
construction is an extension of the Hart–Sharir construction, in the sense that Nivasch’s
sequences contain the Hart–Sharir sequences as subseqeunces.2 Geneson [8] made a nice
cosmetic improvement to Nivasch’s construction.

DS sequences of higher orders For s = 4 we have λ4(n) = Θ(n · 2α(n)), and in general,
λs(n) = n · 2Θ(poly(α(n))) for fixed s ≥ 4, where the polynomial in the exponent is of degree
roughly s/2. See Sharir and Agarwal [24], and subsequent improvements by Nivasch [16] and
Pettie [21].

Generalized DS sequences A generalized Davenport–Schinzel sequence is one where the
forbidden pattern is not restricted to be abab · · · , but it can be any fixed subsequence u. In
order for the problem to be nontrivial we must require S to be k-sparse—meaning, every k
adjacent symbols in S must be pairwise distinct—where k = ‖u‖ is the number of distinct sym-
bols in u. For example, if we take u = abcaccbc, then S must not contain any subsequence of
the form a · · · b · · · c · · · a · · · c · · · c · · · b · · · c for |{a, b, c}| = 3, and every three adjacent symbols
in S must be pairwise distinct.

We denote by Ex(u, n) the maximum length of a k-sparse, u-avoiding sequence S on n
distinct symbols, where k = ‖u‖. For every fixed forbidden pattern u, Ex(u, n) is at most

1The bound claimed in [24] is λ3(n) ≥ (1/2)nα(n)−O(n), because a factor of 2 is lost in interpolation; this
problem is fixed in [16].

2This can be shown with an argument similar to that of Lemma 5.7 below, which is beyond the scope of
this paper.
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slightly superlinear in n: Ex(u, n) = O
(
n · 2poly(α(n))

)
, where the polynomial in the exponent

depends on u (Klazar [10], Nivasch [16], Pettie [22]).
Similarly, if U = {u1, u2, . . . , uj} is a set of patterns, then Ex(U, n) denotes the maximum

length of a sequence that avoids all the patterns in U , is k-sparse for k = min{‖u‖ : u ∈ U},
and contains only n distinct symbols.

Some relevant results on generalized DS sequences Let us mention some results on
generalized DS sequences that are relevant to us:

• Ex({ababa, ab cac cbc}, n) = Θ(nα(n)) (Pettie [19]). Indeed, the ababa-free sequences of
Hart and Sharir [9] avoid ab cac cbc as well.3 See Section 5 below.

• Ex(ab cacbc, n) = Θ(nα(n)) (Pettie [20]). The lower bound is achieved by a modification
of the Hart–Sharir construction, which does not avoid ababa anymore.

• It is unknown whether Ex({ababa, ab cacbc}, n) or Ex({ababa, ab cac cbc, (ab cac cbc)R}, n)
are superlinear in n (where uR denotes the reversal of u). We conjecture that they are
both O(n).

Applications of generalized DS sequences Generalized Davenport–Schinzel sequences
have found a few applications. Cibulka and Kynčl [5] used them to bound the size of sets of
permutations with bounded VC-dimension. Valtr [26], Fox et al. [7], and Suk and Walczak [25]
have used Generalized DS sequences to bound the number of edges in graphs with no k pairwise
crossing edges; the papers [26, 7] use the “N -shaped” forbidden pattern a1 · · · a` · · · a1 · · · a`,
and the papers [7, 25] use the forbidden pattern (a1 · · · a`)m.

Pettie considered Ex({abababa, abaabba}, n) for analyzing the deque conjecture for splay
trees [17], and Ex({ababab, abbaabba}, n) for analyzing the union of fat triangles in the plane [18].

1.2 Transcribing the zone into a Davenport–Schinzel sequence

Let L be a set of n lines in the plane, and let C be a convex curve in the plane. We can
assume without loss of generality that C is either closed (like a circle) or unbounded in both
directions (like a parabola), by prolonging C if necessary. Thus, C divides the plane into two
regions, one of which equals the convex hull of C.

Here we recall the argument of Edelsbrunner et al. [6] showing that the complexity of the
part of Z(C,L) that lies inside the convex hull of C is O(nα(n)).

If C is unbounded in both directions then assume without loss of generality that it is x-
monotone and it is the graph of a convex function, by rotating the whole picture if necessary.

Also assume general position for simplicity: No line of L is vertical, no two lines are
parallel, no three lines are concurrent, no line is tangent to C, and no two lines intersect C
at the same point. (Perturbing L into general position can only increase the complexity of
Z(C,L).) We can also assume that every line of L intersects C, since otherwise the line would
not contribute to the complexity of the inner zone of C.

Let L′ be the set of n segments obtained by intersecting each line of L with the convex
hull of C. (If C is unbounded then some elements of L′ may actually be rays.)

3Spaces are just for clarity. The Hart–Sharir construction also avoids other patterns, such as abcbdadbcd
(Klazar [11]; see Pettie [19]).
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Let G be the intersection graph of L′, i.e. the graph having L′ as vertex set, and having
an edge connecting two elements of L′ if and only if they intersect. We can assume without
loss of generality that G is connected: If G has several connected components, then we can
separately bound the complexity produced by each one and add them up; this works because
our desired bound is at least linear in n. Since G is connected, all the bounded cells of the
inner zone are simple (i.e. they touch C in a single interval); and if C is unbounded then there
are at most two upward-unbounded cells (bounded by the two infinite extremes of C).

If C is closed then let c0 be the topmost point of C; we will ignore the cell that contains
c0, since it has at most linear complexity (as any single cell does). If C is unbounded then we
will similarly ignore the up-to-two unbounded cells.

To bound the complexity of the remaining cells, we will traverse their boundary and
transcribe it into a sequence in a certain way.

Every segment of L′ has two sides, one of which will be called positive and the other one
negative, as follows: If C is closed, then the positive side is the one facing the point c0 and
the negative side is the other one; if C is unbounded, then the positive side is the upper one
and the negative side is the lower one.

If C is closed, then let c1 be the first endpoint of L′ counterclockwise from c0 along C, and
let c2 be the last endpoint. If C is unbounded, then c1 is defined as the leftmost endpoint of
L′, and c2 as the rightmost endpoint.

We traverse the boundary of the inner zone of C by starting at c1, and walking around
the boundary of the cells, as if the segments were walls which we touch with the left hand at
all times, until we reach c2. See Figure 1. We transcribe this tour into a sequence containing
3n distinct symbols as follows:

Each segment a ∈ L′ is partitioned by the other segments into smaller pieces. We take two
directed copies of each such piece. We call each such copy a sub-segment. The sub-segments
are directed counterclockwise around a; i.e. those above a are directed leftwards, and those
below a are directed rightwards. Hence, our tour visits some of these sub-segments, in the
directions we have given them, in a certain order.

For each segment a, the sub-segments of a that are visited, are visited in counterclockwise
order around a. We first visit some sub-segments on the positive side of a, then we visit some
sub-segments on the negative side of a, and then we again visit some sub-segments on the
positive side of a.

Sub-segments of the first type are transcribed as a′; sub-segments of the second type are
transcribed as a, and sub-segments of the third type are transcribed as a′′. See again Figure 1.
Let S′ be the sequence resulting from the tour.

