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Abstract

We prove that every recognizable family of graphs of bounded treewidth and bounded
chordality is definable in counting monadic second-order logic.
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1 Introduction

The technique of translating between monadic second-order logic (MSOL)
formulae and equivalent automata has a long history. An early result is a
theorem of Büchi from 1960 [2] showing that the languages accepted by finite
automata are exactly the MSOL-definable sets of strings. Viewed as a result
on families of graphs this can be seen as establishing that recognizability
equals definability for labeled paths. In a series of seminal papers starting
in 1990 Courcelle [3] introduced the concept of a recognizable set of graphs
and began an investigation of the monadic second-order logic of graphs and
of sets of graphs. He established that any MSOL-definable family of graphs
is recognizable, but showed that for graphs in general the converse cannot
hold. However, for unordered unbounded trees Courcelle [3] did establish that
recognizability equals definability, using a counting monadic second-order logic
(CMSOL). The following quote from a later paper in the series illustrates the
situation at the time:
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It is not clear at all how an automaton should traverse a graph. A ”gen-
eral” graph has no evident structure, whereas a word or a tree is (roughly
speaking) its own algebraic structure. [4]

The proposal for how to deal with this, using tree-decompositions of graphs,
has nowadays become standard, see the recent book of Courcelle and Engel-
friet [6], and will be the main tool that we use also in this paper. Courcelle
proceeded to show that recognizability equals CMSOL-definability for graphs
of treewidth at most two and conjectured that recognizability equals CMSOL-
definability for graphs of bounded treewidth [4]. In this paper we establish that
recognizability equals CMSOL-definability for graphs of bounded treewidth
and bounded chordality (no chordless cycles of length larger than a constant
c), thereby proving a special case of Courcelle’s conjecture. Let us mention
related work on the conjecture. In 1995 Kaller [10] established the special
case of graphs of treewidth at most 3 and k-connected graphs of treewidth
at most k. Two conference papers from 1997 [9] and 1998 [11] claimed to be
able to prove the conjecture for, respectively, graphs of bounded pathwidth
and graphs of bounded treewidth. However, full versions have not appeared of
any of these two papers, and people in the field do not consider either of them
satisfactory. Very recently, Jaffke and Bodlaender showed that recognizability
implies MSOL-definability for Halin graphs, which are of treewidth 3, and for
some related graph classes [8].

The main difficulty in proving Courcelle’s conjecture for a class of graphs
is to define in CMSOL, for any graph in the class, concrete minimum-width
tree-decompositions, and that is what we do in this paper. We end the paper
by arguing that to prove the full conjecture an extension of the techniques
used in this paper will be needed.

2 Definitions

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F ))
with {Xi | i ∈ I} a family of subsets (called bags) of V , and T a rooted tree,
such that 1)

⋃
i∈I Xi = V , 2) for each edge {v, w} ∈ E, there exists an i ∈ I

with {v, w} ⊆ Xi, and 3) for each vertex v ∈ V , the set Iv = {i ∈ I | v ∈
Xi} induces a (connected) subtree of T . The width of a tree decomposition
({Xi | i ∈ I}, T = (I, F )) equals |maxi∈I |Xi|−1, and the treewidth of a graph
G is the minimum width of a tree decomposition of G.

The chordality of a graph is the length of a longest induced cycle. A graph
is chordal if it has chordality 3. A triangulation of a graph G = (V,E) is a
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supergraph H = (V,E ∪ F ) which is chordal. The edges in F are called the
fill edges. The triangulation is minimal if the graph H ′ = (V,E ∪ F ′) is not
chordal for any strict subset F ′ ⊂ F . It is a well-known fact that a graph has
treewidth at most k if and only if it has a triangulation with maximum clique
size at most k+1, and also that graphs of treewidth at most k are k-colorable.
See Figure 1 for an example of a chordal graph and a tree decomposition.

