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DECOMPOSING HIGHLY CONNECTED GRAPHS

INTO PATHS OF LENGTH FIVE

F. BOTLER, G. O. MOTA, M. T. I. OSHIRO, Y. WAKABAYASHI

Instituto de Matemática e Estat́ıstica
Universidade de São Paulo, Brazil

Abstract. Barát and Thomassen (2006) posed the following decomposition conjecture:
for each tree T , there exists a natural number kT such that, if G is a kT -edge-connected
graph and |E(G)| is divisible by |E(T )|, then G admits a decomposition into copies of T .
In a series of papers, Thomassen verified this conjecture for stars, some bistars, paths
of length 3, and paths whose length is a power of 2. We verify this conjecture for paths
of length 5.

1. Introduction

A decomposition D of a graph G is a set {H1, . . . , Hk} of pairwise edge-disjoint sub-

graphs of G whose union is G. If each subgraph Hi, 1 ≤ i ≤ k, is isomorphic to a given

graph H , then we say that D is an H-decomposition of G.

A well-known result of Kotzig (see [5, 16]) states that a connected graph G admits a

decomposition into paths of length 2 if and only ifG has an even number of edges. Dor and

Tarsi [12] proved that the problem of deciding whether a graph has an H-decomposition

is NP-complete whenever H is a connected graph with at least 3 edges. It is then natural

to consider special classes of graphs H , and look for sufficient conditions for a graph G

to admit an H-decomposition. One class of graphs that has been studied from this point

of view is that of paths, in special when the input graph G is regular. A pioneering work

on this topic dates back to 1957, and although some others have followed, a number of

questions remain open [10, 13, 14, 16]. For the special case in which H is a tree, Barát

and Thomassen [3] proposed the following conjecture.

Conjecture 1.1. For each tree T , there exists a natural number kT such that, if

G is a kT -edge-connected graph and |E(G)| is divisible by |E(T )|, then G admits a

T -decomposition.

Barát and Thomassen [3] proved that Conjecture 1.1 in the special case T is the claw

K1,3 is equivalent to Tutte’s weak 3-flow conjecture, posed by Jaeger [15]. They also
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observed that this conjecture is false if, instead of a tree, we consider a graph that

contains a cycle.

Since 2008 many results on this conjecture have been found by Thomassen [23, 24, 25,

26, 27]. He has verified that this conjecture holds for paths of length 3, stars, a family of

bistars, and paths whose length is a power of 2. Recently, we learned that Merker [19]

proved that Conjecture 1.1 holds for trees with diameter at most 4 and also for some

trees with diameter at most 5, including P5, the path of length five.

In this paper we will focus on the following version of Conjecture 1.1 for bipartite

graphs.

Conjecture 1.2. For each tree T , there exists a natural number k′

T such that, if G is

a k′

T -edge-connected bipartite graph and |E(G)| is divisible by |E(T )|, then G admits a

T -decomposition.

Recently, Barát and Gerbner, and Thomassen independently proved that Conjec-

tures 1.1 and 1.2 are equivalent. The next theorem states this result precisely.

Theorem 1.3 (Barát–Gerbner [2]; Thomassen [26]). Let T be a tree on t vertices, with

t > 4. The following two statements are equivalent.

(i) There exists a natural number k′

T such that, if G is a k′

T -edge-connected bipartite

graph and |E(G)| divisible by |E(T )|, then G admits a T -decomposition.

(ii) There exists a natural number kT such that, if G is a kT -edge-connected graph and

|E(G)| is divisible by |E(T )|, then G admits a T -decomposition.

Furthermore, kT ≤ 4k′

T +16(t−1)6t−5 and, if in addition T has diameter at most 3, then

kT ≤ 4k′

T + 16t(t− 1).

In this paper we verify Conjecture 1.2 (and Conjecture 1.1) in the special case T is the

path of length five. More specifically, we prove that k′

P5
≤ 48.

In our proof we use a generalization of the technique used by Thomassen [23] to obtain

an initial decomposition into trails of length 5. Then, inspired by the ideas used in [9],

we obtain a result that allows us to “disentangle” the undesired trails of this initial

decomposition and construct a pure path decomposition.

The paper is organized as follows. In Section 2 we give some definitions, establish the

notation and state some auxiliary results needed in the proof of our main result, pre-

sented in Section 4. In Section 3 we prove that a highly edge-connected graph admits a

“canonical” decomposition into paths and trails of length 5 satisfying certain properties.