For each segment a, label its endpoints La and Ra, such that La is visited before Ra.
4

Let a, b be two intersecting segments, such that La is visited before Lb. Then the restriction
of S′ to {a′, a, a′′, b′, b, b′′} is of the form

(a′)∗ a∗ (b′)∗ b∗ a∗ (a′′)∗ b∗ (b′′)∗ (a′′)∗ or (b′)∗ (a′)∗ a∗ (b′)∗ b∗ a∗ (a′′)∗ b∗ (b′′)∗,

where ∗ denotes zero or more repetitions. See Figure 2.
Hence, the restriction of S′ to first-type symbols contains no alternation abab, and it

contains no adjacent repetitions either, as can be easily seen. Hence, it is an order-2 DS-
sequence and so it has linear length. The same is true for the restriction of S′ to third-type
symbols.

4If C is unbounded then La is always the left endpoint of a.
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Figure 1: Traversing the boundary of the inner zone of C.
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Figure 2: Symbol alternations produced by two intersecting segments.

5



Thus, the important part of the sequence S′ is its restriction to second-type symbols—those
corresponding to the negative side of the segments. From now on we denote this subsequence
S, and we call it the lower inner-zone sequence of Z(C,L).5 The sequence S contains no
alternation ababa, and it contains no adjacent repetitions, as can be easily seen. Hence, S is
an order-3 DS-sequence, and hence its length is at most O(nα(n)).

1.3 Relation to lower envelopes

Lower envelopes are the original motivation for Davenport–Schinzel sequences. If F = {f1, . . . ,
fn} is a collection of n x-monotone curves in the plane (continuous functions R → R), then
the lower envelope of F is their pointwise minimum (or the part that can be seen from the
point (0,−∞)), and the lower-envelope sequence is the sequence of functions that appear in
the lower envelope, from left to right. If the fi’s are partially defined functions (say, each one
is defined only on an interval of R), then the definition is the same, except that the symbol
“∞” might also appear in the lower-envelope sequence.

In our case, if C is x-monotone, then the lower-envelope sequence of the set of segments
L′ is a subsequence of S: It contains only those parts that can be seen from −∞. We shall
denote this sequence by N = N(L′).

The Hart–Sharir sequences can be realized as lower-envelope sequences of segments in the
plane (Wiernik and Sharir [27]; see also [15, 24]). However, it is unknown whether this is still
possible if all the endpoints are required to lie on a circle/parabola (like our set L′), or more
generally on a convex curve. Sharir and Agarwal raise this question in [24, p. 112]. Proving a
linear upper bound for the length of N might be easier than for the length of S.

It is also not known whether the longer sequences of Nivasch [16] can be realized as lower-
envelope sequences of segments. It is not even known whether there exists an order-3 DS
sequence that cannot be realized as a lower-envelope sequence of segments.

1.4 From circles to conic sections

Let us return to the zone problem. The special cases in which C is a circle, a parabola, or
a hyperbola, are all equivalent, as can be shown by suitable projective transformations: Let
π1 ⊂ R3 be a plane that contains a set of lines L and a circle C. Let K be a cone in R3

that intersects π1 at C, and let π2 be a plane that intersects K at a parabola C ′. Then, the
projection through the apex of K maps π1 (with the exception of one line within π1) into π2,
mapping lines into lines, and mapping C (except for one point p ∈ C) into C ′. We just have
take care to choose π2 so that no line of L passes through p.

More concretely, the projective transformation (x, y) 7→
(

x
1−y ,

1+y
1−y
)

maps the unit circle

x2 +y2 = 1 (except for the point p = (0, 1)) into the parabola y = x2, mapping lines into lines.
The case of a hyperbola is handled similarly. First, note that all hyperbolas are equivalent

under affine transformations. Hence, choose π2 so that it intersects the cone K at a hyperbola
C ′, such that almost all of C is mapped to one branch of C ′, and only a tiny portion of C,
which does not intersect any line of L, is mapped to the other branch of C ′.

Even though the most natural formulation of the problem involves a circle, in this paper
we will work with a parabola, since we find it easier to work with.

5Slight abuse of terminology. We will mainly deal with the case where C is unbounded; in this case the
negative side of a segment is always its lower side.
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a b a c d c a c (d) b d 

Figure 3: Left: Realizing the sequence u = abacdcacbd as a lower-envelope sequence of pseu-
dosegments. Note that in this case the technique produces a supersequence of u. Right:
Adding a convex curve and prolonging the pseudosegments into pseudolines.

1.5 The case of pseudolines and the need for geometric arguments

If we relax the problem and allow L to consist of x-monotone pseudolines (x-monotone curves
that pairwise intersect at most once and intersect C at most twice), then Z(C,L) can have
complexity Θ(nα(n)). Indeed, in this setting every order-3 DS-sequence can appear as a
subsequence of a lower-envelope sequence N(L′). To see this, first note that every order-3
DS-sequence can appear as a subsequence of a lower-envelope sequence of x-monotone pseu-
dosegments [24]; see Figure 3 for an example. Furthermore, in this construction, all segment
endpoints are visible from −∞. Hence, we can enclose the construction in a circle C, and
prolong each pseudosegment ` into an x-monotone pseudoline by adding two very steeply
decreasing rays on the two sides of `.

Therefore, if, as we conjecture, the bound for the case of straight lines is only O(n), then
any proof must necessarily use geometric arguments, and not merely combinatorial ones.

1.6 Our results

In this paper we offer some evidence for the following conjecture, and make some progress
towards proving it:

Conjecture 1.1. If L is a set of n lines and C is a circle, then the lower inner-zone sequence
S of Z(C,L) has length O(n), and hence Z(C,L) has at most linear complexity.

Our technique consists of first finding segment configurations that are geometrically im-
possible, and then finding ababa-free sequences that force these configurations. We say that
an ababa-free sequence u forces a segment configuration T , if, for every family of segments L′
(as in Section 1.2) whose lower inner-zone sequence contains u as a subsequence, L′ contains
a subfamily combinatorially equivalent to T .

Thus, we first show in Section 3 that a certain, relatively simple configuration of eleven
segments is impossible. Then we show that this configuration is forced by a pattern u of length
33. It follows that the lower inner-zone sequence S avoids u. This result, however, is useless
for establishing Conjecture 1.1, since u contains both ab cac cbc and its reversal. Therefore,
by the above-mentioned result of Pettie, the Hart–Sharir construction avoids both u and uR

(which is actually the same as u), and so Ex({ababa, u, uR}, n) = Θ(nα(n)).
Section 3 is just a warmup for Sections 4 and 5. In Section 4 we construct another

impossible segment configuration X, this time with 173 segments. We could construct a
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pattern u′ that, as a consequence, cannot occur in S, but we abstain from doing so. Instead,
we show directly in Section 5 that the Hart–Sharir sequences eventually force the configuration
X.

Our results in Sections 4 and 5 were obtained as follows: Matoušek [15] and Sharir and
Agarwal [24] describe a construction by P. Shor of segments in the plane whose lower-envelope
sequences are the Hart–Sharir sequences. We tried to force the segment endpoints in the
construction to lie on the parabola C, and we reached a contradiction. The impossible con-
figuration X of Section 4 is the best way we found to isolate the contradiction. We elaborate
more on this at the end of Section 5.

Next, in Section 6 we present some directions for further work on the problem: We for-
mulate a conjecture regarding generalized DS sequences which, if true, would imply Conjec-
ture 1.1. We also explain how our conjecture relates to previous research on generalized DS
sequences.

Finally, in Section 7 we conclude by listing some related open problems.