In the monadic second-order graph logic known as MSOL, sometimes called
MSOL2, the graph is described by a set of vertices, a set of edges, and an inci-
dence relation between vertices and edges, and the restriction to monadic logic
means that the graph property in question may be defined using quantification
over sets of vertices or edges, but not over more complex relations on tuples
of vertices or edges. For a full introduction, see [6]. In CMSOL, Counting
MSOL, we allow the unary predicate symbols modp,q for non-negative inte-
gers p < q with the interpretation that modp,q(V ) = True iff |S| = p mod q,
where S is the set denoted by the set variable V . A graph property P is called
CMSOL-definable over a class of graphs F if there is a CMSOL-formula Φ
such that for each G ∈ F , G satisfies P iff Φ is true on G. Using mod0,2
we can express in CMSOL the property that a graph has an even number of
vertices, something which cannot be done in MSOL alone [3]. Refer to e.g. [1]
for a further discussion of encoding expressions in MSOL and CMSOL.

A tree automaton will process a tree decomposition by assigning each of
its nodes to one of a finite number of states based on the label of the node and
the states of its children. The tree decomposition is accepted iff its root is thus
assigned to a designated accepting state. In order for a tree automaton to be
a decision algorithm over graphs of treewidth bounded by k, it must accept
either all of the width k tree decompositions of a given graph, or none of
them. A family of graphs of treewidth bounded by k is said to be recognizable
if there exists a tree automaton that accepts exactly the tree decompositions
of graphs in the family.

3 Chordal graphs of bounded treewidth

To prove that a recognizable family of chordal graphs of bounded treewidth
k is CMSOL-definable, the main task is to define in CMSOL, for every such
graph G, some tree decomposition of width k of G. A perfect elimination
ordering (peo) of a graph is a linear ordering of its vertices such that the higher-
numbered neighbors of any vertex form a clique. We say that an orientation
of the edges of a graph has the adjacent out-neighbors property, if for each
pair of edges {u, v} and {u, w}, if {u, v} is directed from u to v and {u, w} is
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directed from {u} to {w}, then v and w are adjacent in G.

Theorem 3.1 Let G = (V,E) be a graph. The following are equivalent.

(i) G is chordal.

(ii) G has a perfect elimination ordering.

(iii) G has a tree decomposition of optimal width where each bag Xi induces a
clique in G.

(iv) There is an acyclic orientation of the edges of G that has the adjacent
out-neighbors property.

Proof. (1) ⇔ (2) ⇔ (3) is well known, see e.g. [7]. (2) ⇒ (3): Orient the
edges by the order in which vertices appear in the peo. (3) ⇒ (2): Take
an arbitrary topological ordering of the acyclic orientation with the adjacent
out-neighbors property. One easily verifies that this is a peo. �

We call an acyclic orientation with the adjacent out-neighbors property an
aon-ordering. Using properties of peo’s and chordal graphs, one can show that
if G is connected, then an aon-ordering has exactly one vertex with out-degree
zero. Suppose we have a connected chordal graph G of treewidth at most k.
Take an acyclic orientation of G with the adjacent out-neighbors property.
We now first define a spanning tree T of G, as follows. For each vertex v
with outdegree at least one, its out-neighbors form a clique, and hence v has
a neighbor w such that for each other neighbor x �= w of v, the edge {w, x} is
directed from w to x. Add the edge {v, w} to T , i.e., for each v with outdegree
at least one, we add the edge to the neighbor of v that is first in the peo. This
forms a spanning tree, with the last vertex in the peo as root. Call T the
aon-defined spanning tree.

This aon-defined spanning tree fulfils an important role in our proof. It
can be defined in Monadic Second Order Logic; we can use it to build a
tree decomposition (of width at most k) of G, and on this tree, we can follow
Courcelle’s proof for trees [3] to obtain the main result of this section. Given an
aon-defined spanning tree T , we build a tree decomposition ({Bv | v ∈ V }, T )
as follows. The tree used in the tree decomposition is T ; to each node of
the tree, i.e., vertex v of the graph, we associate the bag Bv consisting of v
and its out-neighbors. Following standard graph theory, it follows that for
each aon-ordering, the associated tree decomposition is a tree decomposition
of G of width at most k. A useful technical point is the following: the acyclic
orientation also defines a total ordering on each bag of the tree decomposition
(as each bag is a clique). As k is a constant, and the formula length can
depend on k, we can thus express what is the ith vertex in the bag of a vertex
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Fig. 1. On top left a 3-coloring V1, V2, V3 and a chosen subset S of edges in bold, of a
chordal graph of treewidth 2. On top right the orientation defined by (V1, V2, V3, S),
which we note is acyclic with ’adjacent out-neighbors’. On bottom left one of the
peo’s that is therefore defined by (V1, V2, V3, S). On bottom right the spanning tree
defined by the acyclic aon-orientation. On the right the tree-decomposition thus
defined by (V1, V2, V3, S), with vertices identified by the chosen peo number.

