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Abstract

Let Dk denote the tournament on 3k vertices consisting of three disjoint vertex classes V1, V2

and V3 of size k, each oriented as a transitive subtournament, and with edges directed from V1 to

V2, from V2 to V3 and from V3 to V1. Fox and Sudakov proved that given a natural number k and

ǫ > 0 there is n0(k, ǫ) such that every tournament of order n ≥ n0(k, ǫ) which is ǫ-far from being

transitive contains Dk as a subtournament. Their proof showed that n0(k, ǫ) ≤ ǫ−O(k/ǫ2) and they

conjectured that this could be reduced to n0(k, ǫ) ≤ ǫ−O(k). Here we prove this conjecture.

1 Introduction

Ramsey theory refers to a large and active branch of combinatorics mainly concerned with understand-

ing which properties of a structure are preserved in dense substructures or upon finite partition. It is

often introduced with the phrase ‘complete disorder is impossible’, attributed to Motzkin, and part of

the subject’s growth can be attributed to the surprising variety of contexts in which this philosophy

can be applied (for a small sample, see [1], [2], [11], [13]).

A central result in the area is Ramsey’s theorem [14], which says that given any natural number k,

there is an integer N such that every 2-colouring of the edges of the complete graph KN contains a

monochromatic copy of Kk. An important problem in the area is to estimate the smallest value of N

for which the theorem holds, denoted R(k). It is known that 2(1/2+o(1))k ≤ R(k) ≤ 4(1+o(1))k (see [6],

[16], [8], [4]).

Clearly it is not possible to guarantee the existence of non-monochromatic cliques in general 2-

colourings of KN . Bollobás raised the question of which 2-coloured subgraphs occur in 2-colourings of

KN where each colour appears on at least ǫ proportion of the edges. Let Fk denote the collection of

2-coloured graphs of order 2k, in which one colour appears as either a clique of order k or two disjoint

cliques of order k. Bollobás asked whether, given a natural k and ǫ > 0 there is M = M(k, ǫ) with

the following property: in every 2-colouring of the edges of KM containing both colours on at least ǫ

proportion of the edges, some element of Fk appears as a coloured subgraph. Cutler and Montágh [5]

answered this question in the affirmative and proved that it is possible to take M(k, ǫ) ≤ 4k/ǫ. Fox

and Sudakov [9] subsequently improved this bound to show that M(k, ǫ) ≤ ǫ−ck, for some constant
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c > 0. As shown in [9], this bound is tight up to the value of the constant c in the exponent, which can

be seen by taking a random 2-colouring of a graph on ǫ−(k−1)/2 vertices with appropriate densities.

Here we will be concerned with an analogous question for tournaments. A tournament is a directed

graph obtained by assigning a direction to the edges of a complete graph. A tournament is said to

be transitive if it is possible to order the vertices of the tournament so that all of its edges point in

the same direction. Let T (k) denote the smallest integer such that every tournament on T (k) vertices

contains a transitive subtournament on k vertices. A classic result due to Erdős and Moser [7] shows

that T (k) is finite for all k and gives that 2(k−1)/2 ≤ T (k) ≤ 2k−1 (in fact, as pointed out by the

referee, the upper bound here is attributed to Stearns in [7]).

As in the case of 2-colouring graphs, it is natural to ask which subtournaments must occur in every

large tournament which is ‘not too similar’ to a transitive tournament. An n-vertex tournament T is

ǫ-far from being transitive if in any ordering of the vertices of T , the direction of at least ǫn2 edges

of T must be switched in order to obtain a transitive tournament. In [9], Fox and Sudakov asked the

following question: given ǫ > 0, which subtournaments must an n-vertex tournament which is ǫ-far

from being transitive contain?

For any natural number k, let Dk denote the tournament on 3k vertices consisting of three disjoint

vertex classes V1, V2 and V3 of size k, each oriented as a transitive subtournament, and with all edges

directed from V1 to V2, from V2 to V3 and from V3 to V1. Taking T = Dn/3 we obtain an n-vertex

tournament which is 1
9 -far from being transitive and whose only subtournaments are contained in Dk

for some k. Thus, subtournaments of Dk are the only candidates for unavoidable tournaments which

occur in large tournaments that are ǫ-far from transitive for small ǫ. In [9], Fox and Sudakov proved

that subtournaments necessarily appear in large tournaments which are ǫ-far from being transitive.

