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On the graph limit question of Vera T. Sós

Endre Csóka∗

Abstract

In the dense graph limit theory, the topology of the set of graphs is defined by the

distribution of the subgraphs spanned by finite number of random vertices. Vera T. Sós

proposed a question that if we consider only the number of edges in the spanned subgraphs,

then whether it provides an equivalent definition. We show that the answer is positive on

quasirandom graphs, and we prove a generalization of the statement.

1 Introduction

Graphon is a symmetric measurable function W : [0, 1]2 → [0, 1], introduced in the context of
graph theory by Lovász and Szegedy [2, 3]. A sampling G(n,W ) is a distribution of n-vertex
graphs constructed as follows. We choose x1, x2, ..., xn ∈ [0, 1]n uniformly at random, and we
connect the ith and jth vertices with probability W (xi, xj). Therefore, the probability of each
n-vertex graph F = ([n], E(F )) in the sampling G(n,W ) is

G(n,W )(F ) =

∫

[0,1]n

∏

{i,j}∈E(F )

W (xi, xj)
∏

{i,j}∈E(F )

(

1−W (xi, xj)
)

dx.

A basic theorem about graphons tells that the sequence of samplings G(n,W ) determine the
graphonW up to weak isomorphism [2]. Vera T. Sós asked the question whether the distribution
of the number of edges instead of the spanned subgraph already has this property [4]. Formally,
let

N(n,W )(k) =
∑

F : |E(F )|=k

G(n,W )(F ).

Question 1. Does the sequence
(

N(n,W )
)

n∈N
determine the sequence

(

G(n,W )
)

n∈N
?

In other words, does the sequence N(n,W ) determine the graphon W up to weak isomorphism?

Motivated by this question, Svante Janson (personal communication) asked the following
question.

Question 2. Does N(4,W ) = N(4, 1
2
) imply W ≡ 1

2
, i.e. W is constant 1

2
almost everywhere?

First, Jacob Fox proved the positive answer for all p ∈ [0, 1] not only for p = 1
2
in an un-

published result. At the same time, Noga Alon also proved for p = 1
2
. Later but independently,

Jakub Sliacan proved it by flag algebra. In our paper we show a simple combinatorial proof of
a stronger version of the statement. Namely, we show that 4 can be exchanged to any larger
number, moreover, the sampling could be exchanged to any graph-sampling which includes a
4-cycle C4.
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Let subgraph mean edge-subgraph, namely we keep the vertex set, but we take a subset of
its edges. For a finite graph S = ([n], E(S)), we define the sampling of a graphon W by a graph
S to be the following distribution G(S,W ) of the subgraphs of S.

G(S,W )(F ) =

∫

[0,1]n

∏

{i,j}∈E(F )

W (xi, xj)
∏

{i,j}∈E(S)\E(F )

(

1−W (xi, xj)
)

dx.

Analogously,

N(S,W )(k) =
∑

F : |E(F )|=k

G(S,W )(F ).

Notice that G(n,W ) = G(Kn,W ) and N(n,W ) = N(Kn,W ) (where Kn is the complete
graph on n vertices).

Theorem 3. Let G be a graph and W a graphon. Assume that G contains a C4 and N(G,W ) =
N(G, p). Then W ≡ p.

2 Proof of Theorem 3

Let Sk, Pk and Ck denote the star, the path and the cycle containing k edges, respectively. Let
|E(G)| = m, and we define homomorphism density of F to W as

t(F,W ) =

∫

[0,1]V (F )

∏

{i,j}∈E(F )

W (xi, xj) dx. (1)

We will use the simple fact that for vertex-disjoint union of graphs Fi,

t(F1 ⊔ F2 ⊔ ... ⊔ Fk,W ) =

k
∏

i=1

t(Fi,W ). (2)

Lemma 4. For an arbitrary positive integer k ≤ m, let Gk denote the uniform random subgraph
of G with k edges (namely, all

(

m

k

)

subgraphs have equal probability). Then

E
(

t(Gk,W )
)

= pk. (3)

Proof. On the left hand side, there are two randomnesses: the choice of the subgraph Gk and
the sampling. But if we do the sampling first and we choose the subgraph after, then we get
the right hand side. Formally,

E
(

t(Gk,W )
) (1)
= E

(

∫

[0,1]V (G)

∏

{i,j}∈E(Gk)

W (xi, xj) dx

)

=

∫

[0,1]V (G)

E

(

∏

{i,j}∈E(Gk)

W (xi, xj)

)

dx. (4)

For a fixed x ∈ [0, 1]V (G), let X : E(G) → {0, 1} = {false, true} be independent events with
probabilities P

(

X({i, j})
)

= W (xi, xj) for all {i, j} ∈ E(G). For a graph F , let us denote the
number of occurring events by µ(F ) =

∑

(a,b)∈E(F )

X(a, b).