v. Our proof now uses the following sequence of steps:

• Define a (k + 1)-vertex coloring of G in MSOL.

• Use this vertex coloring to implicitly define an orientation of the edges of
G. This technique is due to Courcelle [5, page 120].

• Express in MSOL that the orientation is acyclic and fulfills the adjacent
out-neighbors (aon) property.

• Choose a set of edges, and verify in MSOL that it is the spanning tree T
defined by the aon orientation.

• Mimic on T the proof by Courcelle for trees [3], keeping in mind the corre-
sponding tree decomposition.

A vertex coloring can be defined easily in MSOL: for k+ 1 vertex sets, we
can verify that these sets partition V and have no edge between vertices in the
same set. Then, any orientation can be represented by a subset S of the edges,
as follows: for each edge of the graph its two endpoints have different colors, if
the edge is oriented from the lower color endpoint to the higher color, then put
this edge in the subset S. Note that an orientation will be defined regardless
of whether G is chordal or not, and this will be of use to us in the next section
when we consider non-chordal graphs. Thus, to define a tree-decomposition
of a chordal graph G = (V,E) of treewidth at most k we first use an MSOL
formula stating

∃V1, V2, ..., Vk+1 forming a partition of V where adjacent vertices are in dif-
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ferent classes, and ∃S ⊆ E, that together defines an orientation that is
checked to be acyclic with the ’adjacent out-neighbors’ property.

The details of how to define this in MSOL is not complicated. Let us give an
example of a macro that will tell us if there is an arc from vertex v to vertex
w, for k = 2:
arc(v, w) ≡ (v, w) ∈ E ∧ (((v ∈ V1 ∧ w ∈ V2) ∨ (v ∈ V1 ∧ w ∈ V3) ∨ (v ∈
V2 ∧ w ∈ V3)) ∧ (v, w) ∈ S) ∨
((w ∈ V1 ∧ v ∈ V2) ∨ (w ∈ V1 ∧ v ∈ V3) ∨ (w ∈ V2 ∧ v ∈ V3)) ∧ (v, w) �∈ S))
This has to be coupled with macro MSOL formulae which will allow us to
handle the resulting tree-decomposition. For an example, to express that in
the tree decomposition the parent of bag Bv is bag Bw:
par(v, w) ≡ arc(v, w) ∧ ∀x �= w : arc(v, x) ⇒ arc(w, x) and when we need
to access the parent bag of Bv we state ∃w : par(v, w). There are several
such macros. Now, suppose we have a recognizable family of edge-labelled
chordal graphs of bounded treewidth. This gives us a (deterministic) finite
state tree automaton that runs on any tree decomposition of an input graph.
Let Q = {s1, . . . , sr} be the set of states of this automaton. The automaton
gives for every bag in the tree decomposition a state from Q; the automaton
precisely defines the function that gives the state of a bag i, given the labels of
the edges between its vertices, the states of the child bags, and the information
which vertices of Xi appear in which child bags.

We now label the nodes of the tree decomposition as follows. Each bag i
has a label, consisting of three parts: first, the size |Xi|, second, for each pair
(a, b), 1 ≤ a < b ≤ |Xi|, the label of the edge between the ath and the bth
vertex in Xi, and third: either the information that i is the root of T , or a
subset Z ⊆ {1, . . . , |Xi|}, with a ∈ Z, if and only if the ath vertex in Xi also
belongs to the bag of the parent of i in T . Note that this information is all
that the automaton on the tree decomposition uses, and hence, we can view
the automaton on the tree decomposition as a deterministic finite state tree
automaton on this labelled tree.