2 Preliminaries

Throughout this and the following sections C will denote the parabola y = x2, L′ will denote a
set of n segments with endpoints on C, and S will denote the corresponding lower inner-zone
sequence. As we said, we assume that no two segments have the same endpoint, and that the
intersection graph of L′ is connected.

Recall that the left and right endpoints of a segment a ∈ L′ are denoted La and Ra,
respectively. Whenever we say that a sequence of endpoints appear in a certain order, we
mean from left to right.

Let u be an ababa-free sequence in which, for simplicity, each symbol appears at least
twice. Then, we define its endpoint sequence E(u) by replacing, for each symbol a in u, its
first occurrence by La and its last occurrence by Ra, and deleting all other occurrences of a.
For example,

E(abacadcdbd) = La Lb LcRa LdRcRbRd.

It is clear that, if S is the lower inner-zone sequence of L′, then the order of the endpoints
of L′ is exactly E(S). However, if u is a subsequence of S, then E(u) is not necessarily a
subsequence of E(S); meaning, E(S) does not necessarily respect the order of the symbols in
E(u). For example, if u = abba, so the order of the left endpoints in E(u) is La, Lb, it is still
possible for their order in E(S) to be Lb, La.

Nevertheless, we now give a sufficient condition for guaranteeing that E(u) is a subsequence
of E(S):

Definition 2.1. A symbol a in a sequence u is said to be left-clamped if u contains the
subsequence baba, where b is the symbol immediately preceding the first a in u. Similarly,
the symbol a is right-clamped if u contains the subsequence abab, where b is the symbol
immediately following the last a in u.

Lemma 2.2. If all the symbols in u, except for the very first symbol, are left-clamped, and
all the symbols except for the very last symbol are right-clamped, and if S is an ababa-free
supersequence of u, then E(u) is a subsequence of E(S).

8



Figure 4: Left: Segments intersecting concavely. Right: Segments intersecting convexly.

Proof. Consider an adjacent pair of symbols Qa, Q
′
b in E(u), where each of Q, Q′ is either L

or R. We claim that their order in E(S) is also Qa, Q
′
b.

If Q is L and Q′ is R, then trivially La also precedes Rb in E(S).
If Q is R, then let c be the symbol immediately following the last a in u (note that c is

not necessarily b). Since a is right-clamped, S cannot contain any a after the occurrence of b
that gives rise to Q′b; otherwise, S would contain the forbidden pattern acaca.

Similarly, if Q′ is L, let d be the symbol immediately preceding the first b in u. Since
b is left-clamped, S cannot contain any b before the occurrence of a that gives rise to Qa;
otherwise, S would contain bdbdb.

Hence, whether (Q,Q′) equals (R,L), (R,R), or (L,L), there is no way for Qa, Q
′
b to

change order in E(S).

Two segments a, b intersect if and only if their endpoints appear in the order La LbRaRb
or Lb LaRbRa.

If a1, . . . , am are segments whose endpoints appear in the order La1 · · · Lam Ra1 · · · Ram ,
then they pairwise intersect. If the intersection points am ∩ am−1, . . . , a3 ∩ a2, a2 ∩ a1 appear
in this order from left to right, then we say that the segments intersect concavely. If the inter-
section points appear in the reverse order, then we say that the segments intersect convexly.
See Figure 4.

If the segments a1, a2, . . . , an intersect concavely (or convexly), and 1 ≤ i1 < i2 < · · · <
ik ≤ n are increasing indices, then ai1 , ai2 , . . . , aik also intersect concavely (or convexly).

Observation 2.3. If S contains the “N -shaped” subsequence 12 · · ·m · · · 212 · · ·m, then the
corresponding segments must have endpoints in the order L1 · · · LmR1 · · · Rm, and must in-
tersect concavely.

Proof sketch. The general case follows from the case m = 3.

In Sections 3 and 4, we will specify some segment configurations by listing the order of
their endpoints, and by specifying that some subsets of segments must intersect concavely.
We will prove that some segment configurations are geometrically impossible.

2.1 Geometric properties of the parabola

We now present some simple geometric properties of the parabola C and straight-line segments.
These properties lie at the heart of the distinction between the cases of straight lines and
pseudolines, as we explained in the Introduction.

Observation 2.4. Let a, b ∈ R be fixed. Then the affine transformation m : R2 → R2 given
by m(x, y) = (ax + b, 2abx + a2y + b2) maps the parabola C to itself and keeps vertical lines

9



α2p r s q α1 β1 β2γ

Figure 5: Left: We have p/q = r/s. Right: Three segments intersecting concavely.

vertical. Therefore, we are free to horizontally translate and scale the set of x-coordinates of
the segment endpoints L′, without affecting the resulting lower inner-zone sequence S or the
lower-envelope sequence N .6

Lemma 2.5. Let a, b, c, d be four points on the parabola C, having increasing x-coordinates
ax < bx < cx < dx. Let z = ac ∩ bd. Define the horizontal distances p = bx − ax, q = dx − cx,
r = zx − bx, s = cx − zx. Then p/q = r/s. See Figure 5, left.

Proof. This can be shown directly by a slightly cumbersome algebraic calculation.
An alternative, more insightful proof uses elementary geometry and a limiting argument:
Let C be not a parabola but a unit circle. Let α be a very small angle, and let C1 be

the arc of C measuring angle α that is centered around the lowest point of C. Let a, b, c,
d be four points on C1, in this order from left to right, and let z = ac ∩ bd. Then, by the
intersecting chords theorem, we have ab/cd = bz/cz. Since all the considered segments are
almost horizontal, their length is almost equal to their x-projection. If we affinely stretch C1

horizontally and vertically so its bounding box has width 1 and height 1, then it will almost
match a parabola: At the limit as α→ 0, the stretched arc pointwise converges to a parabolic
segment. This affine transformation preserves the ratios between the horizontal projections,
so the result follows.

Lemma 2.5 is actually part of a more general correspondence between circles and parabolas;
see Yaglom [28].

Lemma 2.6. Let a, b, c, d, e, f be six points on the parabola C, listed by increasing x-coordinate.
Suppose the segments ad, be, cf intersect concavely. Define α1 = bx − ax, α2 = cx − bx,
γ = dx − cx, β1 = ex − dx, β2 = fx − ex. Then:

1. α1/β1 > α2/γ and β2/α2 > β1/γ;

2. α1/β1 > α2/β2;

3. β1 < β2 or α2 < γ + β1 + β2 (or both).

6This observation would be useful in lower-bound constructions, and hence, it is not used in the paper. We
include it here just for the sake of completeness.
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Figure 6: Illustration for Lemma 2.8 (picture not to scale).

See Figure 5, right.

Proof. Let g = be∩ cf , h = ad∩ be. Subdivide γ into γ1 = gx− cx, γ2 = hx− gx, γ3 = dx−hx.
By Lemma 2.5 we have

α1

β1
=
α2 + γ1 + γ2

γ3
,

α2

β2
=

γ1

γ2 + γ3 + β1
;

from which the first two claims follow.
By the first claim we have

β1

β2
<

γ

α2
<
γ + β1 + β2

α2
;

hence, if β1/β2 is larger than 1, then so is (γ + β1 + β2)/α2, implying the third claim.

Definition 2.7. Let s1, s2, . . . , sm be segments whose endpoints appear in the order Ls1 · · · Lsm
Rs1 · · · Rsm . These segments are called a wide set if their x-coordinates satisfy Rskx−Ls1x >
2(Rsk−1x − Ls1x) for each 2 ≤ k ≤ m.