In Section 4 we show how to switch edges between the elements of the above decomposi-

tion and obtain a decomposition into paths of length 5. We finish with some concluding

remarks in Section 5.

An extended abstract [8] of this work was presented at the conference lagos 2015.

Further improvements were obtained since then, and these are incorporated into this

work. In special, a bound for k′

P5
was improved from 134 to 48. Moreover, we [6] have
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been able to generalize some of the ideas presented here to prove that Conjecture 1.1

holds for paths of any given length. We consider that the ideas and techniques presented

in this paper are easier to be understood, and they can be seen as a first step towards

obtaining more general results not only for paths of fixed length, but also for other type of

results [7]. As the generalization is not so straightforward, we believe that those interested

on the more general case will benefit reading this work first.

2. Notation and auxiliary results

The basic terminology and notation used in this paper are standard (see, e.g. [4, 11]).

A graph has no loops or multiple edges. A multigraph may have multiple edges but no

loops. A directed graph (resp. directed multigraph) is a graph (resp. multigraph) together

with an orientation of its edges. More precisely, a directed graph (resp. multigraph) is

a pair ~G = (V,A) consisting of a vertex-set V and a set A of ordered pairs of distinct

vertices, called directed edges (or, simply, edges). When a pair (V,A) that defines a

(directed) graph G is not given explicitly, such a pair is assumed to be (V (G), A(G)).

Given a directed graph ~G, the set of edges obtained by removing the orientation of the

directed edges in A( ~G) is denoted by Â( ~G) and is called the underlying edge-set of A( ~G).

We denote by G the underlying graph of ~G, that is, the graph with vertex-set V ( ~G) and

edge-set Â( ~G). We say that ~G is k-edge-connected if G is k-edge-connected. We denote

by G = (A ∪B,E) a bipartite graph G on vertex classes A and B.

We denote by Q = v0v1 · · · vk a sequence of vertices of a graph G such that vivi+1 ∈

E(G), for i = 0, . . . , k − 1. If the edges vivi+1, i = 0, . . . , k − 1, are all disctint, then we

say that Q is a trail ; and if all vertices in Q are distinct, then we say that Q is a path.

The length of Q is k (the number of its edges). A path of length k is denoted by Pk, and

is also called a k-path. If ~Q = v0v1 · · · vk is a sequence of vertices of a directed graph ~G,

we say that ~Q is a path (resp. trail) if Q is a path (resp. trail) in G.

We say that a directed graph ~H is a copy of a graph G if H is isomorphic to G. We say

that a set {H1, . . . , Hk} of graphs is a decomposition of a graph G if
⋃k

i=1E(Hi) = E(G)

and E(Hi) ∩ E(Hj) = ∅ for all 1 ≤ i < j ≤ k. For a directed graph, the definition is

analogous. Let H be a family of graphs. An H-decomposition D of ~G is a decomposition

of ~G such that each element of D is a copy of an element of H. If H = {H} we say that

D is an H-decomposition.

In what follows, we present some concepts and auxiliary results that will be used in the

forthcoming sections. We assume here that the set of natural numbers does not contain

zero.

2.1. Vertex splittings. Let G = (V,E) be a graph and x a vertex of G. A set Sx =

{d1, . . . , dsx} of sx natural numbers is called a subdegree sequence for x if d1+ . . .+ dsx =

dG(x). We say that a graph G′ is obtained by an (x, Sx)-splitting of G if G′ is composed
3



of G − x together with sx new vertices x1, . . . , xsx and dG(x) new edges satisfying the

following conditions:

• dG′(xi) = di, for 1 ≤ i ≤ sx;

•
⋃sx

i=1NG′(xi) = NG(x).

Let G be a graph and consider a set V ′ = {v1, . . . , vr} of r vertices of G. Let Sv1 , . . . , Svr

be subdegree sequences for v1, . . . , vr, respectively. Let H1, . . . , Hr be graphs obtained

as follows: H1 is obtained by a (v1, Sv1)-splitting of G, the graph H2 is obtained by a

(v2, Sv2)-splitting of H1, and so on, up to Hr, which is obtained by a (vr, Svr)-splitting

of Hr−1. In this case, we say that each graph Hi is a {Sv1 , . . . , Svi}-detachment of G.

