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ON PATH DECOMPOSITIONS OF 2k-REGULAR GRAPHS
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Abstract. Tibor Gallai conjectured that the edge set of every connected graph G on n

vertices can be partitioned into ⌈n/2⌉ paths. Let Gk be the class of all 2k-regular graphs

of girth at least 2k − 2 that admit a pair of disjoint perfect matchings. In this work, we

show that Gallai’s conjecture holds in Gk, for every k ≥ 3. Further, we prove that for

every graph G in Gk on n vertices, there exists a partition of its edge set into n/2 paths

of lengths in {2k − 1, 2k, 2k + 1}.

Keywords. Path decomposition, length-constrained, 2k-regular graphs, perfect matchings.

1. Introduction

A decomposition of a graph is a set of subgraphs that partition its edge set. If all

subgraphs are paths, then it is called a path decomposition. In 1966, Erdös (see [10])

raised the question: given n > 0, what is the minimum λ such that every connected graph

G on n vertices admits a decomposition into λ paths? Gallai conjectured that λ is at

most ⌊(n + 1)/2⌋. Despite the best efforts [5, 8, 10, 11], the conjecture of Gallai remains

widely open. Over the years, Gallai’s conjecture has been explored on particular classes of

graphs. In this paper, we focus on regular graphs. A seminal result of Lovász [10] shows

that all odd regular graphs satisfy the conjecture of Gallai. In contrast, for even regular

graphs not much is known. Indeed, in addition to classical results for complete graphs, it

is known that the conjecture holds on 4-regular graphs [6]. We make progress within this

direction. Let k ≥ 3 an integer and Gk be the class of all 2k-regular graphs of girth at

least 2k− 2 that admit a pair of disjoint perfect matchings. As usual, the girth of a graph

is the length of a shortest cycle. We establish the following theorem.
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Theorem 1. Every G ∈ Gk on n vertices has a decomposition into n/2 paths.

A closely related problem to the conjecture of Gallai that has drew great interest [2, 7,

9, 12, 13] is as follows: given a family of paths H, is there a decomposition D of G such

that each graph in D is isomorphic to a graph in H? We give a step forward towards

obtaining constrained path decompositions of even regular graphs. Actually, Theorem 1

follows from a stronger statement. In this work, the length of a graph refers to its number

of edges. The main contribution of this paper is the following statement.

Theorem 2. For every G ∈ Gk there exists a decomposition D into paths of lengths in

{2k − 1, 2k, 2k + 1}. Further, in D, the number of paths of length 2k − 1 is equal to the

number of paths of length 2k + 1.

In the same vein, Botler et al. (Theorem 4.2 of [2] and Theorem 3.2 of [1]) guaranteed

existence of length-constrained path decompositions for (2k − 1)-regular graphs.

Theorem 3 (Botler et al. [1, 2]). Let k ≥ 3 and G be a 2k − 1-regular graph of girth at

least 2k − 2 that admits a perfect matching. Then G has a decomposition into paths of

length 2k − 1.

This result is the outset of the proof of Theorem 2.

1.1. Organization of the paper. The proof of Theorem 2 consists of two main steps.

In the first step, developed in Section 2, we prove that one can decompose graphs in

Gk into paths of lengths in {2k − 1, 2k, 2k + 1} and cycles of length 2k. In the second

step, developed in Section 3, we show how to turn the decompositions obtained in the

first step into the desired ones. The last section contains the proof of a technical lemma

(Lemma 2.6) on which our results are based on.

2. Decomposing into paths and cycles of lengths in {2k − 1, 2k, 2k + 1}

Let N ⊂ N. We refer to a decomposition into paths and cycles as an N -decomposition

if all its paths and cycles have their lengths in N . The following definition introduces a

type of decomposition that is fundamental to prove the existence of {2k − 1, 2k, 2k + 1}-

decompositions into paths only.

Definition 2.1. Let G be a graph and k ≥ 3. Let v be a vertex of G and D be a

{2k− 1, 2k, 2k+1}-decomposition of G. We say that D is k-balanced (or simply balanced)

at v if the number of paths of D of length at most 2k with end vertex v is at least the

number of paths of D of length at least 2k + 1 with end vertex v. Further, we say that D

is a k-balanced decomposition of G if it is k-balanced at every vertex of G and the number

of paths of length 2k − 1 is equal to the number of paths of length 2k + 1.
2



Recall that Gk denotes the class of all 2k-regular graphs of girth at least 2k − 2 that

admit a pair of disjoint perfect matchings. The following is the main result of this section.

Theorem 4. For every graph in Gk there is a k-balanced decomposition D. Moreover, the

cycles in D have length 2k.

Throughout this section, G ∈ Gk is a graph on n vertices and M denotes one of its two

disjoint perfect matchings. The starting point of the proof of Theorem 4 is the following.

By removing all edges of M from G, we obtain a (2k − 1)-regular graph G′ with girth

at least 2k − 2 provided with a perfect matching. Due to Theorem 3, there exists a

decomposition P of G′ into paths of length 2k − 1. The rest of the proof of Theorem 4

relies on our ability to extend P to a k-balanced decomposition of G. Indeed, Lemma 2.6

characterizes, and shows a way to overcome, the obstructions to such extension. Before

we present the proof of Theorem 4, we formulate this key lemma.

2.1. A toolbox. A sequence of vertices and edges W := v1e1v2 · · · vtetvt+1 is called a trail

if ei = vivi+1 ∈ E(W ) for each i ∈ {1, . . . , t}, and ei 6= ej if i 6= j. If v1 = vt+1, then W

is a closed trail. A closed trail W is called an (M,P)-alternating r-closed trail (or simply

an alternating closed trail) if W is the union of r distinct paths P1, . . . , Pr of P and r

distinct matching edges e1, . . . , er of M , for some r ≥ 1, such that, for each i ∈ Zr the

matching edge ei = uv is such that u is an end vertex of Pi and v is an end vertex of Pi+1.

We write W as P0e0 · · ·Pr−1er−1P0. Note that a 1-closed trail is a cycle of length 2k. A

subsequence of W is called an (M,P)-alternating trail (or simply an alternating trail).

The following definition presents the structure of the main obstruction.

Definition 2.2. Let G ∈ G3. We say that a subgraph of G is exceptional if it isomorphic

to an (M,P)-alternating trail PeP ′e′ where P = x0 · · · x5, P ′ = y0 · · · y5, and e = x5y0

such that e′ = y5y2, y0 = x1, y4 = x5 and y2 = x3 (see Figure 1).

Figure 1. Exceptional graph: P is the black

path, P ′ is the red path and the dashed edges

represent the matching edges.

The notation s(j, l) stands for the (M,P)-alternating trail Pjej · · ·Pj+lej+lPj+l+1, which

embraces the matching edges ej , . . . , ej+l. In the case that Pj = Pj+l+1, we say that s(j, l)

is cyclic. If s(j, l) is non-cyclic, we refer to the alternating trails

s[j, l) = ej−1s(j, l), s(j, l] = s(j, l)ej+l+1, s[j, l] = ej−1s(j, l)ej+l+1,

and to s(j, l) itself, as extensions of s(j, l).
3



Observation 2.3. Because graphs in G3 are triangle-free, if the (M,P)-alternating trail

s(j, l) is cyclic and contains an exceptional subgraph, then l ≥ 2.

The following definition captures the notion of balanced decompositions in extensions.