Lemma 2.8. Let s1, . . . , sm be a wide set of segments that intersect concavely, and let αk =
Lsk+1x − Lskx for 1 ≤ k ≤ m− 1. Then αk > αk+1 + · · ·+ αm−1 for each 1 ≤ k ≤ m− 2.

Proof. Let γk = Rskx − Ls1x for 1 ≤ k ≤ m. See Figure 6. We are given that γk > 2γk−1 for
each 2 ≤ k ≤ m. Applying the first claim of Lemma 2.6 to segments sk, sk+1, sm, we get

αk
αk+1 + · · ·+ αm−1

>
γk+1 − γk
γk −

∑
αi

>
γk+1 − γk

γk
> 1.

The claim follows.

11
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α1 α2 α3 α4 β1 β2 β3 β4

edcb

a

4

3
B

9

p' r' s' q'

Figure 7: An impossible configuration of segments.

3 Warmup: A simple but useless impossible configuration

Theorem 3.1. Let a, b, c, d, e, 1, 2, 3, 4, 8, 9 be eleven segments with endpoints on the parabola
C, in left-to-right order

L8 L1 La Lb L2R8 Lc LdR1R2 LeRa L3 L4RbRc L9R3RdReR4R9. (1)

Then, it is impossible for segments 8, 1, 2 to intersect concavely, segments 3, 4, 9 to intersect
concavely, and segments a, b, c, d, e to intersect concavely, all at the same time.

Proof. Suppose for a contradiction that a, . . . , 9 are segments satisfying all these properties.
The intersection point of segments 1 and 2, which we shall call A, must lie left of R8, and
the intersection point of segments 3 and 4, which we shall call B, must lie right of L9. See
Figure 7.

Define:

α1 = Lbx − Lax, β1 = Rbx −Rax,
α2 = Lcx − Lbx, β2 = Rcx −Rbx,
α3 = Ldx − Lcx, β3 = Rdx −Rcx,
α4 = Lex − Ldx, β4 = Rex −Rdx.

Segments a, b, c, d, e must intersect concavely, so by the second claim of Lemma 2.6, we must
have

α1

β1
>
α2

β2
>
α3

β3
>
α4

β4
. (2)

12



We will show, however, that this is impossible. Define:

p = L2x − L1x, p′ = L4x − L3x,

r = Ax − L2x, r′ = Bx − L4x,

s = R1x −Ax, s′ = R3x −Bx,
q = R2x −R1x, q′ = R4x −R3x.

Then,

α1 < p, β1 > p′,

α2 > r, β2 < r′,

α3 < s, β3 > s′,

α4 > q, β4 < q′.

Furthermore, by Lemma 2.5 we have p/q = r/s, p′/q′ = r′/s′. Hence,

α1α3

β1β3
<

ps

p′s′
=

qr

q′r′
<
α2α4

β2β4
,

contradicting (2).

Corollary 3.2. Let S be the lower inner-zone sequence of the parabola C in an arrangement
of lines. Then S cannot contain a subsequence isomorphic to

u = 81ab12181cd12dedcbab34bc49434de49.

Proof. We have

E(u) = L8 L1 La Lb L2R8 Lc LdR1R2 LeRa L3 L4RbRc L9R3RdReR4R9,

exactly matching (1). Furthermore, as a tedious examination shows, all symbols but 8 are
left-clamped in u, and all symbols but 9 are right-clamped in u. Furthermore, u contains
the N -shaped subsequences 8121812, 3494349, and abcdedcbabcde. Hence, by Lemma 2.2 and
Observation 2.3, u forces the impossible segment configuration of Theorem 3.1.

(We obtained the sequence u by simply taking the lower inner-zone sequence of the con-
figuration of Theorem 3.1, and removing from it unnecessary symbols.)

If we are only interested in a pattern avoided by N , the lower-envelope sequence, then we
can omit the symbols 8 and 9 from u. Their only role is preventing the intersection points A
and B from “hiding” above the segment c.

Unfortunately, as we said in the Introduction, the forbidden pattern u is useless for es-
tablishing Conjecture 1.1, since u contains both ab cac cbc and its reversal (e.g., be 4b4 4e4,
1a1 1d1 ad). Furthermore, there does not seem to be a simple way to “fix” u.

13



4 A more promising impossible configuration

In this section we construct a 173-segment impossible configuration X. Then, in Section 5 we
will show that the Hart–Sharir sequences eventually force the configuration X.

We will now work with endpoint sequences in which some contiguous subsequences (blocks)
that contain only left endpoints are designated as special blocks. It will always be the case
that all the special blocks in a sequence have the same length. We denote special blocks by
enclosing them in parentheses.

We define an operation on endpoint sequences called endpoint shuffling. This operation is
derived from the shuffling operation used to construct the Hart–Sharir sequences, which we
will present in Section 5 below.

Let A be a sequence that has k special blocks of length m, and let B be a sequence that
has ` special blocks of length k. Then the endpoint shuffle of A and B, denoted A ◦ B, is a
new sequence having k` special blocks of length m + 1, formed as follows: We make ` copies
of A (one for each special block of B), each one having “fresh” symbols that do not occur in
B nor in any other copy of A.

For each special block Γi = (L1 · · · Lk) in B, 1 ≤ i ≤ `, let Ai be the ith copy of A. We
insert each Lj at the end of the jth special block of Ai. Then we insert the resulting sequence
in place of Γi in B. The result of all these replacements is the desired sequence A ◦B.

For example, let

A = (La) (Lb) (Lc)RaRbRc, B = (L1 L2 L3) (L4 L5 L6)R1R4R2R5R3R6.

Then,

A ◦B = (La L1) (Lb L2) (Lc L3)RaRbRc (La′ L4)

(Lb′ L5) (Lc′ L6)Ra′ Rb′ Rc′ R1R4R2R5R3R6.

Now, define the following endpoint sequences:

Fm = (L1 · · ·Lm) R1 · · ·Rm, m ≥ 1;

Zm = La Lb (L1 · · ·Lm) R1 · · ·Rm LcRa

(Lm+1 · · ·L2m) Rm+1 · · ·R2m RbRc, m ≥ 1;

Y = Ld Le () ()Lf Rd () ()ReRf (),

where Y has five empty special blocks.
Recall from Section 2 the definition of a wide set of segments. We will now show how,

by shuffling the Z and F sequences in the appropriate way, we can create, for every n, a
configuration that contains a wide set of n segments.7

Consider the segment configuration

Tn = (· · · (((Z1 ◦ Z2) ◦ Z4) ◦ Z8) ◦ · · ·Z2n−1) ◦ F2n .

Tn contains 2n−k−1 copies of Z2k for each 0 ≤ k < n, plus one copy of F2n . Each copy of Zm
contains its own triple of segments a, b, c. These segments resemble a cat’s whiskers, so let

7With a slight abuse of terminology, we do not always distinguish between endpoint sequences and the
corresponding segment configurations.
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L(1) L(2) L(n+1) R(1)

R(n)

R(n+1)

a

b

c

a,b,c a,b,c

Figure 8: The configuration Tn contains whiskers (triples of segments labeled a, b, c) organized
in a nested, binary-tree structure. In addition, it contains numeric segments, grouped into
sets of size n+ 1. This sketch shows only one such set of numeric segments, and it only shows
their endpoints. For each set of numeric segments, their left endpoints lie in a special block
of length n+ 1 (indicated by parentheses in the figure).

us call each such triple a, b, c a whisker for short. The whiskers of Tn are nested inside one
another in the form of a complete binary tree of height n.

