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Abstract

A strong edge coloring of a graph is a proper edge coloring such that no edge has
two incident edges of the same color. Erdős and Nešetřil conjectured in 1989 that
5
4∆2 colors are always enough for a strong edge coloring, where ∆ is the maximum
degree of the graph. In the specific case where ∆ = 4, we prove this to be true when
there is no subgraph with average degree at least 4− 1

5 , and show that fewer colors
are necessary when the graph is even sparser.
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1 Introduction

Let G be a simple undirected graph. A proper edge coloring of G is strong
if every color class provides an induced matching of G. The least number
of colors in a strong edge coloring of G is the strong chromatic index of G,
commonly denoted by χ′

s(G). Since the introduction of this parameter by
Fouquet and Jolivet in 1983 [8], the question of determining the exact value
of the strong chromatic index of graphs has attracted great attention (see e.g.
[10,11] for an overview of the topic).

This question is hard to answer even in restricted settings like the class of
planar subcubic graphs with no triangle (see e.g. [9]). Therefore, many works
focus instead on exhibiting upper bounds on the strong chromatic index of
particular families of graphs (see again [10,11] for examples of such bounds).
Most of these upper bounds are expressed as a function of ∆, where ∆ refers
from now on to the maximum degree of the graph considered. This is justified
by the fact that ∆ is a trivial lower bound on χ′

s, and that greedy coloring
arguments yield a natural upper bound of 2∆2 − 2∆ + 1 on χ′

s.

This upper bound is actually quite näıve, as most graphs can be strongly
edge colored using fewer colors. Improving the upper bound involving ∆ is
at the heart of many investigations on the strong chromatic index. Let us
mention those concerning two specific families of graphs: planar graphs and
bipartite graphs. In the setting of planar graphs, Theorem 1.1 stands out.

Theorem 1.1 (Faudree et al. [7]) Every planar graph G satisfies χ′
s(G) ≤

4∆ + 4.

The upper bound of Theorem 1.1 is correct up to an additive factor, as there
is a family of planar graphs with strong chromatic index 4∆− 4 [7]. For more
details on recent improvements on the strong chromatic index of planar graphs,
see [2]. Regarding bipartite graphs, the goal is the following conjecture.

Conjecture 1.2 (Faudree et al. [6]) Every bipartite graph G satisfies χ′
s(G) ≤

∆2.

If correct, this is tight due to complete bipartite graphs of the form Kn,n.
See [3] for an up-to-date survey on the investigations related to Conjecture 1.2.
There is also a conjecture in the general case, as follows.

Conjecture 1.3 (Erdős and Nešetřil [5]) Every graph G satisfies

χ′
s(G) ≤

{
5
4
∆2 if ∆ is even,

1
4
(5∆2 − 2∆ + 1) otherwise.



If true, the bounds in Conjecture 1.3 are tight, as confirmed by the Erdős-
Nešetřil graphs whose construction is described in Figure 1.
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• Every Ij is an independent set.

• ”Ij ./ Ij′” means that Ij is complete to Ij′ .

• If ∆ = 2k, then |Ij| = k.

• If ∆ = 2k + 1, then |I1| = |I2| = |I3| = k

and |I4| = |I5| = k + 1.

Fig. 1. The Erdős-Nešetřil construction.

Although Conjecture 1.3 is maybe one of the most important questions related
to strong edge coloring, it is still widely open. However, it is known to be true
whenever ∆ ≤ 3, as proved notably by Andersen [1]. For ∆ = 4, the best
result towards Conjecture 1.3 is due to Cranston, who proved the following.

Theorem 1.4 (Cranston [4]) Every graph G with ∆ = 4 satisfies χ′
s(G) ≤

22.

He also proved that one color could be saved when the graph is not 4-regular.
Nonetheless, there is still a small gap between Theorem 1.4 and the up-
per bound suggested by Conjecture 1.3 for graphs with maximum degree 4,
namely 20.