Definition 2.4 (Quasi-balanced decompositions). Let X be an extension of s(j, l). We

refer to a {2k− 1, 2k, 2k+1}-decomposition D of X as quasi-k-balanced (or simply, quasi-

balanced) if D is k-balanced at all vertices of X, except possibly, at the vertices of odd

degree of X incident to an edge of {ej−1, ej+l+1}. In addition, if D is not k-balanced at

v ∈ e for e ∈ {ej−1, ej+l+1}, then e ∈ X.

For a set S, the notation |S| stands for the cardinality of S. The next observation

follows.

Observation 2.5. Let X1, . . . ,Xl be a partition of the edges of an (M,P)-alternating

trail s (not necessarily closed) into extensions and D1, . . . ,Dl be a set of quasi-k-balanced

decompositions of X1, . . . ,Xl, respectively. Then, D = ∪i=1,...,lDi is a quasi-k-balanced

decomposition of s. Further, if for each i ∈ {1, . . . , l}, |Di| equals the number of paths of

P in Xi and s is an alternating closed trail, then D is a balanced decomposition of s.

The toolbox of this paper is a result (Lemma 2.6) which claims that each alternating

trail containing 2 paths from P has a quasi-k-balanced decomposition into 2 paths, unless

it contains an exceptional subgraph (in particular, k = 3). Moreover, Lemma 2.6 shows

that exceptional subgraphs are disjoint and are not subsequent, which allows us to over-

come them. The proof of Theorem 4 relies on this result; specifically, it is used to prove

Claim 2.11.

Lemma 2.6. Let ei−1Pi · · ·Pi+2ei+2 be an (M,P)-alternating trail and X be an extension

of PieiPi+1. The following two statements hold.

(i) If X does not contain an exceptional subgraph, then X has a quasi-k-balanced

decomposition into 2 paths.

(ii) If X is exceptional (in particular, k = 3), then ei−1 6= ei+1. If, in addition,

X = PieiPi+1ei+1 (analogously for ei−1PieiPi+1), then neither eiPi+1ei+1Pi+2,

nor Pi+1ei+1Pi+2ei+2 is exceptional.

In the following we present the proof of Theorem 4. The proof of Lemma 2.6 is in

Section 4.

2.2. Proof of Theorem 4. Recall that G ∈ Gk is a 2k-regular graph on n vertices of

girth at least 2k − 2 that admits a pair of disjoint perfect matchings, M denotes one

of its two disjoint perfect matchings and the (2k − 1)-regular graph G′ = G − M has a

decomposition P into paths of length 2k − 1.
4



Since each vertex of G′ is the end vertex of exactly one path in P, it follows that the

edge set of G admits a partition W into (M,P)-alternating closed trails. Each alternating

1-closed trail in W is a cycle of length 2k. Hence, to conclude the result of Theorem 4, it

suffices to prove that for each alternating r-closed trail with r ≥ 2 there exists a k-balanced

decomposition into r paths; this is the statement of our next lemma. Thus, the validity

of Theorem 4 follows from Lemma 2.7.

Lemma 2.7. Let r ≥ 2 and W be an (M,P)-alternating r-closed trail. Then, W admits

a k-balanced decomposition.

Before we show Lemma 2.7, we present two useful definitions.

Definition 2.8 (malicious paths, nice paths and trapped edges). Let PeP ′ be a path-

edge-path (M,P)-alternating trail. Suppose e = xx′, where x is an end vertex of P and

x′ is an end vertex of P ′. If x′ is an internal vertex of P , then we say that P is malicious

for e; otherwise, we say P is nice for e. If P and P ′ are malicious for e, we say that edge

e is trapped (in the sequence PeP ′).

Definition 2.9 (trapped sequences, nice and malicious extensions). Let r ≥ 2 and

W be the (M,P)-alternating r-closed trail P0e0 · · ·Pr−1er−1P0. If all matching edges

ej , ej+1, . . . , ej+l are trapped in s(j, l), then we say that s(j, l) is a trapped sequence. More-

over, we say that an extension X of s(j, l) is nice, if the following holds: if ej−1 ∈ X (resp.

ej+l+1 ∈ X) and ej−1 6= ej+l+1, then Pj (resp. Pj+l+1) is nice for ej−1 (resp. ej+l+1).

Otherwise, it is called malicious. In particular, s(j, l) is nice as an extension of itself.

Note that an extension X of s(j, l) is malicious only if at least one of the following holds.

• ej−1 ∈ X, ej−1 6= ej+l+1, and Pj is malicious for ej−1; or

• ej+l+1 ∈ X, ej−1 6= ej+l+1, and Pj+l+1 is malicious for ej+l+1.

We are ready to prove Lemma 2.7.

Proof of Lemma 2.7. Let W = P0e0 · · ·Pr−1er−1P0 be an alternating r-closed trail, for

some r ≥ 2. Recall that we want to prove that W admits a k-balanced decomposition.

Note that the property that the number of paths of length 2k − 1 equals the number of

paths of length 2k+1 of the decomposition is equivalent to the one that the decomposition

consists of r paths (Observation 2.3).

Let us first suppose that for every i ∈ Zr, the matching edge ei is not trapped in PieiPi+1.

Since r ≥ 2, for each i ∈ Zr, we have Piei or eiPi+1 is a path. Moreover, if ei−1Pi and

Piei are paths, then ei−1Piei is a path (because e0, . . . , er−1 are elements of a matching of

G) and it has length 2k+ 1. Therefore, it is possible to decompose W into r paths whose

lengths are in {2k− 1, 2k, 2k+1} such that each path of length 2k+1 has both end edges

in the perfect matching M . Hence, each vertex of W is the end vertex of at most one path

of length 2k + 1, thus, the decomposition is k-balanced.
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We now assume that W contains trapped edges. We study first the case that W is not

a cyclic trapped sequence, and later the remaining case.

Case that W is not a cyclic trapped sequence. We say that the matching edges

ei−1, ei are the neighbouring edges of Pi in W , for all i ∈ Zr. Let S be the set of all

maximal trapped sequences in W , P ′ ⊂ P be the set of all paths that do not belong to

any trapped sequence in W , and W ′ be the subgraph of W consisting of the union of all

the paths in P ′ and all matching edges in M satisfying that for each of them there exists

a path in P ′ that is nice. Note that each maximal trapped sequence starts and ends with

paths in P and that P ∈ P ′ if and only if either P is nice for one of its two neighbouring

edges, or there are paths in P that are nice for its neighbouring edges (and thus, such

paths are also in P). Hence, W ′ is a disjoint union of extensions. Trivially, it follows

that there exists a {2k − 1, 2k, 2k + 1}-decomposition P(W ′) of W ′ into |P ′| paths such

that P(W ′) is quasi-k-balanced at each extension of W ′.

Let W ∗ = W − E(W ′) be the graph obtained from W by deleting the edge set E(W ′)

and all (if any) isolated vertices. Recall that s(j, l) denotes Pjej · · ·Pj+lej+lPj+l+1. We

refer to the paths Pj and Pj+l+1 as the end paths of s(j, l), to Pj as its inital path and to

Pj+l+1 as its final path. Observe that W ∗ is the disjoint union of all the maximal trapped

sequences in S and a set M∗ ⊂ M (possibly empty). Let us understand the behavior of

the edges in M∗ arise. If e ∈ M∗, then there is no path in P ′ that is nice for e. Thus, e is

a neighbouring edge of an end path Pe of a maximal trapped sequence se of S; otherwise,

there are paths P,P ′ in P ′ such that PeP ′ is a trapped sequence, a contradiction. We now

prove that we can choose se and Pe so that Pe is nice for e. We have already shown that

there exists a maximal trapped sequence s(j, l) ∈ S, such that e = ej−1, or e = ej+l+1.