EGk

(

∏

{i,j}∈E(Gk)

W (xi, xj)
)

= PGk,X

(

∧

{i,j}∈E(Gk)

X
(

{i, j}
)

)

= EXPGk

(

∧

{i,j}∈E(Gk)

X
(

{i, j}
)

)

= EX

(

(

µ(G)
k

)

(

m

k

)

)

(5)
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Therefore,

E
(

t(Gk,W )
) (4)(5)

=

∫

[0,1]V (G)

EX

(

(

µ(G)
k

)

(

m

k

)

)

dx = Ex,X

(

(

µ(G)
k

)

(

m

k

)

)

. (6)

The distibution of µ(G) is N(G,W ) by definition. We can make the same calculation with m

independent edges m× P1 instead of G, which provides that

t(k × P1,W ) = E

(

t
(

(m× P1)k,W
)

)

= Ex,X

(

(

µ(m×P1)
k

)

(

m

k

)

)

. (7)

N(G,W ) = N(G, p) = binomial distribution B(m, p) = N(m × P1,W ), hence, µ(G) =
µ(m× P1). Therefore,

E
(

t(Gk,W )
) (6)
= Ex,X

(

(

µ(G)
k

)

(

m

k

)

)

= Ex,X

(

(

µ(m×P1)
k

)

(

m

k

)

)

(7)
= t(k × P1,W ) = t(P1,W )k = pk.

This lemma for k = 1 immediately gives that

E
(

t(P1,W )
)

= E
(

t(G1,W )
)

= p. (8)

Lemma 5.

t(S2,W ) = p2 (9)

Proof. We apply Lemma 4 with k = 2. The support of G2 consists of two (isomorphism classes
of) graphs: two independent edges 2× P1 and S2. We Therefore, for some λ > 0,

p2 = E
(

t(G2,W )
)

= λ · t(S2,W ) + (1− λ) · t(2 × P1,W )
(2)
= λ · t(S2,W ) + (1− λ) · t(P1,W )2

(8)
= λ · t(S2,W ) + (1− λ) · p2 = p2 + λ ·

(

t(S2,W )− p2
)

,

which implies, t(S2,W ) = p2.

The degree of a vertex x ∈ [0, 1] of a graphon W is defined as follows.

deg(x) =

∫ 1

0

W (x, y) dy

Note that W is measurable, therefore, deg(x) exists for almost all vertices x ∈ [0, 1].

Lemma 6. Almost all degrees of W are p.

Proof.

Var
(

deg(W )
)

= E
(

deg(W )2
)

− E
(

deg(W )
)2

= t(S2,W )− p2 = 0.

Lemma 7. Let F be an arbitrary graph and F ′ be its extension by one new vertex v and a new
edge (v, w) connecting v to an arbitrary old vertex. Then

t(F ′,W ) = p · t(F,W ). (10)

Proof. In short, whatever we sample by F , the probability that (v, w) maps to an edge in W

is p, because all degrees are p. Formally,

t(F ′,W )
(1)
=

∫

[0,1]V (F ′)

∏

{i,j}∈E(F ′)

W (xi, xj) dx =

∫

[0,1]V (F )

∏

{i,j}∈E(F )

W (xi, xj)

∫

[0,1]

W (xv, xw) dxv dxV (F )

=

∫

[0,1]V (F )

∏

{i,j}∈E(F )

W (xi, xj) ·deg(w) dxV (F ) = p ·

∫

[0,1]V (F )

∏

{i,j}∈E(F )

W (xi, xj) dx
(1)
= p · t(F,W ).
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Lemma 8. t(P3,W ) = t(S3,W ) = p3.

Proof. We apply Lemma 7 for F = P2 = S2 and F ′ = P3 or F ′ = S3, namely,

t(F ′,W )
(10)
= p · t(S2,W )

(9)
= p · p2 = p3.

Lemma 9. If G contains a triangle K3, then t(K3,W ) = p3.

Proof. We apply Lemma 4 with k = 3. G3 may contain only the following graphs: 3 × P1,
P2 ⊔ P1, P3, S3 and K3. G contains a K3, therefore, P(G3 = K3) > 0. We already know
that t(3 × P1,W ) = t(P2 ⊔ P1,W ) = t(P3,W ) = t(S3,W ) = p3, therefore, (3) implies that
t(K3,W ) = p3, as well.

Lemma 10. t(C4,W ) = p4.

Proof. We apply Lemma 4 with k = 4. Using the previous lemmas and applying Lemma 7, we
see that for all subgraphs with 4 edges except C4, the homomorphism densities are p4. This
implies t(C4,W ) = p4.

The theorem of Chung, Graham and Wilson [1], in the language of graphons [2] shows that
if t(C4,W ) = t(P1,W )4 = p4, then W ≡ p.
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