In addition, each copy Fm and Zm contains segments labeled 1, . . . ,m and m+ 1, . . . , 2m,
which we shall call numeric segments. In total, Tn contains (n+1)2n numeric segments, whose
left endpoints appear in 2n special blocks of length n + 1. Each such special block appears
where we would expect to find the whiskers of level n+ 1 of the binary tree.

Consider one such special block (L(1), . . . , L(n+1)) (where the endpoints have been renamed
for clarity of exposition). The corresponding right endpoints are located as follows: Let
w1, . . . , wn be the whiskers containing our special block, where w1 is the innermost whisker
and wn is the outermost one. Then, the first right endpoint R(1) appears within w1, right
after L(n+1). For each 2 ≤ i ≤ n, the right endpoint R(i) appears outside wi−1 but inside wi.
Finally, R(n+1) appears outside wn. See Figure 8 for a rough sketch of Tn.

Lemma 4.1. Suppose that, in Tn, the segments a, b, c in each whisker intersect concavely.
Then at least one the sets of n+ 1 numeric segments must be wide.
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Proof. Let w = (a, b, c) be the outermost whisker of Tn. By the third claim of Lemma 2.6, we
have Rbx−Rax < Rcx−Rbx or Lcx−Lbx < Rcx−Lcx (or both). In the first case, we proceed
to the left branch in the binary tree of whiskers. In the second case, we proceed to the right
branch. Let w′ = (a′, b′, c′) be the next whisker in the chosen branch. We invoke Lemma 2.6
again on w′, and we proceed in this way, going down the binary tree of whiskers until we reach
a “leaf” whisker w∗. We invoke Lemma 2.6 one final time on w∗ in the same way, and we
choose one of the two special blocks that lie within w∗. The n + 1 numeric segments in that
special block form a wide set, as can be easily checked.

Remark 4.2. As we saw, in the whisker w = (a, b, c) of Zm, one of two gaps is shorter than the
distance from the end of the gap to the end of the whisker. If we could find a configuration
in which a specific gap is shorter than the distance to the end of the configuration, we could
obviate the need for a binary tree and significantly reduce the size of our construction.

Next, we show how a wide set of 5 segments can lead to trouble:

Lemma 4.3. Consider the sequence

Y ◦ F5 = Ld Le L1 L2 Lf Rd L3 L4ReRf L5R1R2R3R4R5.

It is impossible for the segments d, e, f to intersect concavely, and for the segments 1, 2, 3, 4, 5
to form a wide set and intersect concavely, all at the same time.

Proof. Suppose for a contradiction that we have a realization of such a configuration. Applying
Lemma 2.8 on the segments 1, 2, 3, 4, 5 (with k = 1 and k = 3), we have

L2x − L1x > L5x − L2x, L4x − L3x > L5x − L4x.

Hence, we have both

Rex −Rdx > L4x − L3x > L5x − L4x > Rfx −Rex

and
Lfx − Lex > L2x − L1x > L5x − L2x > Rfx − Lfx,

contradicting the third claim of Lemma 2.6 on the segments d, e, f .

Now we can put everything together. Define the endpoint sequence

X = Y ◦ T4.

X contains 15 whiskers, 16 groups of segments of type d, e, f , and 16 groups of numeric
segments, with five segments in each group. Hence, X contains a total of 173 segments.

Theorem 4.4. It is impossible to realize X such that the segments a, b, c in each whisker
intersect concavely, the segments d, e, f in each copy of Y intersect concavely, and the five
numeric segments in each group of numeric segments intersect concavely.

Proof. In X, each group of numeric segments of T4 is shuffled into a copy of Y as in the
premise of Lemma 4.3. But by Lemma 4.1, one of these groups must form a wide set. This is
impossible by Lemma 4.3.
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5 The Hart–Sharir sequences are unrealizable

In this section we show that the Hart–Sharir sequences eventually force a copy of the configu-
ration X whose segments intersect in the way specified in Theorem 4.4. (Recall the definition
of forcing a segment configuration from Section 1.6.) Hence, the Hart–Sharir sequences cannot
be realized as lower inner-zone sequences of a parabola.

5.1 The Hart–Sharir sequences

We first recall the Hart–Sharir construction [9] of superlinear-length order-3 DS sequences.
The Hart–Sharir sequences form a two-dimensional array Sk(m), for k,m ≥ 1; they satisfy

the following properties:

• Some contiguous subsequences (blocks) in Sk(m) are designated as special blocks.

• All special blocks in Sk(m) have length exactly m.

• Each symbol in Sk(m) makes it first occurrence in a special block, and each special block
contains only first occurrences of symbols.

• Sk(m) contains no adjacent repetitions and no alternation ababa.

• Each symbol in Sk(m) occurs at least twice (unless k = m = 1).

The construction uses an operation called shuffling, which, as we will see, is very closely
related to the endpoint shuffling defined in Section 4.

Definition 5.1. Let A be a sequence that has k special blocks of length m, and let B be a
sequence that has ` special blocks of length k. Then the shuffle of A and B, denoted A •B, is
a new sequence having k` special blocks of length m+ 1, formed as follows: We make ` copies
of A (one for each special block of B), each one having “fresh” symbols that do not occur in
B or in any other copy of A.

For each special block Γi = (a1a2 · · · ak) in B, 1 ≤ i ≤ `, let Ai be the ith copy of A. For
each special block ∆j in Ai, 1 ≤ j ≤ k, we insert the symbol aj at the end of ∆j (so its length
grows from m to m+ 1) and we duplicate the mth symbol of ∆j immediately after ∆j . Then
we place another copy of ak immediately after Ai. Call the resulting sequence A′i.

Then A •B is obtained from B by replacing each special block Γi in it by A′i.

In the construction of A •B, the symbols of the copies of A are usually called local, while
the symbols of B are called global.

For example, let A = (a)(b)(c)babc and B = (123)21(456)5414525636. Then,

A •B = (a1)a(b2)b(c3)cbabc3 21 (a′4)a′(b′5)b′(c′6)c′b′a′b′c′6 5414525636.

Let S be a sequence of symbols in which the first occurrences of the symbols appear in
special blocks, and in which each symbol occurs at least twice. Let us extend the definition
of the endpoint sequence E(S) from Section 2, by specifying that E(S) has special blocks of
left endpoints, which are inherited from the special blocks of S in the natural way.

Observation 5.2. The relation between shuffling and endpoint shuffling is as follows:

E(A •B) = E(A) ◦ E(B).
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Proof. This is immediate from the definitions of • and ◦.

The Hart–Sharir sequences Sk(m) are defined by double induction. The base cases are
k = 1 and m = 1. For k = 1 we let

S1(m) =
(

12 · · · (m− 1)m
)

(m− 1) · · · 212 · · ·m,

be an N -shaped sequence having a single special block of length m. (Actually, of all sequences
S1(m), the construction only uses S1(2) = (12)12.)

For m = 1, k ≥ 2, we let Sk(1) be equal to Sk−1(2), but with each special block of size 2
split into two special blocks of size 1.

Finally, for m, k ≥ 2, we let

Sk(m) = Sk(m− 1) • Sk−1(N),

where N is the number of special blocks in Sk(m− 1).
Thus, we have, up to a renaming of the symbols,

S2(1) = (1)(2)12,

S2(2) = (12)1(34)313424,

S2(3) = (123)21(456)5414525636,

S2(4) = (1234)321(5678)76515626737848,

...