Suppose, without loss of generality, that e = ej−1. Suppose that the result does not hold

with such sequence; that is, if e = ej−1 then Pj is malicious for e. Due to the maximality of

s(j, l), the path Pj−1 is nice for e. Hence, Pj−1 is neither an end path of s(j, l), nor a path

in P ′. Therefore, Pj−1 is the final path of a maximal trapped sequence s ∈ S, obviously

distinct of s(j, l), and the result follows by taking se = s and Pe = Pj−1 Consequently, we

can claim the following.

Claim 2.10. W ∗ can be decomposed into nice extensions of maximal trapped sequences.

Let us assume that the following claim holds:

Claim 2.11. For every nice extension X of a trapped sequence s(j, l), there exists a quasi-

k-balanced decomposition D of X into l + 2 paths.

Then, according to Observation 2.5, Lemma 2.7 follows from the fact that W is the

edge disjoint union of W ′ and W ∗, the existence of a quasi-k-balanced decomposition for

each extension of W ′ and, the validity of Claims 2.10 and 2.11.
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In what follows, we prove Claim 2.11. The proof of Claim 2.11 relies on the technical

result, namely Lemma 2.6, described in Subsection 2.1.

Proof of Claim 2.11. Let us proceed by induction on l (clearly, l ≥ 0). For the case that

l = 0, we have that s(j, 0) is a path-edge-path alternating trail. Let X be a nice extension

of s(j, 0). By Lemma 2.6(i), if k > 3, then X has a quasi-k-balanced decomposition into 2

paths. Suppose k = 3. If ej−1 6= ej+1, then X does not contain exceptional subgraphs

(see Figure 1), because if ej−1 (resp. ej+1) is in X, then Pj (resp. Pj+1) is nice for

ej−1 (resp. ej+1). Thus, using Lemma 2.6(i) the result follows. If ej−1 = ej+1, then by

Observation 2.3, X does not contain an exceptional subgraph and the result holds, again,

by Lemma 2.6(i).

We now suppose l ≥ 1. Let ePjejPj+1ej+1 be the begining of the nice extension X(j, l),

where e may exist or not. If e ∈ X(j, l), we can suppose without loss of generality that

Pj is nice for e; otherwise, namely, if e ∈ X(j, l) and Pj is malicious for e, by definition of

nice extensions, we have that ej+l+1 ∈ X(j, l) and Pj+l+1 is nice for ej+l+1, and thus we

can use the inverse sequence of X(j, l), instead of X(j, l) itself. In particular, in the case

that k = 3, we have that ePjejPj+1 is not exceptional.

If k = 3 and PjejPj+1ej+1 is not exceptional, then by Lemma 2.6(i), we have that

ePjejPj+1ej+1 has a quasi-3-balanced decomposition into two paths. For k > 3, we have

that ePjejPj+1ej+1 is an extension of PjejPj+1 and thus Lemma 2.6(i) claims that there

exists a quasi-k-balanced decomposition of ePjejPj+1ej+1 into two paths. For k ≥ 3, let

X := X(j, l)− ePjejPj+1ej+1; the nice extension of the trapped sequence s(j+2, l−2). If

l = 1, then X is simply a path of length 2k−1 or 2k. If l ≥ 2, by the induction hypothesis,

X has a quasi-k-balanced decomposition into l paths. Thus, by Observation 2.5, there

exists a quasi-k-balanced decomposition of X(j, l) into l + 2 paths.

We now study the case that k = 3 and PjejPj+1ej+1 is exceptional. Using Lemma 2.6(ii),

we have that ejPj+1ej+1Pj+2ej+2 does not contain an exceptional subgraph, and therefore,

by Lemma 2.6(i), it has a quasi-3-balanced decomposition into 2 paths. Since Pj is nice

for e (by previous assumption), we have that ePj is a path of length 6 (if e ∈ X) or simply

a path of length 5. It follows, by Observation 2.5, that ePjejPj+1ej+1Pj+2ej+2 can be

decomposed into three paths that form a quasi-3-balanced decomposition. Analogously

to the case above, (but taking X = X(j, l)− ePjejPj+1ej+1Pj+2ej+2) we prove again that

X(j, l) has a quasi-3-balanced decomposition into l + 2 paths. �

Case that W is a cyclic trapped sequence. Let s := s(0, r − 1). We show that s

has a quasi-k-balanced decomposition. For the particular case that r − 1 = 1, the result

follows by Lemma 2.6(i) and, in the case that k = 3, in addition by Observation 2.3. We

now suppose that r − 1 ≥ 2. Assume first that for k = 3 and some j ∈ {0, . . . , r − 1},
7



we have that PjejPj+1ej+1, ej−1PjejPj+1 are not exceptionals; without loss of general-

ity j = 0. Therefore, if k = 3 and P0e0P1e1, er−1P0e0P1 are not exceptionals (analo-

gously if k > 3), then by Lemma 2.6 we can obtain a quasi-k-balanced decomposition of

er−1P0e0P1e1 into two paths. In addition, we use Claim 2.11 to obtain a quasi-k-balanced

decomposition of s(j + 2, l − 3) = s − er−1P0e0P1e1 and thus, by Observation 2.5, we

have that s has a k-balanced decomposition. We suppose now that PjejPj+1ej+1 (anal-

ogously, for ej+lPjejPj+1) is exceptional for k = 3. Then by Observation 2.3, Pj 6= Pj+2

and by Lemma 2.6(ii), ejPj+1ej+1Pj+2ej+2 does not contain an exceptional subgraph,

thus, again by Lemma 2.6(i), ejPj+1ej+1Pj+2ej+2 can be decomposed into two paths

that form a quasi-3-balanced decomposition. As before, due to Claim 2.11 we have that

s− ejPj+1ej+1Pj+2ej+2 admits a quasi-3-balanced decomposition, and thus, by Observa-

tion 2.5, we have that s has a 3-balanced decomposition.

3. Path-cycles into length-constrained paths

In this section, we prove Theorem 2. Namely, we show that for every graph in Gk there

exists a {2k − 1, 2k, 2k + 1}-decomposition into paths such that the number of paths of

length 2k − 1 equals the number of paths of length 2k + 1. From now on, the length of a

graph G is denoted by l(G). The following lemma is useful in the proof of the upcoming

results. In what follows, let C = y0 · · · y2k−1 and P = v0 · · · vℓ, and take the indices of the

vertices of C modulo 2k.

Lemma 3.1. Let C be a cycle of length 2k and let P be a path with its end vertices in

V (C) such that E(C) ∩ E(P ) = ∅. Assume that H := C ∪ P has girth at least 2k − 2.

Then, l(P ) ≥ k − 2, and if y0 = v0, then vℓ = yk. Moreover, if P contains a vertex of C

as an internal vertex, then l(P ) ≥ 2k − 3.