Theorem 1 (Fox–Sudakov). Given ǫ > 0 and a natural number k, there is n0(k, ǫ) such that if T is

a tournament on n ≥ n0(k, ǫ) vertices which is ǫ-far from being transitive, then T contains Dk as a

subtournament. Furthermore n0(k, ǫ) ≤ ǫ−ck/ǫ2, for some absolute constant c > 0.

The authors in [9] conjectured that this bound can be further reduced to n0(k, ǫ) ≤ ǫ−Ck for some

absolute constant C > 0. This order of growth agrees with high probability with a random tourna-

ment obtained by directing edges backwards independently with probability ≈ ǫ. Here we prove this

conjecture.

Theorem 2. There is a constant C > 0 such that for ǫ > 0 and any natural number k we have

n0(k, ǫ) ≤ ǫ−Ck.

Before beginning on the proof let us mention two other results related to Theorems 1 and 2. A

tournament T is said to be c-colourable if it is possible to partition V (T ) into c subsets, each of which

is a transitive subtournament. The chromatic number χ(T ) of a tournament T equals the smallest

value of c such that T is c-colourable. A tournament H is said to be a hero if every H-free tournament

has bounded chromatic number. The definition of a hero was introduced in by Berger, Choromanski,

Chudnovksy, Fox, Loebl, Scott, Seymour and Thomassé in [3] and their main result gave an explicit

description of heroes. This notion was recently extended by Shapira and Yuster [15]. A tournament

H is said to be c-unavoidable if for every ǫ > 0 and n ≥ n0(ǫ,H), every n-vertex tournament T that

is ǫ-far from satisfying χ(T ) ≤ c contains a copy of H. A tournament H is said to be unavoidable

2



if it is cH -unavoidable for some constant cH . Clearly a tournament is 1-chromatic if and only if it

is transitive. Thus from Theorem 1 and the discussion preceding it, 1-unavoidable tournaments are

precisely those tournaments which appear as subtournaments of Dk for some k. In [15] this result was

extended to show that a tournament H is unavoidable iff it is a transitive blowup of a hero (see [3]

and [15] for the precise definitions).

Notation: Given a tournament T , we write V (T ) to denote its vertex set and E(T ) to denote the

directed edge set of T . Given v ∈ V (T ) and a set S ⊂ V (T ), let d−S (v) := |{u ∈ S : −→uv ∈ E(T )}| and

d+S (v) := |{u ∈ S : −→vu ∈ E(T )}|. We will also write T [S] to denote the induced subtournament of T

on vertex set S. Given B ⊂ E(T ), we write d−B(v) = |{u ∈ V (T ) : −→uv ∈ B}| and d+B(v) = |{u ∈ V (T ) :
−→vu ∈ B}|. For an ordering v1, . . . , v|T | of V (T ) and 1 ≤ i < j ≤ |T |, let [vi, vj ] := {vi, vi+1, . . . , vj}.

Lastly, all log functions will be to the base 2.

2 Finding many long backwards edges in T

In [9], Theorem 1 was deduced from two results of independent interest. The first result showed that

any tournament which is ǫ-far from being transitive must contain many directed triangles.

Theorem 3 (Theorem 1.3 in [9]). Any n-vertex tournament T which is ǫ-far from being transitive

contains at least cǫ2n3 directed triangles, where c > 0 is an absolute constant.

As pointed out in [9], this bound is also best possible in general, as can be seen from the following

tournament. Let T be given by taking k copies of Dn/3k, say on disjoint vertex sets V1, . . . , Vk with

all edges between Vi and Vj directed forward, for i < j. As at least (n/3k)2 edges from each copy of

Dn/3k must be reoriented in order to obtain a transitive tournament, T is k(1/3k)2 = 1/9k far from

being transitive, but contains only k.(n/3k)3 = n3/27k2 directed triangles. Taking ǫ = 1/9k, we see

that the growth rate here agrees with that given by Theorem 3 up to constants.

Our first improvement in the bound for n0(k, ǫ) comes from showing that any tournament which is

ǫ-far from being transitive must either contain many more directed triangles than the number given

in Theorem 3 or contain a slightly smaller subtournament which is 2ǫ-far from being transitive. This

density increment argument will allow one of the factors of ǫ to be removed from the exponent in the

bound on n0(k, ǫ) in Theorem 1.