By Courcelle’s result [4], we have that there is a CMSOL sentence φ that
expresses whether this latter automaton accepts on this labelled tree. This
automaton uses quantification over vertices and edges in T , and checks for
vertices of their label. We want to translate this sentence to a CMSOL sentence
expressing a property of G. As above, we define the aon-ordering and the
corresponding spanning tree T = (V,ET ). Then, the quantifications over
elements of T directly translate to quantifications over vertex and edge sets in
G and a check for edges if they belong to T (which just translates to e ∈ ET .)
For a check on the label of a vertex in T , we can observe that each part of the
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label follows from the aon-ordering in a way that can be expressed in MSOL.
Thus, φ can be translated to a sentence φ′, such that φ holds for the labeled
tree T , if and only if φ′ holds for G.

Lemma 3.2 Any recognizable family of connected edge-labelled chordal graphs
of bounded treewidth is CMSOL-definable.

4 Bounded treewidth graphs of bounded chordality

In this section, let G be a graph of treewidth at most k and chordality c. As
in the previous section, our goal is to define in CMSOL, for every such G, a
tree-decomposition of width at most k. Graphs of chordality c > 3 are not
chordal and thus do not have a tree decomposition where every bag induces
a clique. Instead we will for these graphs define a set of fill edges, with the
property that when the fill edges are added to the graph it becomes chordal.
Let F be a family of graphs of treewidth at most k. We define FC to be the
family of edge-labelled chordal graphs (labels Edge or Fill) of treewidth at
most k, such that G ∈ FC iff G is chordal and of treewidth at most k and the
graph G restricted to edges with labels Edge is in F . We have the following
easy but important lemma.

Lemma 4.1 If F is recognizable then FC is recognizable.

Proof. Use the same automaton ignoring edges with label Fill. �

Fill edges are defined by taking a linear order π of the vertices, called an
elimination order, and removing vertices from the graph in this order, while
also adding fill edges between any two remaining neighbors of the removed
vertex that have not already been made adjacent. We also give a label to
every fill edge at the moment it is introduced, and use this label to partition
the fill edges into a number of levels Fill = F1 ∪ F2 ∪ ... ∪ Fq. The original
edges of the graph G = (V,E) are assigned the label 0 and belong to F0. The
graph Gπ = (V, F ∪Fill) is called the filled graph. In general, when removing
vertex v, if v has two remaining non-adjacent neighbors u and w, with edge
{v, u} ∈ Fi and {v, w} ∈ Fj, then a fill edge {u, w} belonging to F1+max{i,j}
is added. The maximum length of an induced cycle gives an upper bound on
the number of fill levels.

Lemma 4.2 If G has treewidth k and chordality c ≥ 3 then G has an elim-
ination order π giving Fill = F1 ∪ F2 ∪ ... ∪ Fq with q ≤ c − 3 and with the
filled graph Gπ being chordal and having treewidth k.
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Since the filled graph is chordal we can apply the techniques from the
previous section to define a tree decomposition of it, which will be also a tree
decomposition of G, of width k. However, applying the techniques from the
previous section is not straightforward, and involves several considerations.
We need macros that handle quantification over F0 ∪ Fill, and also macros
that count modulo the size of a subset of F0∪Fill. For a graph G of treewidth
at most k and chordality c we start as follows:

• Guess a vertex coloring V1, ..., Vk+1 and S ⊆ E = F0

• Check that this defines an acyclic orientation of the edges F0 of G

Consider how this acyclic orientation gives an elimination order: start by
removing a source vertex, add a fill edge belonging to F1 between any two of
its non-adjacent neighbors, add an orientation to these fill edges that maintains
acyclicity. Then iterate this procedure on the remaining partially filled graph.
Note that the guessed orientation of F0∪F1∪ ...∪Fi defines the fill Fi+1. This
procedure is inherently iterative but it can be defined in CMSOL, by macros
for level i based on macros of levels lower than i, as the number of levels is
a constant depending on the chordality of G. We continue with the following
steps to express this in CMSOL:

• Guess the set of fill edges Fill = F1 ∪ F2 ∪ ... ∪ Fq, for q ≤ c− 3

• Check that fill edges obey the vertex coloring and that the resulting graph
is chordal of treewidth at most k

• Guess the orientation of the fill edges and check that it is acyclic with the
aon-property

• Check that the the guessed orientation of F0 ∪ F1 ∪ ... ∪ Fi defines the fill
Fi+1, for each 0 ≤ i ≤ q

Let us give some details. We represent a fill edge by the vertex creating it
and the pair of colors of the endpoints of the fill edge. Thus, to guess the fill
edges we actually guess k(k + 1)/2 vertex subsets for each fill level, and use
the vertex coloring V1, ..., Vk+1. For example, to guess F1 for k = 2 we state:
∃Z12, Z13, Z23 subsets of V , which gives a fill edge vw ∈ F1 for each vw �∈ E
such that either Z12 defines vw ∈ F1 by v ∈ V1∧w ∈ V2∧∃x ∈ Z12∧arc(x, v)∧
arc(x, w) or Z1,3 or Z23 defines, in a similar way, vw ∈ F1.

We are now able to translate a quantification, say existential, over edge
sets of the filled graph, for simplicity say over F0 ∪ F1, by ∃S0 ⊆ E ∧ ∃S12 ⊆
Z12, S13 ⊆ Z13, S23 ⊆ Z23.

We guess the orientation of the fill edges by the same technique as before,
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i.e. guess subset of edges of the filled graph and orient from low to high color
for edges in this subset, and vice versa for those not in the subset.

To check that the guessed fill edges Fill = F1∪F2∪ ...∪Fq actually follows
from the guessed orientations we follow the explanation given above. We need
macros filli(u, w) and arci(u, w), for each level 0 ≤ i ≤ q such that filli(u, w)
is True if and only if fillj(u, w) is false for all j < i and there is a vertex x with
fillj′(x, u), arcj′(x, u) and fillj′′(x, w), arcj′′(x, w) all True for some j′, j′′ ≤ i
and either j′ = i− 1 or j′′ = i− 1.

Theorem 4.3 Any recognizable family F of graphs of chordality c and treewidth
at most k is CMSOL-definable.

Proof. By Lemma 4.1 we know that the corresponding family of edge-labelled
chordal graphs (with edge labels Edge and Fill) FC is recognizable. By Lemma
3.2 we know that FC is CMSOL-definable by some formula Φ. Above, we
have described a CMSOL-formula which defines tree decompositions of any c-
chordal graph, which in fact is an edge-labelled chordal graph, and macros that
are used to translate the formula Φ into a formula that will explicitly handle
graphs of chordality c and only implicitly edge-labelled chordal graphs. Hence
F is CMSOL-definable just as FC was. �

5 Obstacles to proving the full Courcelle conjecture

On a high level view, our proof consists of a CMSOL formulation of the sen-
tence There exists a minimal triangulation of G such that the automaton ac-
cepts on the tree decomposition, corresponding to this minimal triangulation.
Unfortunately, this approach cannot work in general. A simple example can
be found in the following class of graphs G. Take a cycle with even length n,
and add two pendant vertices to a chosen pair of vertices at distance n/2 on
the cycle. The graph on the left in Figure 2 shows an example of an element
of the class and the graph next to it is a triangulation. We can find such
a triangulation to all even n ≥ 4. If we view the triangulation as an edge
labelled graph, we obtain a class of labelled chordal graphs of treewidth two;
it is not hard to see that this class is regular, i.e. recognizable. However, G is
not regular. This is an easy consequence of well known theory. Thus, we have
a non-regular class of graphs of treewidth two, with a regular set of minimal
triangulations, also of treewidth two. Thus, it is insufficient to guess a minimal
triangulation in a proof of Courcelle’s conjecture: a different approach would
be necessary, e.g., guess some special triangulation that can be expressed in
(C)MSOL.
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Fig. 2. A non-regular class of graphs with a regular class of triangulations
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