S3(1) = (1)(2)1(3)(4)313424,

S3(2) = (12)1(34)31(56)5(78)75157378642

(9A)9(BC)B9(DE)D(FG)FD9DFBFGECA2AC4CE6EG8G,

...

S4(1) = (1)(2)1(3)(4)31(5)(6)5(7)(8)75157378642

(9)(A)9(B)(C)B9(D)(E)D(F )(G)FD9DFBFGECA2AC4CE6EG8G,

...

Note that, in the construction of Sk(m), the special blocks of Sk−1(N) “dissolve”, and the only
special blocks present in Sk(m) are those that come from the copies of Sk(m − 1) (enlarged
by one).

5.2 Properties

Here we establish some important properties of Sk(m).

Lemma 5.3. Each special block
(
1 · · ·m

)
in Sk(m) is immediately followed by (m − 1) · · · 1,

and followed later on by · · · 2 · · · 3 · · · · · · m, thus forming an N -shaped subsequence.

Proof. By induction. The claim is true for k = 1 and all m. If the claim is true for Sk−1(2),
then it is also true for Sk(1). Now, let k,m ≥ 2, and suppose the claim is true for Sk(m− 1).
Then, by the definition of •, and since each symbol in Sk−1(N) occurs at least twice, the claim
is also true for Sk(m) = Sk(m− 1) • Sk−1(N).
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Lemma 5.4. Sk(m) does not contain ababa (Hart, Sharir [9]) nor abcaccbc (Pettie [19]).8

Proof sketch. For the first claim, suppose for a contradiction that k and m are minimal such
that Sk(m) contains ababa. Recall that Sk(m) = Sk(m − 1) • Sk−1(N). Each of the symbols
a, b must have come either from a copy of Sk(m − 1) (in which case it is a local symbol) or
from Sk−1(N) (in which case it is a global symbol). A case analysis shows that none of the
possibilities work. For example, it cannot be that a is local and b is global, because then there
would be at most one b between two a’s. It cannot be either that a is global and b is local,
because then only the first a could appear between two b’s.

For the second claim, first note that Lemma 5.3 implies that Sk(m) cannot contain (bc)ccb
(with the first b and c in the same special block), since, otherwise, Sk(m) would contain bcbcb.
For the same reason, if Sk(m) contains (bc)cb, then c is not the last symbol in the special
block.

Now, suppose for a contradiction that k,m are minimal such that Sk(m) contains abcaccbc.
There are eight possibilities as to which of the symbols a, b, c are local and which are global.
We rule them all out by a case analysis. First of all, if a, b, c are all local (resp. all global), then
the only possibility would be for Sk(m − 1) (resp. Sk−1(N)) to contain abcacbc, so that the
second c gets duplicated into cc in Sk(m). But this cannot happen, since only first occurrences
of symbols get duplicated. The case of a being local and b, c being global is ruled out by the
considerations in the previous paragraph. The remaining cases are also readily ruled out.

Definition 5.5. Let A and B be two sequences in which the first occurrences of symbols ap-
pear in special blocks. Then we say that B structurally contains A if B contains a subsequence
A′ that not only is isomorphic to A, but for every two symbols in A′, their first occurrences lie
in the same special block if and only if the corresponding symbols in A lie in the same special
block.

We now want to prove that Sk′(m
′) structurally contains Sk(m) for all k′ ≥ k, m′ ≥ m.

Hence, any problematic configuration that arises in some Sk(m) will also be present in all
subsequent Sk′(m

′).
The proof is somewhat delicate. It is clear, for example, that Sk+1(m) contains a sequence

isomorphic to Sk(m): Sk+1(m) contains a global copy of Sk(N) for some N larger than m, and
in turn Sk(N) contains many local copies of Sk(N − 1), et cetera. This simple observation,
however, does not imply that Sk+1(m) structurally contains Sk(m), because the copy of Sk(m)
that we found in Sk+1(m) has its special blocks completely “dissolved”. To prove that Sk+1(m)
structurally contains Sk(m) we have to work a bit more carefully.

Definition 5.6. The rank of a symbol a in Sk(m) is the position (between 1 and m) that the
first occurrence of a occupies within its special block.

Thus, the local symbols of Sk(m) are those with ranks 1, . . . ,m−1, and the global symbols
are those with rank m.

Lemma 5.7. For every k′ ≥ k, m′ ≥ m, and for every choice of m ranks 1 ≤ r1 < r2 < · · · <
rm ≤ m′, the sequence Sk′(m

′) structurally contains Sk(m) using symbols of these ranks.

8Note that S3(2) already contains (abcaccbc)R.

19



Proof. Denote B = Sk(m) and D = Sk′(m
′), and let N2 and N ′2 denote, respectively, the

number of special blocks in B and D. Note that, in order to specify how B lies within D, all
we have to do is specify which N2 special blocks 1 ≤ b1 < b2 < · · · < bN2 ≤ N ′2 of D we take
the symbols from.

We will first take care of the base cases k = 1 and m = 1.
If k = 1 then the claim follows by Lemma 5.3. If m = m′ = 1 then there is nothing

to prove, since in this case structural containment is the same as regular containment. Now
suppose m = 1 and m′ ≥ 2. Recall that in this case we have B = Sk−1(2). We are given a
rank r1. The symbols of rank r1 in D are the global symbols of Sk′(r1). The global sequence
used in forming Sk′(r1) is Sk′−1(N) for some N . This latter sequence contains B = Sk−1(2)
in the regular sense, which is enough for us.

Now suppose k,m ≥ 2.
For convenience let A = Sk(m− 1), C = Sk′(m

′ − 1). Let N and N ′ be, respectively, the
number of special blocks in A and C. Let X = Sk−1(N), Y = Sk′−1(N ′). Hence,

B = A •X,
D = C • Y.

We assume by induction that C contains A, and that Y contains X, in the stronger sense
of our lemma. If m′ > m we can also assume by induction that C contains B in this stronger
sense. Our objective, as we said, is to show that D contains B in this stronger sense.

We consider two cases: If rm < m′ (which implies m < m′), then we wish to find B using
only local symbols of D. But we know by induction that C (which is structurally contained
in D) contains B in the desired way.

The second case is if rm = m′. We know by induction that C contains A using ranks
r1, . . . , rm−1. Let 1 ≤ b1 < b2 < · · · < bN ≤ N ′ be the special blocks of C from which we take
the symbols that form A this way.

Next, find X in Y using ranks b1, b2, . . . , bN . We know this is possible by induction. Let
1 ≤ c1 < c2 < · · · be the special blocks of Y from which we take the symbols that form X
this way.

Now, in order to find B in D, take only the local copies numbered c1, c2, . . . of C, and
within each local copy of C, take only the special blocks numbered b1, b2, . . . , bN ′ . Then the
symbols of Y that are shuffled into these special blocks are exactly those that form X.

Hence, we exactly mimic the construction of B from A and X inside the construction
of D from C and Y—with only one exception: In the construction of B, we duplicate the
last symbols of the special blocks of A and X. This might not happen to the corresponding
symbols in D, if these symbols are not the last symbols of the special blocks of C and Y .
However, we do not need these duplications, since they are already present immediately after
the special blocks, by Lemma 5.3.

5.3 Clamped symbols in the Hart–Sharir sequences

Recall the definition of left- and right-clamped symbols (Definition 2.1) and its use in Lemma 2.2.
We now proceed to show that most symbols in Sk(m) are left- and right-clamped.