Proof. Let x, y ∈ V (C) be the end vertices of P . Since l(C) = 2k, there is a path P ′

in C with end vertices x and y, satisfies l(P ′) ≤ k. Trivially, P ∪ P ′ contains a cycle

and due to the assumption on the girth of H, we have l(P ) + l(P ′) ≥ 2k − 2. The first

part of the result follows. Let us now suppose that z 6= x, y is a vertex of C and an

internal vertex of P . Given distinct vertices u, v, w ∈ V (C), let Cw(u, v) be the path in

C with end vertices u and v that avoids w. Consider the cycles C1 = P (x, z) ∪ Cy(x, z),

C2 = P (z, y) ∪ Cx(z, y), and C3 = P ∪ Cz(x, y). Since H has girth at least 2k − 2, we

have l(Ci) ≥ 2k− 2, for each i = 1, 2, 3. Note that every edge of P is contained in exactly

two cycles of {C1, C2, C3} and each edge of C is contained in exactly one of these cycles.

Then, we have 2k + 2 l(P ) = l(C1) + l(C2) + l(C3) ≥ 6k − 6. The lemma follows. �

In what follows we prove four lemmas that are used as the initial step in the proof of

our main theorem.
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Lemma 3.2. Let k ≥ 3. Let C be a cycle of length 2k and P be a path of length ℓ ∈

{2k− 1, 2k, 2k+1} such that E(C)∩E(P ) = ∅, V (C)∩V (P ) 6= ∅ and no end vertex of P

is in V (C). If H := C ∪ P has girth at least 2k − 2, then H can be decomposed into two

paths whose lengths are in {2k, ℓ} so that each path contains exactly one end vertex of P

as an end-vertex.

Proof. In what follows, the indices of the vertices in C are in Z2k. We denote by C(yi, yj)

(resp. P (vi, vj)) the path yi · · · yj (resp. vi · · · vj). Let x0, . . . , xr be the vertices of V (C)∩

V (P ) in the order that they appear when reading P starting from v0. Suppose without

loss of generality that x0 = y0.

Suppose that r = 0; namely, |V (C) ∩ V (P )| = 1. Let t be the length of P (x0, vℓ)

and without loss of generality suppose that t ≤ ⌊ℓ/2⌋ ≤ k. Since no end vertex of P is

in V (C), we have 1 ≤ t ≤ k. It implies that the paths P1 = P (v0, x0) ∪ C(y0, yt) and

P2 = C(yt, y0) ∪ P (x0, vℓ) have lengths ℓ and 2k, respectively. Moreover, each of P1 and

P2 contains an end vertex of P . Thus, they form the desired decomposition of H.

From now on, we can assume that r > 0, i.e, |V (C) ∩ V (P ) > 1. We claim that r ≤ 3

and if r = 3, then k ≤ 4.

Claim 3.3. r ≤ 3 and if r = 3, then k ≤ 4.

Proof. Assume the opposite for the first conclusion, i.e. r ≥ 4 (resp. r = 3 for the second

conclusion). Then, there are distinct x0, x1, x2, x3, x4 in V (C) ∩ V (P ) (resp. x0, x1, x2, x3

in V (C) ∩ V (P )). Due to the assumption on the length of P and to that no end vertex

of P is in V (C), P (x0, x4) (resp. P (x0, x3)) has length at most 2k − 1. For r ≥ 4, using

Lemma 3.1, we obtain that the length of P (x0, x4) is at least 2(2k− 3) and thus, k < 3, a

contradiction. For r = 3, again using Lemma 3.1, we obtain that the length of P (x0, x4)

is at least 3k − 5 and thus, k ≤ 4, as desired. �

We divide the rest of the proof depending on r ∈ {1, 2, 3}.

Case 1: r = 1. Let l1, l2, l3 be the lengths of P (v0, x0), P (x0, x1), P (x1, vℓ), respectively,

and let c1, c2 be the lengths of C(x0, x1) and C(x1, x0), respectively. We suppose without

loss of generality that l1 ≤ l3 and c2 ≤ c1. Note that c1 ≥ k. By Lemma 3.1, we

have l2 ≥ k − 2. Thus l1 + l3 ≤ k + 3 and 1 ≤ l1 ≤ (k + 3)/2. Since k ≥ 3, we

have l1 ≤ k. Moreover, l1 = k if and only if k = 3. If l1 < k, we have l1 < c1. Let

P1 = C(y0, yl1) ∪ P (x0, vℓ), and P2 = P (v0, x0) ∪ C(yl1 , y0). Note that the only vertex

in common between C(y0, yl1) and P is x0 = y0. Therefore, P1 is a path of length

l1+ l2+ l3 = ℓ. Also, the only vertex in common between C and P (v0, x0) is x0, and since

l1 ≥ 1, we have that C(yl1 , x0) is not a cycle. Therefore P2 is a path of length 2k.

Now, suppose l1 = k = 3. Since l1 ≤ l3, we have l3 = 3, and l2 = 1. Since l2 = 1, by

Lemma 3.1, we have c1 = c2 = 3. Let P1 = C(y0, y2) ∪ P (x0, vℓ), and P2 = P (v0, x0) ∪
9



C(y2, y0). Clearly, l(P1) = 6 and l(P2) = 7 and each of P1 and P2 contains one of the end

vertices of P .

Case 2: r = 2. Let x0 = y0, x1 = yi, and x2 = yj. We suppose without loss of generality

that 0 < i < j. Let l1, l2, l3, l4 be the lengths of P (v0, x0), P (x0, x1), P (x1, x2), P (x2, vℓ),

and let c1, c2, c3 be the lengths of C(y0, yi), C(yi, yj), C(yj , y0), respectively. If c1 > l1,

then we make P1 = C(y0, yl1)∪P (x0, vℓ), and P2 = P (v0, x0)∪C(yl1 , y0). Clearly, l(P1) = ℓ

and l(P2) = 2k. Thus, we can suppose c1 ≤ l1. Consider the cycles P (x0, x1)∪C(y0, yi) of

length l2+c1, and P (x1, x2)∪C(yi, yj) of length l3+c2. Since the girth ofH is at least 2k−2,

we have l2+c1 ≥ 2k−2 and l3+c2 ≥ 2k−2, from which we obtain c1+c2+ l2+ l3 ≥ 4k−4.

Moreover, since P is a path of length at most 2k + 1, we have l1 + l2 + l3 + l4 ≤ 2k + 1.

Thus, subtracting this inequality from the previous one, we obtain c1+c2− l1− l4 ≥ 2k−5.

Since k ≥ 3, we have c1 + c2 − l1 − l4 > 0, which implies c2 − l4 > l1 − c1. Since l1 ≥ c1,

we have c2 > l4. Thus, the paths C(yk−l4, y0) ∪ P (v0, x2), and P (x2, vℓ) ∪ C(yj, yk−l4) of

lengths ℓ, and 2k, respectively form the desired decomposition.

Case 3: r = 3. Let l1, . . . , l5 be the lengths of P (v0, x0), P (x0, x1), P (x1, x2), P (x2, x3),

P (x3, vℓ), respectively. Due to Claim 3.3, we can suppose k ≤ 4. First, suppose k = 4.

We state that the following hold

l1 = l5 = 1, l2 = l4 = 2, l3 = 3.

By Lemma 3.1, we have l2, l3, l4 ≥ 2, l2 + l3 ≥ 5 and l3 + l4 ≥ 5. Therefore, we have

l2 + l3 + l4 ≥ 7. Since l1 ≥ 1, l5 ≥ 1 and ℓ ≤ 9, we have l1 = l5 = 1, and l2 + l3 + l4 = 7.