Roughly, a detachment of a graph G is a graph obtained by successive applications of

splitting operations on vertices of G (see Figure 1).

a

b c

d
e

f

g h

G

a

b
c1
c2

d

e1

e2 e3
f

g h

H

Figure 1. A graph G and a graph H that is an {Sc, Se}-detachment of G,
where Sc = {2, 2} and Se = {2, 2, 2}.

The next result provides sufficient conditions for the existence of 2k-edge-connected

detachments of 2k-edge-connected graphs.

Lemma 2.1 (Nash–Williams [21]). Let k be a natural number, and G be a 2k-edge-

connected graph with V (G) = {v1, . . . , vn}. For every v in V (G), let Sv = {dv1, . . . , d
v
sv
}

be a subdegree sequence for v such that dvi ≥ 2k for i = 1, . . . , sv. Then, there exists a

2k-edge-connected {Sv1 , . . . , Svn}-detachment of G.

2.2. Edge liftings. Let G = (V,E) be a graph that contains vertices u, v, w such that

uv, vw ∈ E. The multigraph G′ =
(

V, (E \ {uv, vw}) ∪ {uw}
)

is called a uw-lifting (or,

simply, a lifting) at v. If for all distinct pairs x, y ∈ V \ {v}, the maximum number of

edge-disjoint paths between x and y in G′ is the same as in G, then the lifting at v is

called admissible. If v is a vertex of degree 2, then the lifting at v is always admissible.

This lifting together with the deletion of v is called a supression of v.

The next result, known as Mader’s Lifting Theorem, presents conditions for a multi-

graph to have an admissible lifting.
4



Theorem 2.2 (Mader [18]). Let G be a finite multigraph and let v be a vertex of G that

is not a cut-vertex. If dG(v) ≥ 4 and v has at least 2 neighbors, then there exists an

admissible lifting at v.

The next lemma will be useful to apply Mader’s Lifting Theorem. For two vertices x,y

in a graph G, we denote by pG(x, y) the maximum number of edge-disjoint paths between

x and y in G.

Lemma 2.3. Let k be a natural number. If G is a multigraph and v is a vertex in G

such that d(v) < 2k and pG(x, y) ≥ k for any two distinct neighbors x, y of v, then v is

not a cut-vertex of G.

Proof. Let k, G and v be as in the hypothesis of the lemma. Suppose, by contradiction,

that v is a cut-vertex. Let Gx and Gy be two components of G − v. Let x ∈ V (Gx)

and y ∈ V (Gy) be two neighbors of v. By hypothesis, G has at least k edge-disjoint

paths joining x to y. Since v is a cut-vertex, each of these paths must contain v. Thus,

d(v) ≥ 2k, a contradiction. �

2.3. Some consequences of high connectivity. If G is a graph that contains 2k

pairwise edge-disjoint spanning trees, then, clearly, G is 2k-edge-connected.

The converse is not true, but as the following result shows, every 2k-edge-connected

graph contains k such trees.

Theorem 2.4 (Nash-Williams [20]; Tutte [28]). Let k be a natural number. If G is a

2k-edge-connected graph, then G contains k pairwise edge-disjoint spanning trees.

We state now a result (Theorem 2.5) that we shall use in the proof of Lemma 2.6.

The latter allows us to treat highly edge-connected bipartite graphs as regular bipartite

graphs; it is a slight generalization of Proposition 2 in [26]. Given an orientation O of a

graph G, we denote by d+O(v) the outdegree of v in O.

Theorem 2.5 (Lovász–Thomassen–Wu–Zhang [17]). Let k ≥ 3 be an odd natural number

and G a (3k − 3)-edge-connected graph. Let p : V (G) → {0, . . . , k − 1} be such that
∑

v∈V (G) p(v) ≡ |E(G)| (mod k). Then there is an orientation O of G such that d+O(v) ≡

p(v) (mod k), for every vertex v of G.

Lemma 2.6. Let k ≥ 3 and r be natural numbers, k odd. If G = (A1 ∪ A2, E) is a

(6k − 6 + 4r)-edge-connected bipartite graph and |E| is divisible by k, then G admits a

decomposition into two spanning r-edge-connected graphs G1 and G2 such that, the degree

in Gi of each vertex of Ai is divisible by k, for i = 1, 2.