Given an ordering v1, . . . , v|T | of the vertices of a tournament T , edges of the form ←−−vivj with i < j are

called backwards edges. We will often list the vertices of tournaments in an order which minimizes the

number of backwards edges. Such orderings are said to be optimal. The following proposition gives

some simple but useful properties of optimal orderings.

Proposition 4. Suppose that T is a tournament on n vertices and let v1, . . . , vn be an optimal ordering

of V (T ). Then the following hold:

1. For every i, j ∈ [n] with i < j we have

• d+[vi+1,vj ]
(vi) ≥ (j − i)/2;

• d−[vi,vj−1]
(vj) ≥ (j − i)/2.
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2. If T [vi+1, vj ] := T [{vi+1, . . . , vj}] has δ(j− i)2 backwards edges in this ordering then the subtour-

nament T [vi+1, vj ] is δ-far from being transitive.

Proof. If we had d+[vi+1,vj ]
(vi) < (j − i)/2, then the ordering v1, . . . , vi−1, vi+1, . . . , vj , vi, vj+1, . . . , vn

would decrease the number of backwards edges of T . A similar switch works if d−[vi,vj−1]
(vj) < (j−i)/2.

Lastly, if vk1 , . . . , vkj−i
was an ordering of [vi+1, vj ] with fewer than δ(j − i)2 backwards edges, then

the order of V (T ) given by v1, . . . , vi, vk1 , . . . , vkj−i
, vj+1, . . . , vn would have less backwards edges than

v1, . . . , vn.

Given an ordering v1, . . . , vn of V (T ) with a backwards edge ←−−vivj (i < j), the edge ←−−vivj ∈ B is said to

have length j − i.

Lemma 5. Suppose that T is a tournament on n vertices which is ǫ-far from being transitive and

let v1, . . . , vn be an optimal ordering of V (T ). Let B denote the collection of backwards edges in this

ordering. Then one of the following holds:

1. The subset B′ of B consisting of those edges of length at least n/16 satisfies |B′| ≥ |B|/4;

2. T contains a subtournament on at least n/8 vertices which is 2ǫ-far from being transitive.

Proof. We can assume that T itself is not 2ǫ-far from being transitive, as otherwise 2. above would

trivially hold. Thus ǫn2 ≤ |B| < 2ǫn2. Let us assume that |B′| < |B|/4, i.e. 1. fails. Note that this

gives n ≥ 16. We wish to show that there exists S ⊂ V (T ) with |S| ≥ n/8 such that T [S] is 2ǫ-far from

being transitive. To prove this, by part 2 of Proposition 4, it suffices to find an interval vi+1, . . . , vj
with j − i ≥ n/8 containing at least 2ǫ(j − i)2 edges from B.

If either Tfirst = T [v1, . . . , vn/8] or Tlast = T [v7n/8+1, . . . , vn] have at least 2ǫ(n/8)2 = ǫn2/32 back-

wards edges then we done. Otherwise, let E denote the subset of B consisting of those backwards

edges not in B′ and not in Tfirst or Tlast. From the above bounds

|E| > |B| − |B′| − 2
ǫn2

32
>

3|B|

4
−

ǫn2

16
≥

ǫn2

2
. (1)

Now given i ∈ [0, 7n/8], let Ti denote the subtournament of T which is given by Ti = T [{vi+1, . . . , vi+n/8}].

Choose i ∈ [0, 7n/8] uniformly at random and let Ei denote the random variable which counts the

number of edges of E which lie in Ti. As each element e ∈ E has length at most n/16, with at least

one endpoint in {vn/8, . . . , v7n/8}, there are at least n/16 choices of i with e ∈ Ti. As n ≥ 8, this gives

P(e ∈ Ti) ≥
n/16

7n/8 + 1
≥

1

16
.

By linearity of expectation, combined with (1) this gives

E(Ei) =
∑

e∈E

P(e ∈ Ti) ≥
|E|

16
≥

ǫn2

32
= 2ǫ(

n

8
)2.

Fix a value of i such that Ei is at least as large as its expectation. Then as Ti has n/8 vertices and at

least 2ǫ(n/8)2 backwards edges. By Proposition 4, Ti is 2ǫ-far from being transitive, as required.

4



3 Finding many directed triangles in T

Our second lemma will show that in a tournament with few backwards edges, many of which have

large length, there is a large subset of backwards edges which all lie in many directed triangles.