Moreover, ℓ = 9. Note that if l3 ≤ 2, then l2 = 3 and l3 = 3, implying l2 + l3 + l4 ≥ 8, a

contradiction. Therefore, we have l3 ≥ 3 and l2 = l3 = 2.

Now, since l2 = 2, we have that x1 = y4. Since l3 = 3, and x2 6= x0, we have

x2 ∈ {y1, y7}. By symmetry, we can suppose x2 = y1. Since l4 = 2, we have that x3 = y5.

Thus, y7 is not a vertex of P . Let P1 = (P \ x0v0) ∪ x0y7 and P2 = (C \ x0y7) ∪ x0v0.

Clearly P1 and P2 are two paths whose lengths are in {2k, ℓ}. Moreover, each of P1 and

P2 contains one of the end vertices of P .

We now suppose k = 3. By Lemma 3.1, we have l2 + l3 ≥ 3. Therefore, l2 + l3 + l4 ≥ 4

and thus, at least one of l1 = 1, l5 = 1 holds. Suppose, without loss of generality, that

l1 = 1. We claim that x1 /∈ {y1, y5}. In fact if x1 ∈ {y1, y5}, then l2 ≥ 3, otherwise

P (x0, x1) ∪ y0x0 would be a cycle with length smaller than 4. By Lemma 3.1, we have

l3 + l4 ≥ 3, hence l2 + l3 + l4 ≥ 6 and ℓ ≥ 8. Therefore, x1 /∈ {y1, y5}. On the other

hand, if a vertex y in {y1, y5} is not a vertex of P , then P1 = (P \ x0v0) ∪ x0y and

P2 = (C \x0y)∪x0v0 decompose H into paths of lengths in {6, ℓ}. Thus, we may suppose

y1, y5 ∈ V (P ). Since r = 3, we have {y1, y5} = {x2, x3}. Since P (x2, x3)∪C(y5, y1) induce

a cycle in H, we have that l4 ≥ 2. By Lemma 3.1, we have l2+ l3 ≥ 3. Since l2+ l3+ l4 ≤ 5,

we have l2 + l3 = 3, l4 = 2, and l1 = l5 = 1. Let v be the neighbor of x3 in P (x2, x3).
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Since l4 = 2, we have that v is not a vertex of C. Let P1 = (P \ {v0x0, vx3}) ∪ x0x3 and

P2 = (C \x0x3)∪{vx3., v0x0}. Clearly, P1 is a path of length 6, and P2 is a path of length

ℓ = 7. Moreover, each of P1 and P2 contains one of the end vertices of P . �

We now extend Lemma 3.2.

Lemma 3.4. Let C be a cycle of length 2k and P be a path of length 2k such that

E(C) ∩ E(P ) = ∅ and V (C) ∩ V (P ) 6= ∅. If H := C ∪ P has girth 2k − 2, then H can be

decomposed into two paths whose lengths are in {2k − 1, 2k, 2k + 1}.

Proof. The case that no end vertex of P is in V (C) holds due to Lemma 3.2. Suppose now

that exactly one end vertex of P , say z, is in V (C). Let P ′ be the path that consists of the

union of P , a new vertex z′ and a new edge zz′. As P ′ has length 2k + 1, by Lemma 3.2,

the graph C ∪ P ′ has a decomposition into two paths of lengths 2k and 2k + 1. Since the

edge zz′ is an end edge of one of these paths, by removing it from such path we obtain a

decomposition of H into two paths of length 2k− 1 and 2k+1, or into two paths, each of

length 2k.

We now assume that both end vertices of P are in V (C). Moreover, we can assume

that y1, y2k−1 ∈ {x0, · · · , xr}. To see this, we suppose, without loss of generality, that

y1 /∈ {x0, · · · , xr}. Hence C \ x0y1 and P ∪ x0y1 are paths that decompose H, whose

lengths are 2k − 1 and 2k + 1, respectively.

The next claim helps to complete the proof of the lemma.

Claim 3.5. If x ∈ {y1, y2k−1} and the neighbor x′ of x in the path P (x0, x) is not in

V (C), then H admits a decomposition into two paths, each of length 2k.

Proof. The paths P (x′, x0) + x0x+ P (x, vℓ) and C − x0x+ xx′ form a 2k-decomposition

of H. �

Recall that for every i in {0, . . . , r − 1}, the path P (xi, xi+1) has length at least k − 2.

Thus, if k ≥ 4, the path P (xi, xi+1) has length at least 2. Therefore, the neighbor x′ of

xi+1 in the path P (xi, xi+1)
(

and also in the path P (x0, xi+1)
)

is not a vertex of C, and

by Claim 3.5, we can decompose H into two paths of length 2k.

In consequence, we can assume k = 3. Let us assume that H does not have a {5, 6, 7}-

decomposition into paths. If y1 = xi, then by Claim 3.5, P (xi−1, xi) has length 1 and

thus, since H is triangle-free xi−1 = y4. Analogously, if y5 = xj , then xj−1 = y2. Suppose

without loss of generality that i < j. We can write

P = P (x0, xi−1) ∪ P (xi−1, xi) ∪ P (xi, xj−1) ∪ P (xj−1, xj) ∪ P (xj, vℓ).

We have xi−1 = y4, thus P (x0, xi−1) has length at least 2, because H is triangle-free. In

addition, we have that P (xi, xj−1) has length at least 3, because xi = y1 and xj−1 = y2.

In consequence, P has length at least 7, a contradiction. �
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Lemma 3.6. Let C be a cycle of length 2k and P be a path of length 2k − 1 such that

E(C) ∩ E(P ) = ∅ and V (C) ∩ V (P ) 6= ∅. If H := C ∪ P has girth 2k − 2, then H can be

decomposed into two paths whose lengths are in {2k − 1, 2k}.

Proof. Let z1, z2 be the two end-vertices of P . First, we add two new vertices z′1, z
′

2 and

two new edges z1z
′

1, z2z
′

2 to P . By Lemma 3.2, we obtain a decomposition of this new

graph into two paths, one of length 2k and the other of length 2k+1 such that each path

contains one of the new vertices z′1, z
′

2. By removing the edges z1z
′

1 and z2z
′

2 from them,

we obtain two paths of lengths 2k − 1 and 2k. �

Finally, we consider a lemma that helps decomposing the union of 2 cycles into paths.

Lemma 3.7. Let C, C ′ be cycles of length 2k such that E(C) ∩ E(C ′) = ∅ and V (C) ∩

V (C ′) 6= ∅. If H := C ∪ C ′ has girth at least 2k − 2, then H can be decomposed into two

paths of length 2k.

Proof. Let C = y0 · · · y2k−1 and C ′ = z0 · · · z2k−1. Without loss of generality y0 = z0. First,

we claim that y1 or y2k−1 is not in V (C)∩ V (C ′) and z1 or z2k−1 is not in V (C)∩ V (C ′).

Suppose z2k−1 is a vertex of C. Let P be a path in C of length at most k and end vertices

y0, z2k−1. Note that P ∪ y0z2k−1 is a cycle of length c at most k+1 in H. Since the girth

of H is at least 2k − 2, we have

k + 1 ≥ c ≥ 2k − 2

Therefore, k = 3. Now, since the girth of H is at least 4, and C has length 6, if zi is a

vertex of C, for i ∈ {1, 5}, then zi = y3. Therefore z1 = z5 = y3, and y0z1, y0z5 is a cycle

of length 2, a contradiction.