Lemma 5.8. All symbols in Sk(m) that have rank at least 2 are left-clamped, and all the
symbols, other than the very last symbol in Sk(m), are right-clamped.
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Proof. The first claim follows immediately from Lemma 5.3.
For the second claim, recall that Sk(m) = Sk(m−1)•Sk−1(N). If a is the very last symbol

of Sk−1(N), then it is the very last symbol of Sk(m) and there is nothing to prove. If a is the
very last symbol of a copy S′ of Sk(m− 1), then its last occurrence in Sk(m) is immediately
followed by a global symbol b, whose first occurrence was shuffled at the end of the last special
block of S′. The first occurrence of a must lie further to the left (also in S′).

In any other case, the claim follows by induction on Sk(m− 1) or Sk−1(N), depending on
whether a is a local or a global symbol, since the shuffling operation does not separate the
last occurrence of any symbol from the immediately following symbol.

Corollary 5.9. Once a copy of Sk(m) is shuffled into another sequence (Sk+1(m′) for some
m′ > 1), all its symbols are left-clamped, and all its symbols except for the very last one are
right-clamped.

Proof. All the symbols of the copy of Sk(m) that resides in Sk+1(m′) are global (their rank is
m′).

We can also say something about left-clamped rank-1 symbols:

Lemma 5.10. Let k,m ≥ 2, and let a be a rank-1 symbol in Sk(m) = Sk(m− 1) • Sk−1(N).
If a was left-clamped in its local copy of Sk(m− 1), then it is also left-clamped in Sk(m).

Proof. By Lemma 5.3, Sk(m − 1) contains adjacent special blocks only if m = 2. Hence, for
m ≥ 3, the symbol b immediately preceding the first a in Sk(m − 1) does not belong to a
special block, so b remains adjacent to that a in Sk(m). For m = 2, the said symbol b might
belong to a special block. But then, in the construction of Sk(m), a copy of b is created and
placed right before the first a.

5.4 Geometric unrealizability

We are now ready to show that the Hart–Sharir sequences force the impossible configuration
X of Section 4.

Theorem 5.11. There exists an m such that the Hart–Sharir sequence S7(m) forces a copy
of the configuration X whose segments intersect in the way specified in Theorem 4.4. Hence,
if S is the lower inner-zone sequence of the parabola C, then S cannot contain S7(m) as a
subsequence.9

Proof. Recall that in Section 4 we defined

Fm = (L1 · · ·Lm) R1 · · ·Rm.

Let
Zj,m = La1 Fm La2 Fm · · · Fm Laj Ra1 FmRa2 Fm · · · FmRaj

(where the 2j−2 copies of Fm use distinct symbols). Note that the Zm of Section 4 is contained
in Zj,m for j ≥ 3. Following this correspondence, let us call the j-tuple of segments a1, . . . , aj
in Zj,m a whisker, and let us call the segments in the copies of Fm numeric segments.

9It should probably be enough to take m = 2 in the theorem, but the calculations do not seem to be worth
the effort.
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Define

Tj,n = (· · · (((Zj,1 ◦ Zj,2j−2) ◦ Zj,(2j−2)2) ◦ Zj,(2j−2)3) ◦ · · ·Zj,(2j−2)n−1) ◦ F(2j−2)n .

For j ≥ 3, Tj,n is a supersequence of the endpoint sequence Tn that we defined in Section 4.
Tj,n contains whiskers that are nested inside one another in the form of a full (2j− 2)-ary tree
of height n. In addition, it contains numeric segments, whose left endpoints are grouped into
special blocks of length n + 1, and whose right endpoints are located in a manner analogous
to the one described in Section 4.

Our first goal is to show that the Hart–Sharir sequences force segment configurations of
the form Tj,n for arbitrarily large j and n, in which the j segments in each whisker intersect
concavely. From Lemma 5.3 and Observation 2.3, it follows that the n+ 1 numeric segments
in each special block must also intersect concavely.

Observation 5.12. E(S1(m)) = Fm, and E(S2(m)) contains

(L1 · · ·Lm) ( )R1 · · ·Rm. (3)

Corollary 5.13. E(S3(m)) contains

(L1 L2 · · ·Lm) ( )R1 ( )R2 ( ) · · · ( )Rm. (4)

Proof. By induction on m. Consider S3(m) = S3(m − 1) • S2(N), and assume by induction
that S3(m− 1) contains an instance A of (4) with m− 1 in place of m. Consider an instance
B of (3) in E(S2(N)) with N in place of m. The first special block of B is shuffled into a copy
of S3(m − 1); hence, one of its symbols L∗ is inserted at the end of the first special block of
A in this copy of S3(m− 1). Furthermore, the ( ) and the corresponding symbol R∗ of B are
placed after this copy of A. Hence, S3(m) contains (4).

Corollary 5.14. For each m ≥ 2, S4(m) forces a configuration of the form

L1 ( )L2 ( ) · · · ( )LN ( )R1 ( )R2 ( ) · · · ( )RN (5)

for some very large N = N(m), in which the segments 1, 2, . . . , N intersect concavely and have
rank m.

Proof. The global sequence S3(N ′) used in forming S4(m) satisfies Corollary 5.13. The left
endpoints L1, L2, . . . of (4) receive rank m and go into separate special blocks. In order to
guarantee the presence of a special block between Li and Li+1 for each i, we “sacrifice” every
second symbol among 1, 2, . . . , N ′; we are still left with N = N ′/2 symbols. The N -shaped
sequence 1 · · ·N ′ · · · 1 · · ·N ′ that was present in S3(N ′) (by Lemma 5.3) is obviously still
present in S4(m).

Corollary 5.15. For each m ≥ 2, S5(m) forces a configuration of the form ZN,m−1 for some
very large N = N(m), in which the whisker segments a1, . . . , aN intersect concavely, and in
which the numeric segments of each copy of Fm−1 have ranks 1, . . . ,m− 1.

Proof. The global sequence S4(N ′) used in forming S5(m) satisfies Corollary 5.14. Each special
block of (5) is replaced by a copy of S5(m− 1), which structurally contains S1(m− 1).
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Finally:

Corollary 5.16. For every j and n, if m is large enough, then S6(m) forces a configuration
of the form Tj,n, in which the segments a1, . . . , aj in each whisker intersect concavely.

Proof. The iterated shuffling used to form Tj,n occurs naturally in the formation of S6(m) =
S6(m− 1) • S5(N).

More precisely, we will show by induction on n that, if m is large enough in terms of j and
n, then S6(m) forces a configuration of the form

T ′j,n = (· · · ((Zj,1 ◦ Zj,2j−2) ◦ Zj,(2j−2)2) ◦ · · · ) ◦ Zj,(2j−2)n ,

in which the segments of each whisker intersect concavely. Since Zj,(2j−2)n contains F(2j−2)n ,
it will follow that T ′j,n contains Tj,n.

