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Abstract

In the search for a dynamic programming-based algorithm derived from the modular
decomposition of graphs, we analyze the behavior of the identifying code number
under disjoint union and join operations. This study lead us to investigate the be-
havior of new parameters related to separating, dominating and total dominating
sets under the same operations. The obtained results and the modular decomposi-
tion of graphs easily result in a dynamic programming-based algorithm to calculate
the identifying code number (and the related parameters) of a graph from the pa-
rameter values of its modular subgraphs. In particular, we obtain closed formulas
for the parameters on spider and quasi-spider graphs which allow us to derive a
simple and easy-to-implement linear time algorithm to obtain the identifying code
number (and the related parameters) of P4-tidy graphs.
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1 Preliminaries, definitions and notations

We consider finite and simple graphs G, where V (G) and E(G) denote its
sets of vertices and edges, respectively. For every terminology and notation
on graphs not defined in this paper, we follow [7].

Given a graph G and R ⊆ V (G), G denotes its complementary graph and
G[R] the subgraph of G induced by R. For any v ∈ V (G), N(v) is the open
neighborhood of v and N [v] = N(v) ∪ {v} is the closed neighborhood of v. If
N [v] = V (G) we say that v is a universal vertex of G. Two different vertices
u, v are called true twins if N [u] = N [v]. A true twin free graph is called
identifiable.

A subset D of V (G) is a dominating set (resp. total dominating set) of
G if, for each v ∈ V (G), D ∩ N [v] �= ∅ (resp. D ∩ N(v) �= ∅ ). A separating
set of G is a subset C of vertices of G such that for each pair u, v ∈ V (G),
u �= v, N [u] ∩ C �= N [v] ∩ C, or equivalently (N [u]�N [v]) ∩ C �= ∅, where
� is the symmetric difference between sets. An identifying code of G is a
dominating and separating set of G. It can be easily seen that a graph admits
an identifying code if and only if it is true twin free.

The concept of identifying code of graphs was introduced in 1998 [6] and
has been applied to several problems which can be modeled as finding a subset
of vertices of a graph such that each vertex in the graph can be uniquely
determined by its (nonempty) neighbourhood within the code C. As usual,
the identifying code number of G is the smallest size of an identifying code of
G and is denoted by γId(G). There are some few families of graphs for which
we have explicit formulas for their identifying code numbers. In particular,
paths, cycles and complete r-ary trees. From a computational point of view,
it is known that the problem of finding the identifying code number of a graph
(IdCod) is NP-hard for many classes of graphs as planar, interval, split and
bipartite graphs. On the other hand, from Courcelle et al.’s results relating to
Monadic Second Order Logic [2], IdCod is linear time solvable for bounded
clique-width graphs and their line graphs. More details and references can be
found in [3].

Clearly, if G (resp. G) is not connected, there exist two graphs G1 and G2

such that G = G1 +G2 (resp. G = G1 ∨G2), where G1 +G2 (resp. G1 ∨G2)
denotes the disjoint union (resp. join) of graphs G1 and G2. If G and G are
both connected, we say that G is a modular graph. Given a family of graphs
F , we denote by M(F) the family of modular graphs in F .

We say that a subset C ⊆ V (G) satisfies the property D (resp. �) if C is
a dominating set (resp. separating set) of G. Besides, we say that C satisfies
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the property D if C is a total dominating set of G, i.e. C \N [v] �= ∅ for each
v ∈ V (G). If P = {�, D,D}, for every R ⊆ P we define CR(G) = {C ⊆
V (G) : C satisfies property Q, ∀Q ∈ R} and γR(G) = min{|C| : C ∈ CR(G)}
if CR(G) �= ∅ and γR(G) = ∞ otherwise.

It is straightforward to see that γ�D(G) = γId(G) and the parameters
γD(G) and γD(G) are the well known domination number and total domination
number of G, respectively (for a survey on domination see, for example, [5]).

2 The parameters under disjoint union and join graphs

For the case of disjoint union of graphs, it is not hard to see that γId(G1 +
G2) = γId(G1) + γId(G2) for every pair of graphs G1 and G2. However, the
next theorem shows the links among the parameters presented in the previous
section. These parameters are involved in the expression of the identifying
code number for join of graphs.

If |V (G1)| = |V (G2)| = 1, it is clear that γId(G1 ∨ G2) = ∞. For the
remaining cases we have:

Theorem 2.1 Let G1 and G2 be two identifiable graphs. Then:

(i) If |V (G1)| = 1 and |V (G2)| ≥ 2, then γId(G1 ∨G2) = γD�D(G2).

(ii) If |V (G1)| ≥ 2 and |V (G2)| ≥ 2, then

γId(G1 ∨G2) = min{γ�(G1) + γ�D(G2), γ�(G2) + γ�D(G1)}.
Let P� = {Q ⊆ P : � ∈ Q}. Theorem 2.1 shows that, in order to derive an

algorithm based on the modular decomposition of graphs (see [4]) to compute
γId, we need to know the behavior of all the parameters γR with R ∈ P�
under disjoint union and join operations on graphs. The results concerning
to γ�D are already presented in Theorem 2.1. For the remaining parameters,
if both graphs G1 and G2 have one vertex, we obtain that γ�(G1 + G2) = 1,
γ�D(G1 +G2) = γ�DD(G1 +G2) = 2 and γR(G1 ∨G2) = ∞, for all R ∈ P�.
In general we have the following results.

Theorem 2.2 Let G be a graph and G1 and G2 be two graphs such that G =
G1 +G2. Then:

(i) If |V (G1)| = 1 and |V (G2)| ≥ 2, then γ�(G) = γ�D(G2), γ�DD(G) =
1 + γ�D(G2) and γ�D(G) = min{1 + γ�(G2), γ�DD(G2)}.