Now, suppose without loss of generality, that y1 and z1 are not in V (C) ∩ V (C ′), then

the graphs C − y0y1 + y0z1 and C ′ − y0z1 + y0y1 are paths of length 2k. �

In order to prove Theorem 2, we consider the following definition.

Definition 3.8. Let G be a graph in Gk, and let L be a {2k−1, 2k, 2k+1}-decomposition

of G with cycles of length 2k such that the number of paths of length 2k − 1 equals the

number of paths of length 2k+1. We say that L is complete if the following two conditions

hold.

(i) the cycles in L are vertex-disjoint; and

(ii) if v is a vertex of a cycle in L, then L is k-balanced at v.

Proof of Theorem 2. Let G ∈ Gk. Due to Theorem 4, there exists a k-balanced de-

composition L of G with each cycle of length 2k. Actually, because of Lemma 3.7, we

can also assume that the cycles in L are vertex-disjoint. In consequence, L is a complete

decomposition of G. Among all complete decompositions of G, we consider one, say D,
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that minimizes the number of cycles; note that D is not necessarily k-balanced. If D has

no cycles, then D is the desired decomposition. Therefore, we assume that D has at least

one cycle. Let us first show the following statement.

Claim 3.9. For every cycle C in D there are at least two paths in D of length 2k such

that each of them has exactly one end vertex in V (C).

Proof. Let P be the set of paths in D that have vertices in common with C. Since the

degree of each vertex in G is greater than 5, and any two cycles of D are vertex-disjoint,

we have P 6= ∅; indeed, for each vertex of C there are at least two paths in D containing

such vertex.

We claim that every path in P has an end vertex in V (C). In fact, suppose that there

is a path P in P of length ℓ ∈ {2k − 1, 2k, 2k + 1} that has no end vertices in V (C).

By Lemma 3.2 we can decompose C ∪ P into paths P1, P2 of lengths 2k, ℓ, respectively.

Moreover, each path P1, P2 contains an end vertex of P . Hence, we have D′ = (D \

{C,P})∪{P1 , P2} is a decomposition of G into paths of lengths in {2k−1, 2k, 2k+1} and

cycles of length 2k, and the number of cycles in D′ is strictly smaller than the number of

cycles in D. If, in addition, D′ is complete, then we have a contradiction to the minimality

of D. Indeed, since D satisfies (i), D′ also does. Note that, since D satisfies (ii) and D′

is trivially balanced at the common end vertex of P1, P2, the only vertices where D′ may

contradict property (ii) are the end vertices of P ; let v1, v2 be the end vertices of P which

are end vertices of P1, P2, respectively. Suppose D is balanced at v1, v2. If the lengths of

P1, P2 are in {2k− 1, 2k}, then D′ is balanced at v1, v2. If the length of P2 is 2k+1, then

the length of P is 2k+1 as well and thus, the number of paths of length 2k+1 ending at

v2 in D′ is the same as the number of paths of length 2k+1 ending at v2 in D. Hence, D′

satisfies (ii).

We now claim that P does not contain paths of length 2k − 1. In fact, if there is a P

of length 2k− 1 in P, due to Lemma 3.6, C ∪P can be decomposed into paths P1 and P2

of lengths 2k − 1 and 2k. As D is complete, (D \ {C,P}) ∪ {P1, P2} is complete as well,

and it has less cycles than D, a contradiction.

Suppose that there is a path P of length 2k in P such that both end vertices are

in V (C). By Lemma 3.4, we can decompose C ∪ P into paths P1 and P2 of length in

{2k− 1, 2k, 2k+1}. Since both end vertices of P are in V (C), because of (i), they are not

vertices of a cycle in the decomposition (D \ {C,P}) ∪ {P1, P2}, and thus, it is complete;

a contradiction to the minimality of the number of cycles in D. Therefore, every path of

length 2k in P has exactly one end vertex that is a vertex of C.

We conclude that if P is an element of P, then one of the following happens: either P

has length 2k + 1 and at least one end vertex of P is in V (C), or P has length 2k and

exactly one end vertex of P is in V (C). Therefore, there exists a vertex v in V (C) that

is an end vertex of a path in P. Since the degree of v is even (recall it is 2k) and D is
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balanced at v, there is a positive even number of paths in P ending at v. Furthermore, at

most half of them have length 2k + 1; that is, at least half of them have length 2k. Thus,

if there are at least four paths, the result follows. Therefore, we suppose that exactly two

paths P,P ′ end at v. If the length of each of these paths is 2k, the claim holds. If not,

one of them has length 2k and the other one has length 2k+1. Since the degree of v is at

least 6, there is a path P ∗ that contains v as an internal vertex and P ∗ /∈ {P,P ′}. If P ∗

has length 2k, the claim follows. If P ∗ has length 2k + 1, then there is an end vertex u of

P ∗ in V (C) and u 6= v. As D is balanced at u, there is a path P ′′ of length 2k with u as

an end vertex. Since P ′′ has exactly one end vertex in V (C), we have P ′′ /∈ {P,P ′} and

the result follows. �

Let P be a path of length 2k in D. This path exists due the assumption of the existence

of cycles and Claim 3.9. We observe that the number N of cycles in D that contain an

end vertex of P is in {0, 2}. In fact, since cycles in D are vertex-disjoint, we have N ≤ 2

and if N = 1, then, by Lemma 3.4, we can obtain a complete decomposition of G with

less cycles than D, a contradiction to the minimality of D.

Now, consider the auxiliary graph K with the set of cycles in D as vertex set of K,

and such that two vertices Ci, Cj form an edge if and only if there exists a path of length

2k in D with an end vertex in Ci and an end vertex in Cj . Because of the previous

observation and by Claim 3.9, the minimum degree of K is 2 and thus, K contains a cycle

C0C1 · · ·Ct−1C0. For each i ∈ Zt, let Pi be a path in D such that each cycle Ci, Ci+1

contains an end vertex of Pi. By Lemma 3.4, for each i ∈ Zt, there exists a decomposition

of Ci ∪ Pi into two paths of lengths in {2k − 1, 2k, 2k + 1} and thus, we can obtain a

decomposition of
⋃

i∈Zt
(Ci ∪ Pi) into 2t paths of lengths in {2k − 1, 2k, 2k + 1} such that

the number of paths of length 2k − 1 equals the number of paths of length 2k + 1. This

yields a complete decomposition of G with t cycles less than D, a contradiction to the

minimality of D. �

4. Proof of Lemma 2.6

We recall Lemma 2.6. In the following, G ∈ Gk, M is a perfect matching of G and P is

a (2k − 1)-decomposition of G−M into paths.

Lemma (Lemma 2.6). Let ei−1Pi · · ·Pi+2ei+2 be an (M,P)-alternating trail and X be an

extension of PieiPi+1. The following two statements hold.

(i) If X does not contain an exceptional sequence, then X has a quasi-k-balanced

decomposition into 2 paths.

(ii) If X is an exceptional sequence (in particular, k = 3), then ei−1 6= ei+1. If, in addi-

tion, X = PieiPi+1ei+1 (analogously for ei−1PieiPi+1), then neither eiPi+1ei+1Pi+2,

nor Pi+1ei+1Pi+2ei+2 is exceptional.
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Let P be a path and x, y be vertices of P . In what follows, the notation P (x, y) stands

for the subpath of P with end vertices x and y; we refer to it as a segment of P ; if x = y,

then P (x, y) is simply a vertex of P .