Suppose by induction that, for some m, the sequence S6(m) forces such a configuration
T ′j,n−1. Let N be the number of special blocks of S6(m), and let 1 ≤ b1 < b2 < · · · < bk ≤ N ,
for k = (2j − 2)n, be the special blocks of S6(m) involved in this occurrence of T ′j,n−1. By
Corollary 5.15, there exists an N ′ such that S5(N ′) forces a copy of Zj,bk in which the numeric
segments of each Fbk have ranks 1, . . . , bk. Out of the bk segments in each Fbk , we are only
interested in the ones ranked b1, . . . , bk: They are the ones that will be shuffled into the right
places in T ′j,n−1. Let m′ ≥ m and N ′′ ≥ N ′ be such that S6(m′ + 1) = S6(m′) • S5(N ′′).
Now, S6(m′) contains a copy of S6(m) using the first N special blocks of S6(m′). And the
above-mentioned copy of Zj,bk that is present in S5(N ′) is also present in S5(N ′′). Hence,
S6(m′ + 1) forces the desired copy of T ′j,n.

Hence, as claimed, the sequences S6(m) force arbitrarily wide and tall configurations of
the form Tj,n, in which the segments of each whisker intersect concavely. In particular, they
force one such copy of T3,4, which contains the configuration T4 of Section 4.

Our second goal is to show that this sequence T3,4 is appropriately shuffled into a sequence
containing Y (which was defined in Section 4).

We observe that (5) already contains Y whenever N ≥ 6. Hence, S7(1) also contains Y .
Let b1 < b2 < · · · < b5 be the special blocks of S7(1) involved in this occurrence of Y . By
Corollary 5.16 and Lemma 5.7, S6(m) contains, for large enough m, a copy of T3,4 in which
the numeric segments have ranks b1, b2, . . . , b5. Therefore, there exists an m (probably m = 2
should be enough) such that, in S7(m) = S7(m − 1) • S6(N), these numeric segments are
shuffled into the right places, creating the desired copy of X. In this copy of X, all the sets of
segments that should intersect concavely according to Theorem 4.4, actually do.

Finally, all the symbols in this copy of X are left- and right-clamped in S7(m): The copy
of Y in S7(1) = S6(2) uses symbols that, in S6(2), had rank 2, so they were clamped by
Lemma 5.8. Hence, by Lemma 5.10, they stay clamped in S7(m). And the symbols of S6(N)
become global in S7(2), so they are also clamped by Lemma 5.8. Hence, by Lemma 2.2, if S is
a lower inner-zone sequence that contains S7(m), then the endpoints of X appear in the right
order in E(S).

5.5 How we found these results

Our results of Sections 4 and 5 were obtained as follows:
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Matoušek [15] and Sharir and Agarwal [24] describe a construction by P. Shor of segments
in the plane whose lower-envelope sequences are the Hart–Sharir sequences. We tried to force
the segment endpoints in the construction to lie on the parabola C. We managed to do this
for S1(m), S2(m), and S3(m) and all m, but for S4(m) this seems impossible.

Shor’s construction is based on fans—sets of segments that intersect concavely, whose left
endpoints are very close to one another, and whose lengths increase very rapidly. Global fans
have their left endpoints shuffled into tiny local fans. In order for the global fan to intersect
concavely, its segments are given slopes 1, 1 + ε1, 1 + ε2, . . . for very small values of ε1, ε2, . . ..
This gives a lot of freedom to play with the exact position of the segments’ left endpoints.

However, if we want all endpoints to lie on a parabola, then the slopes in the global fan must
increase very rapidly, which leads to the absurd requirement that the distances between the
left endpoints decrease very rapidly (Lemma 2.8 above). Then it is impossible to appropriately
shuffle the global fan into the local fans.

The impossible segment configuration X of Section 4 (which, as we saw in Section 5, is
forced by S7(m)) is the best way we found to isolate the contradiction.

It would be nice to be able to isolate a smaller impossible segment configuration forced by
the Hart-Sharir sequences (say, by S4(m)). However, it is unlikely that such an improvement
would be of additional help in proving Conjecture 1.1. The most promising line of attack is
described in the next section.

6 Directions for future work

We believe that our geometric results are sufficient to prove Conjecture 1.1, and that the
remaining work is purely combinatorial:

Conjecture 6.1. The Hart–Sharir sequences are the only way to achieve superlinear-length
ababa-free sequences. Namely, for every Hart–Sharir sequence Sk(m) we have

Ex
({
ababa, Sk(m), (Sk(m))R

}
, n
)

= O(n);

where the hidden constant depends on k and m.

In order to establish Conjecture 1.1, it is enough to prove Conjecture 6.1 for the specific
(gigantic) case of Theorem 5.11. However, our hope is that Conjecture 6.1 can be somehow
more easily proven for all k and m by a double induction argument.

Conjecture 6.1 is known to be true for k = 1, since S1(m) are N -shaped sequences: Klazar
and Valtr [14] showed that (even without forbidding ababa) we have Ex

(
S1(m), n

)
≤ cmn

for some constants cm. Pettie [18] subsequently improved the dependence of cm on m to
cm ≤ 2Θ(m2), which is still quite large. No interesting lower bounds for cm are known. In any
case, we conjecture that, forbidding both ababa and an N -shaped pattern, we should have
Ex
({
ababa, S1(m)

}
, n
)
≤ c′mn for some quite small c′m.

The first open case in Conjecture 6.1 is k = m = 2. In this case, S2(2) = aba cdcac dbd ≡
(S2(2))R; see Figure 9. However, as we mentioned in the Introduction, even the weaker
conjecture, that Ex({ababa, ab cacbc}, n) = O(n), is still open.

(Similarly, the other conjecture mentioned in the Introduction, namely that Ex({ababa,
ab cac cbc, (ab cac cbc)R}, n) = O(n), would follow from the case k = 3, m = 2 of Conjec-
ture 6.1.)
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c 

d 

Figure 9: The case k = m = 2 of Conjecture 6.1 states that this pattern must be present in
any configuration of n x-monotone pseudosegments, if its lower-envelope sequence has length
cn for some large enough constant c. The highlighted subsegments must be visible from −∞.

6.1 Linear vs. nonlinear forbidden patterns

Conjecture 6.1 fits into the following more general question: For which patterns u is Ex(u, n)
linear in n? This question has been previously explored in several papers [1, 11, 13, 18, 19]. The
known results in this area are somewhat patchy, and a proof (or disproof) of our conjecture
will shed additional light in this area. For one, our conjecture already highlights the fact
that forbidding a set of patterns might have a stronger effect than forbidding each pattern
separately, and hence, the right question should be: For which sets of patterns U is Ex(U, n)
linear in n?

7 Conclusion

We end by listing some related open problems:

• As mentioned at the end of Section 5, it would be nice to isolate a smaller impossible
segment configuration forced by the Hart–Sharir sequences (say, by S4(m) for some m);
see Remark 4.2 above. (Still, it is unlikely that such an improvement would make proving
Conjecture 1.1 much easier.)

• What if we do not require C to be a circle, but only a convex curve? It still seems
impossible to implement Shor’s construction forcing the endpoints to lie on a convex
curve.

• Can the ababa-free sequences of Nivasch–Geneson [8, 16] be realized as lower-envelope
sequences of line segments? Is there an ababa-free sequence that cannot be realized in
such a way?

• The longest Davenport–Schinzel sequences of order 4 (ababab-free) have length Θ
(
n ·

2α(n)
)
. However, no one knows how to realize them as lower-envelope sequences of

parabolic segments. Perhaps it is impossible. One could start by finding forbidden
patterns here.

• Higher dimensions: Raz [23] recently proved that the combinatorial complexity of the
outer zone of the boundary of a convex body in an arrangement of hyperplanes in Rd is
O(nd−1). The complexity of the inner zone is only known to be O(nd−1 log n) (Aronov
et al. [2]). Whether the latter is also linear in n is an open question.
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