Lemma 6. Let T be an n-vertex tournament with an optimal ordering v1, . . . , vn and let B denote the

set of backwards edges in this ordering, |B| = αn2. Suppose that the subset B′ ⊂ B of backwards edges

with length at least n/16 satisfies |B′| ≥ αn2/4. Then, provided that α ≤ 2−16, there exists B′′ ⊂ B′

satisfying |B′′| ≥ |B′|/2 with the property that each edge of B′′ lies in at least n/64 directed triangles

in T .

Proof. Given B′ as in the statement of the lemma, let B′′ ⊂ B′ be the set

B′′ := {←−−vivj ∈ B′ : either d−
[vi+1,vj ]

(vi) ≤ 4α1/2n or d+
[vi,vj−1]

(vj) ≤ 4α1/2n}

We first claim that |B′′| ≥ |B′|/2. To see this let S− = {vi ∈ V (T ) : d−B(vi) ≥ 4α1/2n} and let

S+ = {vi ∈ V (T ) : d+B(vi) ≥ 4α1/2n}. Using that

4α1/2n|S−| ≤
∑

i∈S−

d−B(vi) ≤
∑

i∈[n]

d−B(vi) = |B|,

gives |S−| ≤ |B|/4α
1/2n = α1/2n/4. Similarly |S+| ≤ α1/2n/4. But all edges ←−−vivj ∈ B′ \ B′′ have

vi ∈ S− and vj ∈ S+. This gives

|B′ \B′′| ≤ |S−||S+| ≤ (α1/2n/4)2 = αn2/16.

But then |B′′| ≥ |B′| − αn2/16 ≥ |B′|/2, as claimed.

Now recall that by the definition of B′, for every←−−vivj ∈ B′′ we have j− i ≥ n/16. Also, by Proposition

4 part 1 we have d+
[vi+1,vj ]

(vi) ≥ (j − i)/2 and d−
[vi,vj−1]

(vj) ≥ (j − i)/2. Furthermore, as ←−−vivj ∈ B′′ we

must have either

d+[vi+1,vj ]
(vi) ≥ (j − i)− 4α1/2n ≥ 3(j − i)/4

or

d−[vi,vj−1]
(vj) ≥ (j − i)− 4α1/2n ≥ 3(j − i)/4.

The inequalities hold here since α ≤ 2−16 and j − i ≥ n/16 gives (j − i)/4 ≥ n/26 ≥ 4α1/2n. Thus

for every edge ←−−vivj ∈ B′′ there are at least (j − i)/4 ≥ n/26 vertices vk ∈ {vi+1, . . . , vj−1} such that
−−→vivk and −−→vkvj are edges. But this gives that every edge of B′′ lies in at least n/26 directed triangles,

as claimed.

4 Finding a copy of Dk in T

The second half of our argument is based on another result from [9]. Here the authors proved that

the following holds:
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Theorem 7 (Theorem 3.5 in [9]). Any n-vertex tournament with at least δn3 directed triangles contains

Dk as a subtournament provided that n ≥ δ−4k/δ.

By combining Lemma 5 and Lemma 6 with Theorem 7 it is already possible to improve the bound

n0(k, ǫ), to show that n0(k, ǫ) ≤ ǫ−ck/ǫ for some fixed constant c > 0. To remove the additional ǫ term

from the exponent, we need to modify Theorem 7.

The next lemma shows that if many directed triangles in Theorem 7 occur in a very unbalanced

manner, meaning that each of these triangles contain an edge from a small set, the lower bound on n

in Theorem 7 can be reduced. Note that this is exactly the situation given by Lemma 6.

Lemma 8. Let T be an n-vertex tournament and let E be a set of βn2 edges in T . Suppose that

each edge of E occurs in at least γn directed triangles in T . Then T contains Dk as a subtournament

provided n ≥ β−100k/γ .

The proof modifies the proof of Theorem 7 in [9], but as the details are somewhat technical, we have

included the proof in full. We will use the following formulation of the dependent random choice

method (see [10]).

Lemma 9. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n and αn2 edges. Given d, l ∈ N,

there exists a set A′ ⊂ A with |A′| ≥ αln − 1 such that every d-set in A′ has at least n1−d/l common

neighbours in B.