Recall that for a trapped sequence PeP ′, it holds that e ⊂ V (P )∩V (P ′). The following

claim follows due to the girth condition on 2k − 2 and since P,P ′ do not have common

end vertices.

Claim 4.1. Let PeP ′ be a trapped sequence, e:=xx′ and suppose that |V (P )∩V (P ′)| > 2.

If k > 3, then |V (P ) ∩ V (P ′)| = 3, the length of P (x, x′) and of P (x, x′) is 2k − 2 and

the middle vertex of P (x, x′) corresponds to the middle vertex of P (x, x′). If k = 3, then

PeP ′ is isomorphic to one of the graphs described in Figure 2.

(a) (b) (c) (d) (e) (f) (g)

Figure 2. Dashed edges depict matching edges. One path is depicted in

black, the other one in red. Figures (a), (b), (c), (d) and (e) correspond to

|V (P ) ∩ V (P ′)| = 3 and (f), (g) to |V (P ) ∩ V (P ′)| = 4.

Proof of Lemma 2.6(i). We first set some notation. We write X = ei−1PieiPi+1ei+1 as

e∗PeP ′e′ (e∗, e′ might not exist). Let e∗:=zz′, e:=xx′ and e′:=yy′. Further, in the segment

P (x, x′), let z̃ and ẑ be the neighbors of x and x′, respectively; and, in the segment,

P ′(x, x′) let ŷ and ỹ be the neighbors of x and x′, respectively. Thus, X is the trail

zz′ · · · xz̃ · · · ẑx′xŷ · · · ỹx′ · · · y′y and P , P ′ are the segments of X given by z′ · · · xz̃ · · · ẑx′,

xŷ · · · ỹx′ · · · y′, respectively (see Figure 3). Note that the segments P (z′, x), P ′(y′, x′) are

paths of length 1 (edges) or 2, and the segments P (z̃, ẑ), P ′(ỹ, ŷ) are paths of length 2k−3

or 2k − 4.

We split the proof into three cases: (1) e∗ 6= e′, z /∈ V (P ) and y /∈ V (P ′), (2) e∗ 6= e′

and z ∈ V (P ), and (3) e∗ = e′. Note that if e∗ 6= e′, then |{z, z′, y, y′}| = 4. In particular

z 6= y′ and y 6= z′.

CASE 1 e∗ 6= e′, z /∈ V (P ) and y /∈ V (P ′).

In other words, P is nice for e∗ and P ′ is nice for e′.

We first assume that y′ 6= z̃. By the symmetry of X, this situation also covers the case

that z′ 6= ỹ. If y 6= z̃, then due to Claim 4.1 the following subgraphs:

P1 := (P − xz̃) ∪ e ∪ e∗ and P2 := P ′ ∪ xz̃ ∪ e′
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Figure 3. P and P ′ are represented

by black and red lines, respectively.

Dashed edges depict matching edges.

For k = 3, unfilled vertices may exist

or not.

ŷ
x

z̃

ẑ
x′

ỹ

z

z′
y

y′

form a path decomposition of X. Since the length of (P −xz̃)∪e is 2k−1, the path P1 has

its length in {2k − 1, 2k}, depending on whether e∗ exists. Analogously, we obtain that

the path P2 has its length in {2k, 2k + 1}. Moreover, if l(P2) = 2k + 1, then e′ belongs

to X and there is only one vertex y at which {P1, P2} is not balanced. However, y ∈ e′

has odd degree in X. Hence, {P1, P2} is a quasi-k-balanced decomposition of X. In the

forthcoming analysis we use the same argument to guarantee that a path decomposition

is quasi-k-balanced, and thus, we might omit details. Assume now that y = z̃. Therefore

k = 3, otherwise there is a contradiction to the girth condition on X. Due to Claim 4.1,

we have y′ /∈ V (P ). Note that if P1 ∪ e′ has length 7, then e∗ belongs to X. Thus,

{P1 ∪ e′, P2 − e′} is a quasi-balanced path decomposition of X.

Secondly, we suppose that y′ = z̃ and z′ = ỹ. Then, according to Claim 4.1, k = 3

and PeP ′ is isomorphic to the graph depicted in (g) of Figure 2. Since X is triangle-free,

z /∈ V (P ′) and y /∈ V (P ). Let z′′ (resp. y′′) denote the neighbor of z′ (resp. y′) in P

(resp. P ′). Therefore, the subgraph P (z′′, x′) ∪ x′z′ ∪ e∗ and its complement with respect

to X form a quasi-balanced decomposition of X. We clarify that along this work, the

complement is edge-wise. That is, K ′ is the complement of K with respect to X if K ′ is

obtained from X by removing all edges of K and all isolated vertices of X − E(K); by

abuse of notation, K ′ = X −K.

CASE 2 e∗ 6= e′ and z ∈ V (P )

In this case k = 3. Otherwise, there is a contradiction to the condition on the girth of X.

Recall that the vertex sets of e∗, e and e′ are pairwise disjoint. Trivially, if z ∈ V (P ),

then z is an internal vertex of P (x, x′). Since the segment P (x, x′) has length at least 3,

there exists internal vertex of P (x, x′), say nz, such that nz is a neighbor of z. Observe

that nz is determined by the location of z, except in the particular case that P (x, x′) has

length 4 and z is the middle vertex of P (x, x′), in which case nz ∈ {z̃, ẑ}.

We use the following subgraphs to split the proof into subcases:

H1 := (P (x, x′)− znz) ∪ P ′(x, x′) and H2 := X −H1.

Note that H1 and H2 decompose the edge set of X into two trails. Moreover, due to that

the lengths of P (x, x′) and P ′(x, x′) are in {3, 4}, and l(H1) = l(P (x, x′))+ l(P ′(x, x′))−1,

we have l(H1) ∈ {5, 6, 7}.
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If H1 and H2 are paths and H2 has length in {5, 6, 7}, then {H1,H2} is a quasi-balanced

decomposition of X; observe that if H1 (resp. H2) has length 7, then the decomposition

{H1,H2} is balanced at all vertices of X, except at z (resp. y), and z ∈ e∗ (resp. y ∈ e′)

and e∗ (resp. e′) belongs to X. Note that if e′ ∈ X and l(H1) = 5, then l(H2) = 8. We

assume that {H1,H2} is not a {5, 6, 7}-decomposition of X into paths. Thus, one of the

following situations holds:

• H1 is not a path.

• H2 is not a path.

• the length of H1 or H2 is not in {5, 6, 7}.

If H1 is not a path, then due to Claim 4.1, PeP ′ is isomorphic to the graph depicted

in (a) of Figure 2. Thus, l(H1) = 7 and l(H2) ∈ {5, 6} subject to the existence of e′.

Moreover, P (x, x′) and P ′(x, x′) have length 4 and z ∈ {ẑ, z̃, z∗}, where z∗ is the middle

vertex of P (x, x′). If z = z∗, then X is exceptional, a contradiction (see Figure 1). If

z = z̃, then {x, z′, z̃} induces a triangle. Thus, we assume that z = ẑ and thus, nz = z∗.