(ii) If |V (G1)| ≥ 2 and |V (G2)| ≥ 2, then γ�(G) = γ�D(G) = min{γ�(G1)+
γ�D(G2), γ�D(G1) + γ�(G2)} and γ�DD(G) = γ�D(G1) + γ�D(G2).
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Theorem 2.3 Let G be a graph and G1 and G2 two graphs such that G =
G1 ∨G2. Then,

(i) If |V (G1)| = 1 and |V (G2)| ≥ 2, then γ�(G) = γ�D(G2), γ�D(G) =
γ�DD(G2) and γ�D(G) = γ�DD(G) = ∞.

(ii) If |V (G1)| ≥ 2 and |V (G2)| ≥ 2, then γ�(G) = γ�D(G) = min{γ�(G1)+
γ�D(G2), γ�(G2) + γ�D(G1)} and γ�D(G) = γ�DD(G) = γ�D(G1) +
γ�D(G2).

From the previous theorems and the modular decomposition of graphs we
can state:

Theorem 2.4 Let F be a graph class. If, for all R ⊆ P� and G ∈ M(F),
γR(G) can be computed in polynomial (resp. linear) time then, for every R ⊆
P� and G ∈ F , γR(G) can be computed in polynomial (resp. linear) time .

Then, we can easily derive a linear time dynamic programming-based algo-
rithm to obtain the parameter values (including the identifying code number)
of a graph from the parameter values on its modular subgraphs. These re-
sults allow us to reduce the study of the identifying code number (and the
associated parameters) to modular graphs.

3 Spider and quasi-spider graphs.

Spider graphs are modular graphs which play an important role in the char-
acterization of many few P4’s families of graphs [1]. A graph is a spider graph
if its vertex set can be partitioned into three sets S, C and H (H possible
empty) where S is a stable set, C is a complete set, |S| = |C| = r ≥ 2, all
vertices in H are adjacent to all vertices in C, no vertex of H is adjacent to
some vertex in S. Moreover, if S = {s1, . . . , sr} and C = {c1, . . . , cr} one of
the following conditions must hold:

(i) thin spider : si is adjacent to cj if and only if i = j.

(ii) thick spider : si is adjacent to cj if and only if i �= j.

The size of C (and S) is called the weight of G and the set H in the partition
is called the head of the spider. A spider graph G with partition S,C,H will
be denoted G = (S,C,H).

Given two graphs G and H and v ∈ V (G), the graph obtained by replacing
v by H in G is the graph whose vertex set is (V (G) \ {v})∪ V (H) and whose
edges either belong to E(G−{v})∪E(H) or connect any vertex in V (H) with
any vertex in N(v).
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If G = (S,C,H) is a thin (resp. thick) spider graph, the graph obtained by
replacing one vertex v ∈ S ∪ C by S2 or K2 is called thin (resp. thick) quasi-
spider graph. We denote (S ←↩ S2, C,H) and (S,C ←↩ S2, H) the quasi-spider
graph obtaining from a spider graph with partition (S,C,H) by replacing one
vertex in S by S2 and one vertex in C by S2, respectively. The weight of a
quasi-spider graph is the weight of the original spider graph.

It is known that the partition for spider and quasi-spider graphs is unique
and its recognition as well as its partition can be performed in linear time (see
[4]).

Observe that quasi-spider graphs obtained by replacing a vertex by K2

are not identifiable and then γR(G) = ∞ for all R ∈ P�. Then, we specify
the values of parameters γR(G) with R ∈ P� for every identifiable spider and
quasi-spider graph.

For spider graphs with empty head we have the following:

Theorem 3.1 Let G = (S,C, ∅) be a spider graph.

(i) If r = 2, γ�(P4) = γ�D(P4) = 3 and γ�D(P4) = γ�DD(P4) = 4.

(ii) If r ≥ 3 and G is a thin spider, then γ�(G) = γ�D(G) = γ�D(G) =
γ�DD(G) = r + 1.

(iii) If r ≥ 3 and G is a thick spider, then γ�(G) = r − 1 and γ�D(G) =
γ�D(G) = γ�DD(G) = r.

We obtain similar formulas for the parameters on the remaining spiders
and quasi-spiders. For lack of space, we summarize these results in the next
two theorems.

Theorem 3.2 Let G be a spider or a quasi-spider graph with weight r and
empty head. Then, for all R ∈ P�, γR(G) is a linear function on its weight,
i.e.

γR(G) = α(G,R)r + β(G,R)

where the coefficients α(G,R) and β(G,R) can be computed in linear time
from G.

Theorem 3.3 Let G be a spider or a quasi-spider graph with non-empty head
H, weight r and R ∈ P�. Then,

γR(G) = r + fR
G (H)

where fR
G can be determined in linear time from G and R and fR

G (H) can be
computed in constant time from the values γT (G[H]), with T ∈ P�.
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From previous theorems we can conclude the following:

Corollary 3.4 Let F be a graph class such that, for all R ∈ P�, the param-
eter γR can be obtained in polynomial (linear) time. Then, for all R ∈ P�,
the parameter γR can be obtained in polynomial (linear) time on the family of
spider and quasi-spider graphs for which the subgraph induced by their heads
belongs to F .

Moreover, as we have mentioned before, spider graphs play an important
role in the characterization of many few P4’s families of graphs. In particular,
for P4-tidy graphs, a super class of cographs and P4-sparse graphs, defined by
Rusu et al. (see [4]). Modular P4-tidy graphs are spider graphs and quasi-
spider graphs with P4-tidy heads and the graphs C5, P5 and P̄5. Then, the
dynamic-programming based algorithm derived from Theorem 2.4 allow us to
solve IdCod in linear time with a simple and easy-to-implement algorithm.
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