Proof. Let k, r and G = (A1 ∪ A2, E) be as stated in the lemma. By Theorem 2.4, G

contains 3k − 3 + 2r pairwise edge-disjoint spanning trees. Let H1 be the union of r of

these trees, let H2 be the union of other r of these trees, and let H3 = G−E(H1)−E(H2).

Thus, H1 and H2 are r-edge-connected, and H3 is (3k − 3)-edge-connected.
5



Take p : V (H3) → {0, . . . , k−1} such that p(v) ≡ (k−1)dH1
(v) (mod k) if v is a vertex

of A1, and p(v) ≡ (k−1)dH2
(v) (mod k) if v is a vertex of A2. Thus, the following holds,

where the congruences are taken modulo k.
∑

v∈V (G)

p(v) =
∑

v∈A1

p(v) +
∑

v∈A2

p(v)

≡ (k − 1)(|E(H1)|+ |E(H2)|)

≡ (k − 1)(|E| − |E(H3)|)

≡ k (|E| − |E(H3)|)− |E|+ |E(H3)|

≡ |E(H3)|.

Since H3 is a (3k − 3)-edge-connected spanning subgraph of G, by Theorem 2.5 there

is an orientation O of H3 such that d+O(v) ≡ p(v) (mod k) for every v ∈ V (H3) = V (G).

For i = 1, 2, let Gi be the graph Hi together with the edges of H3 that leave Ai in

the orientation O (note that, E = E(G1) ∪ E(G2)). Thus, dGi
(v) = dHi

(v) + d+O(v) ≡

k dHi
(v) ≡ 0 (mod k) for every vertex v in Ai, and moreover, Gi is r-edge-connected

(because it contains Hi).

�

We note that in Lemma 2.6 we have k odd and the (6k − 6 + 4r)-edge-connectivity of

G is a consequence of the (3k − 3)-edge-connectivity in the statement of Theorem 2.5.

When k is even, we can also prove an analogous result, changing the edge-connectivity

of G to 6k− 4+ 4r. For that, we only have to use a slightly weaker form of Theorem 2.5

for k even, according to which, as stated in [17], one may change the bound (3k − 3) to

(3k − 2).

Given a graph G and a natural number r, an r-factor in G is an r-regular spanning

subgraph of G. The following two results on r-factors in regular multigraphs will be used

later.

Theorem 2.7 (Von Baebler [29] (see also [1, Theorem 2.37])). Let r ≥ 2 be a natural

number, and G be an (r− 1)-edge-connected r-regular multigraph of even order. Then G

has a 1-factor.

Theorem 2.8 (Petersen [22]). If G is a 2k-regular multigraph, then G admits a decom-

position into 2-factors.

3. Fractional factorizations and canonical decompositions

In this section we prove that every 4-edge-connected bipartite graph G = (A ∪ B,E)

such that the degree of each vertex in A is divisible by 5 admits a special decomposition,

which we call “fractional factorization” (see Subsection 3.1). Moreover, if G is 6-edge-

connected, then such a factorization guarantees that we can construct a decomposition

of G into trails of length 5 with some special properties (see Subsection 3.2).
6



3.1. Fractional factorizations.

To simplify notation, if F is a set of edges of a graph G, we write dF (v) to denote

the degree of v in G[F ], the subgraph of G induced by F . If F is a set of edges of a

directed graph ~G, we write d+F (v) (resp. d
−

F (v)) to denote the outdegree (resp. indegree)

of v in ~G[F ].

Definition 3.1. Let ~G be a bipartite directed graph with vertex classes A and B, and such

that the degree of each vertex in A is divisible by 5. We say that ~G admits a fractional

factorization (M,F,H) for A if A( ~G) can be decomposed into three edge-sets M , F and

H such that the following holds.

(i) Every edge in M is directed from B to A;

(ii) For every v ∈ A, we have d−F (v) = d+F (v) = d−H(v) = d+H(v) = d−M(v) = d(v)/5;

(iii) For every v ∈ B, we have d−F (v) = d+F (v) and d−H(v) = d+H(v).

Lemma 3.2. Let G = (A ∪ B,E) be a 4-edge-connected bipartite graph such that the

degree of each vertex in A is divisible by 5. Then, G is the underlying graph of a directed

graph ~G that admits a fractional factorization (M,F,H) for A.

Proof. Let G = (A∪B,E) be as stated in the hypothesis of the lemma. First, we want to

apply Lemma 2.1 to G and obtain a 4-edge-connected graph G′ with maximum degree 7.