We will also use of the following bound for the Zarankiewicz problem, due to Kövari, Sós and Turán

(see [17], [12]). Here it was shown that any bipartite graph G = (A,B,E), with |A| = m, |B| = n,

which does not contain Ks,t as a subgraph, with s vertices in A and t in B satisfies

e(G) ≤ (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m. (2)

Proof of Lemma 8. To begin, pick a random equipartition of V (T ) into three sets V1, V2 and V3, each

with size n/3. For each edge e ∈ E, let Q
(i)
e denote the number of vertices v ∈ Vi which form a directed

triangle with e in T . Let Egood denote the collection of (random) edges e = −→xy ∈ E with x ∈ V1 to

y ∈ V2 and Q
(3)
e ≥ γn/3. For all e ∈ E, we have

P(e ∈ Egood) = P(e ∈
−−→
V1V2 and Q(3)

e ≥ γn/3) = P(Q(3)
e ≥ γn/3|e ∈

−−→
V1V2)× P(e ∈

−−→
V1V2)

≥
1

3
×
|V1||V2|

n(n− 1)
≥

1

27
. (3)

To see the inequality here, note that as |V3| ≥ |V1 \{x}|, |V2 \{y}| we have P(Q
(3)
e ≥ γn/3|e ∈

−−→
V1V2) ≥

P(Q
(i)
e ≥ γn/3|e ∈

−−→
V1V2) for i ∈ {1, 2}. As e ∈ E we also have

∑3
i=1Q

(i)
e ≥ γn and so

3P(Q(3)
e ≥ γn/3|e ∈

−−→
V1V2) ≥

3∑

i=1

P(Q(i)
e ≥ γn/3|e ∈

−−→
V1V2)

≥ P(Q(i)
e ≥ γn/3 for some i|e ∈

−−→
V1V2) = 1.

By (3) we have E(|Egood|) ≥ |E|/27 ≥ βn2/27. Fix a partition with |Egood| at least this big.
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Now take H to denote the bipartite graph between sets V1 and V2 whose edge set is Egood. From the

previous paragraph |e(H)| ≥ βn2/27 = β
3 (

n
3 )

2. Applying Lemma 9 to H with d = 3k/γ and l = 4d we

can find a set in W1 ⊂ V1 with |W1| ≥ (β/3)l|V1| − 1 ≥ n1/2 such that every d-set in W1 has at least

(n/3)1−d/l = (n/3)3/4 ≥ n1/2 common neighbours in V2. The inequality on |W1| here holds since

(β/3)l|V1| − 1 ≥ β3ln

3
− 1 ≥ 2β4ln− 1 ≥ 2n1/2 − 1 ≥ n1/2.

using that 1/3 ≥ β2 and βl ≤ 1/6 (since β ≤ 1/2, l ≥ 4) and n ≥ β−100k/γ ≥ β−8l.

Now by applying the Erdős–Moser theorem to W1, we find a transitive subtournament T1 on vertex set

S1 ⊂W1 with |S1| ≥ log |W1| ≥ log n1/2 ≥ d. Letting NH [S1] ⊂ V2 denote the common neighbourhood

of S1 inH, by choice ofW1 we have |NH [S1]| ≥ n1/2. Again apply the Erdős–Moser theorem to NH [S1],

we find S2 ⊂ NH(S1) with |S2| ≥ log |NH [S1]| = log n1/2 ≥ d vertices. By the construction of H, this

gives that all edges of T between S1 and S2 are directed from S1 to S2.

For the next section of the argument, fix a matching of size d within this bipartite directed subgraph

T [S1, S2], say with edges {e1, . . . , ed}. As each edge ei ∈ Egood, we have Q
(3)
ei ≥ γn/3 for all i ∈ [d].

Now consider the bipartite graph G on vertex set A = {e1, . . . , ed} and V3 in which ei ∈ A is joined to

v ∈ V3 if together the vertices of ei and v form a directed triangle in T . As Qei ≥ γn/3 for all i ∈ [d],

we see e(G) ≥ dγn/3 = kn.

We now claim that in G there exists A′ ⊂ A and V ′
3 ⊂ V3 with |A′| ≥ k and |V ′

3 | ≥ n1/2 such that

G[A′, V ′
3 ] is complete. Indeed, by (2), if G does not contain a complete bipartite subgraph G′ with k

vertices in A and n1/2 vertices in V3, then the number of edges in G satisfies

e(G) < (n1/2 − 1)1/k(d− k + 1)(n/3)1−1/k + (k − 1)n/3

< (dn−1/2k + k/3)n ≤ 5kn/6 < e(G).