If y 6= ŷ (resp. y = ŷ), thenH ′

1 = H1−nzŷ andH ′

2 = H2∪nzŷ (resp. H ′

1 = H1−nz z̃ and

H ′

2 = H2∪nzz̃) form a quasi-balanced decomposition of X. This is because l(H ′

1) ∈ {5, 6},

and if l(H ′

2) = 7, then {H ′

1,H
′

2} is balanced at all vertices of X, but at y ∈ e′ and e′ belongs

to X. Therefore, from now on, we can assume that H1 is a path.

Let us discuss the second scenario; namely, H2 is not a path. We first assume that

the cycles in H2 arise from the intersection of the paths P and P ′. By definition of H2,

the segments of P and P ′ in H2 are P (z′, x), P ′(y′, x′), and znz. Recall that z′′ (resp.

y′′) denotes the neighbor of z′ (resp. y′) in P (resp. P ′). We have y′ = z′′, z′ = y′′,

or y′ = nz. Further, due to Claim 4.1, exactly one of these equalities holds. Note that

z′′ 6= y′′; otherwise, X would have a triangle on {x, x′, y′′}. Suppose y′ = z′′. Clearly, this

case is possible only if z′′ 6= x and y′′ 6= x′. Due to Claim 4.1, P (x, x′) and P ′(x, x′) have

length 3. Since X is triangle-free, y /∈ {ŷ, z̃}. Let us consider the following decomposition

of X:

H ′

1 := e∗ ∪ P (z′, x) ∪ e ∪ P ′(x′, ŷ) and H ′

2 := X −H ′

1.

If y 6= ẑ, then {H ′

1,H
′

2} is a quasi-balanced decomposition of X. If y = ẑ, then z 6= ẑ,

otherwise z is incident to two matching edges, which implies nz = ẑ and z = z̃. Thus,

(H ′

1 − e∗ − z′z′′) ∪ e′ ∪ nzz and its complement with respect to X form a quasi-balanced

decomposition.

We now suppose that y′ = nz. Then, y
′ 6= ẑ. Thus, nz = z̃ or P (x, x′) has length 4. We

claim that z = ẑ. In fact, if z = z̃, then P (x, x′) has length 4, and z′′ = x and {x, z′, z̃}

induces a triangle in X. If z = z∗, then the paths H1 − zẑ + znz and H2 − znz + zẑ form

a quasi-balanced decomposition of X.

If y /∈ {ỹ, ŷ}, then the path e∗ ∪ P (z′, nz) ∪ P ′(nz, ỹ) and its complement form a quasi-

balanced decomposition of X. Let ex denote the edge incident to x in the segment P (x, z′).
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If y ∈ {ỹ, ŷ}, then H ′

1 = ex∪P
′(x, y)∪e′∪P ′(y′, x′)∪zx′ and H ′

2 = X−H ′

1 form a {5, 6, 7}-

decomposition of X into paths. Moreover, if H ′

1 (resp. H ′

2) has length 7, then {H ′

1,H
′

2}

is balanced at all vertices of X but at y (resp. at z). Thus, {H ′

1,H
′

2} is a quasi-balanced

decomposition of X.

We now need to study the case that z′ = y′′. According to Claim 4.1, PeP ′ is isomorphic

to the graph depicted in (b) or (f) of Figure 2. Thus, the segments P (x, x′) and P ′(x, x′)

have length 3, and we have z = z̃ and y ∈ {nz, ỹ, ŷ}; note that, if z = ẑ, then {y′′, x′, ẑ}

induces a triangle in X. Moreover, y′ 6= ẑ; otherwise X creates a triangle or a multiple

edge. If y 6= nz, then H ′

1 := e∗ ∪ P (z′, x) ∪ P ′(x, x′) ∪ x′ẑ and H ′

2 = X −H ′

1 is a {5, 6, 7}-

decomposition of X into paths with l(H ′

1) = 7 and l(H ′

2) ∈ {5, 6}. As {H ′

1,H
′

2} is balanced

at all vertices of X except at z, the result follows. Finally, if y = nz = ẑ, then the paths

H ′

1 := P (ẑ, z′) ∪ z′x′ ∪ x′ỹ and H ′

2 = X −H ′

1

form the desired decomposition of X; observe that l(H ′

1) = 6, l(H ′

2) = 7 and H ′

2 ends at z.

We now move to the case that the cycles in H2 do not arise from the intersection of the

paths P and P ′. Hence, we necessarily have y ∈ {z′′, nz}. If y = z′′, then e∗ ∪ P (z′, x) ∪

e ∪ P ′(x′, ŷ) and X − H ′

1 form a quasi-balanced decomposition of X. If y = nz, then

znz ∪ e∗ ∪P (z′, x)∪ e∪P ′(x′, y′) and X −H ′

1 form a quasi-balanced decomposition of X.

This completes the analysis for the case that H2 is not a path.

Finally, we study the case that H1 and H2 are paths, but the length of at least one

of them is not in {5, 6, 7}. Note that, by definition, 5 ≤ l(H1) ≤ 7. On the other hand,

5 ≤ l(H2) ≤ 8. The case l(H2) = 8 arises whenever e′ exists and P (z′, x), P ′(y′, x′) have

length 2. In this case, if y 6= z̃, then the path (H1 − xz̃) ∪ P (z′, x) and its complement

form a quasi-balanced decomposition of X. If y = z̃, then the paths H1 ∪ e∗, of length 6,

and H2 − e∗, of length 7, form a quasi-balanced decomposition of X. The lemma follows.

CASE 3 e∗ = e′

Again, in this case k = 3. Otherwise, there is a contradiction to the girth condition on X.

Since all vertices of X have even degree in X, every {5, 6, 7}-decomposition of X into paths

is balanced at every vertex of X. If PeP ′ is not isomorphic to (a) of Figure 2, z′ 6= ỹ,

and y′ 6= z̃, then, by Claim 4.1, we have that P (z̃, x′) ∪ e ∪ P ′(x, ỹ) and its complement

form a {5, 6, 7}-decomposition of X into paths. Suppose that PeP ′ is isomorphic to (a)

of Figure 2 and let u be the vertex in V (P ) ∩ V (P ′) − {x, x′}. Then, by Claim 4.1,

z′ 6= ỹ and y′ 6= z̃, and thus the paths z̃u ∪ P ′(u, x) ∪ e ∪ x′ẑ and its complement form a

{5, 6, 7}-decomposition of X.

Finally, suppose that at least one of the following equalities z′ = ỹ, y′ = z̃, occurs.

Therefore, z′′ 6= x and y′′ 6= x′; since otherwise {x, x′, ỹ} or {x′, y′, ỹ} induces a triangle

in X. Without loss of generality assume that z′ = ỹ holds. Then, xŷ ∪P (x, x′)∪x′ỹ ∪ ỹz′′

and its complement with respect to X form the desired decomposition of X. �
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We say that a graph is an (k, l)-lollipop if it can be obtained from the edge disjoint union

of a path of length k, say P , and a cycle of length l, say C, satisfying that V (P ) ∩ V (C)

is an end vertex of P .

Proof of Lemma 2.6(ii). We consider the names of the vertices of P,P ′, e, e′, e∗ as in the

proof of Lemma 2.6(i). Without loss of generality we assume that X := PeP ′e′. If e∗ = e′,

then P ′ is not a path, a contradiction. Thus, e∗ 6= e′. Observe that a necessary condition

on eP ′e′P̃ (and P ′e′P̃ ẽ) to be exceptional is that P ′e′ is a (1, 5)-lollipop, but P ′e′ is a

(2, 4)-lollipop. �
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