2 Our results

Toward Conjecture 1.3, we herein focus on the family of graphs with maxi-
mum degree 4. As mentioned above, the Erdős-Nešetřil graph with maximum
degree 4 has strong chromatic index exactly 20. However, it is worth men-
tioning that, this extremal graph and its variations apart, it seems that we
can save a significant number of colors. As an illustration of this statement,
let us recall that the highest strong chromatic index found in a planar (resp.
bipartite) graph with maximum degree 4 so far is 12 (resp. 16).

In this context, we consider graphs with maximum degree 4 and bounded
maximum average degree (or mad for short), where the maximum average



degree of some graph G is defined as

mad(G) := max

{
2|E(H)|
|V (H)|

, H is a subgraph of G

}
.

As a first step towards Conjecture 1.3 for ∆ = 4, we confirm it for graphs
of mad less than 19

5
. We then provide a number of situations where sparser

graphs can be colored with fewer colors. To summarize our results, we prove
here the following.

Theorem 2.1 For every graph G with ∆ = 4, we have:

(i) if mad(G) < 16
5

, then χ′
s(G) ≤ 16;

(ii) if mad(G) < 10
3

, then χ′
s(G) ≤ 17;

(iii) if mad(G) < 17
5

, then χ′
s(G) ≤ 18;

(iv) if mad(G) < 18
5

, then χ′
s(G) ≤ 19;

(v) if mad(G) < 19
5

, then χ′
s(G) ≤ 20.

Theorem 2.1 is proved through a discharging method using purely local ar-
guments. The method consists in considering a minimum counter-example to
the statement (duly reformulated so as to avoid some technicalities), proving
that it satisfies some structural constraints (e.g. there is no vertex of degree
1, nor two adjacent vertices of degree 2, etc.), and then use a discharging ar-
gument to claim that a graph with those structural properties cannot satisfy
the sparseness hypothesis.

3 Conclusions: sharpness and further work

We now discuss the tightness of the upper bounds in Theorem 2.1. For this
purpose, we provide some examples of graphs with maximum degree 4 and
different values of mad, and compare their strong chromatic index to the
upper bounds of Theorem 2.1.

As mentioned earlier, the Erdős-Nešetřil graph with maximum degree 4
notwithstanding, it seems difficult to exhibit graphs with maximum degree 4
and strong chromatic index close to 20. Again, as already mentioned, such
graphs should not be planar (unless there exist worst examples than those ex-
hibited in [7]), nor bipartite (unless Conjecture 1.2 is wrong). This task seems
even more complicated when a condition on the maximum average degree
must be met: for a graph with maximum degree 4 to have strong chromatic
index close to 20, a lot of 4-vertices seem necessary. As a consequence, the



mad = 4
χ′
s = 20

mad = 38
10

= 3.8
χ′
s = 17

mad = 34
9
∼ 3.777...

χ′
s = 17

mad = 32
9
∼ 3.555...

χ′
s = 16

Fig. 2. Some variations of the Erdős-Nešetřil graph with ∆ = 4.

maximum average degree is naturally close to 4.

Some explicit graphs with maximum degree 4, maximum average degree
strictly less than 4, and large strong chromatic index are depicted in Figure 2.
These result from straightforward modifications of the Erdős-Nešetřil graph
with ∆ = 4. These graphs give already an idea of how far from the optimal
the upper bounds in Theorem 2.1 may be. In particular, if we compare the
values given in Theorem 2.1 to the characteristics of these sample graphs, we
come up with Table 1.

# of colours proved for mad < false for mad ≥

16 16
5

= 3.2 32
9
∼ 3.555...

17 10
3
∼ 3.333... 38

10
= 3.8

18 17
5

= 3.4 4

19 18
5

= 3.6 4

20 19
5

= 3.8 4

Table 1
On the tightness of Theorem 2.1 in terms of mad and χ′

s.

Beside the obvious search for optimal bounds, it would be interesting to
generalize the bounds of Theorem 2.1 to any value of ∆. In particular, we



believe that the following statement would be a reasonable first step toward
Conjecture 1.3.

Conjecture 3.1 Every graph G with no subgraph of average degree at least
∆(G)

2
satisfies χ′

s(G) ≤ 5∆(G)2

4
.
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