To see the second last inequality, note that n1/2k ≥ β−12/γ ≥ 212/γ ≥ e6/γ ≥ 6/γ, as β ≤ 1/2 and

ex ≥ x for all x. This gives dn−1/2k ≤ dγ/6 = k/2. This contradiction shows that must exist some

set of k edges {ei1 , . . . , eik} ⊂ A which is completely joined to a set W3 ⊂ V3 of size at least n1/2.

To complete the proof of the lemma, apply the Erdős–Moser theorem a final time to W3 to find a

transitive subtournament of size log n1/2 > d > k on vertex set S3. For i = 1, 2, let Ui denote the sets

Ui ⊂ Vi which occur in the edges {ei1 , . . . , eik}. Also let U3 ⊂ S3 be a set with |U3| = k.

We claim that T [U1∪U2∪U3] forms a subtournament isomorphic to Dk. Indeed, |Ui| = k for all i ∈ [3]

and T [Ui] is transitive since Ui ⊂ Si. Also, all edges in T between U1 and U2 are directed from U1 to

U2, since Ui ⊂ Si. Lastly, from the definition of H, each u ∈ U3 forms a directed triangle in T with

eij ∈
−−−→
U1U2 for all j ∈ [k] giving that all edges of T are directed from U2 to U3 and from U3 to U1.

We can now complete the proof of Theorem 2.

Proof of Theorem 2. Take c ≥ 1 to be a constant such that Theorem 1 holds and set C = 233c.

We will show that an n-vertex tournament T which is ǫ-far from being transitive contains Dk as a

subtournament, provided n ≥ ǫ−Ck.

To begin, choose i ∈ N ∪ {0} as large as possible so that T contains a subtournament T ′ satisfying

|T ′| ≥ |T |/8i and such that T ′ is (2iǫ)-far from being transitive. Let |T ′| = t ≥ n/8i and list the
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vertices of T ′ in an optimal ordering v1, . . . , vt. Letting B denote the backwards edges of T ′ and

|B| = αt2, we have α ≥ 2iǫ. In particular, since α ≤ 1 we have 1/2i ≥ ǫ. Now by the choice of i,

the conclusion of Lemma 5 part 2 fails for T ′. Lemma 5 therefore guarantees that the subset B′ of B

consisting of edges of length at least t/16 satisfies |B′| ≥ |B|/4 = αt2/4.

We first consider the case when α > 2−16. Here we apply Theorem 1 to T ′ taking advantage of the

fact that α is quite large. Indeed, as T ′ is α-far from being transitive, by Theorem 1 we find that T ′

contains Dk as a subtournament, provided t ≥ α−ck/α2

. This holds as

t ≥ n/8i ≥ nǫ3 ≥ ǫ−Ck+3 ≥ ǫ−Ck/2 ≥ α−Ck/2 ≥ α−232ck ≥ α−ck/α2

.

Here we used that 1/2i ≥ ǫ, that C ≥ 6 and k ≥ 1 and that α ≥ ǫ.

Now we deal with the case when α ≤ 2−16. We can apply Lemma 6 to T ′ taking B and B′ as given

above, to find a subset B′′ ⊂ B′, satisfying |B′′| ≥ |B′|/2 ≥ (α/8)t2 with the property that each edge of

B′′ lies in at least t/64 directed triangles in T ′. We now apply Lemma 8 to T ′ taking E = B′′, β = α/8

and γ = 1/64. This shows that T ′ contains a copy of Dk, provided that |T ′| = t ≥ β−100k/γ = β−6400k.

To see that this holds, first note that t ≥ n/8i ≥ ǫ−Ck/8i ≥ ǫ−Ck+3 ≥ ǫ−Ck/2 as C ≥ 6. Using

β ≥ 2iǫ/8 ≥ ǫ/8 ≥ ǫ4 (since 1/2 ≥ ǫ) gives t ≥ ǫ−Ck/2 ≥ β−Ck/8 ≥ β−230ck ≥ β−6400k, as required.

Acknowledgements: I would like to thank Asaf Shapira for sharing a copy of his preprint with

Raphael Yuster [15] and the referee for many useful comments.

References

[1] P. Agarwal, J. Pach, Combinatorial geometry, Wiley-Interscience, 1995.

[2] N. Alon and J. Spencer, The probabilistic method, 3rd ed., John Wiley and Sons (2008).

[3] E. Berger, K. Choromanski, M. Chudnovksy, J. Fox, M. Loebl, A. Scott, P. Seymour and S.
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