To do this, for every vertex v ∈ B, we take integers sv ≥ 1 and 0 ≤ rv < 4 such that

d(v) = 4sv + rv. We put dv1 = 4 + rv and dv2 = · · · = dvsv = 4. Furthermore, for every

vertex v ∈ A, we put sv = d(v)/(5) and dvi = 5 for 1 ≤ i ≤ sv. By Lemma 2.1, applied

with parameters k = 2 and the integers sv, d
v
i (1 ≤ i ≤ sv) for every v ∈ V (G), there

exists a 4-edge-connected bipartite graph G′ obtained from G by splitting each vertex v

of A into sv vertices of degree 5, and each vertex v of B into a vertex of degree 4+ rv < 8

and sv − 1 vertices of degree 4. Let A′ and B′ be the set of vertices of G′ obtained from

the vertices of A and B, respectively. For ease of notation, if v ∈ (A′ ∪ B′) \ (A ∪ B) we

also denote by v the original vertex in (A ∪ B) at which we applied splitting.

The next step is to obtain a 5-regular multigraph G∗ fromG′ by using lifting operations.

For this, we will add some edges to A′ and remove the even-degree vertices of B′ by

successive applications of Mader’s Lifting Theorem as follows.

Let G′

0, G
′

1, . . . , G
′

λ be a maximal sequence of graphs such that G′

0 = G′ and (for i ≥ 0)

G′

i+1 is the graph obtained from G′

i by the application of an admissible lifting at an

arbitrary vertex v of degree in {4, 6, 7}.

Recall that given any two vertices of G′, say x and y, we denote by pG′(x, y) the

maximum number of pairwise edge-disjoint paths joining x and y in G′. We claim that

pG′

i
(x, y) ≥ 4 for any x, y in A′ and every i ≥ 0. Clearly, pG′

0
(x, y) ≥ 4 holds for any x, y

in A′, since G′ is 4-edge-connected. Fix i ≥ 0 and suppose pG′

i
(x, y) ≥ 4 holds for any

x, y in A′. Let x, y be two vertices in A′. Since G′

i+1 is a graph obtained from G′

i by the

application of an admissible lifting at a vertex v in B′, we have pG′

i+1
(x, y) ≥ pG′

i
(x, y) ≥ 4.

7



We claim that if v is a vertex in B′, then dG′

λ
(v) ∈ {2, 5}. Suppose by contradiction

that there is a vertex v in B′ such that dG′

λ
(v) /∈ {2, 5}. Note that dG′

i
(u) ≥ dG′

i+1
(u) ≥ 2

for every vertex u of G and every 0 ≤ i ≤ λ. Since dG′(u) ≤ 7 for every vertex u in V ′, we

have 2 ≤ dG′

i
(u) ≤ 7 for every 0 ≤ i ≤ λ. Therefore, dG′

i
(v) ∈ {4, 6, 7}. Since dG′

λ
(v) ≤ 7

and for any two neighbors x, y of v we have pG′

λ
(x, y) ≥ 4, Lemma 2.3 implies that v is

not a cut-vertex of G′

λ. Then, by Mader’s Lifting Theorem (Theorem 2.2) in G′

λ, there is

an admissible lifting at v. Therefore, G′

0, G
′

1, . . . , G
′

λ is not maximal, a contradiction.

In G′

λ we may have some vertices in B′ that have degree 2. For every such vertex v, if

u and w are the neighbors of v, we apply a uw-lifting at v, and remove the vertex v, i.e.,

we perform a supression of v. Let G∗ be the graph obtained by this process. Note that

the number of pairwise edge-disjoint paths joining two distinct vertices of A′ remains the

same, and thus, pG∗(x, y) = pG′

λ
(x, y) ≥ 4 for every x, y in A′. Furthermore, the set of

vertices of G∗ that belong to B′ is an independent set; we denote it by B∗ (eventually,

B∗ = ∅). Note that, if B∗ is nonempty, every vertex of B∗ has degree 5.

Claim 3.3. G∗ is 4-edge-connected.

Proof. Let Y ⊆ V (G∗). Suppose there is at least one vertex x of A′ in Y and at least

one vertex y of A′ in V (G∗)− Y . Since there are at least 4 edge-disjoint paths joining x

to y, there are at least 4 edges, each one with vertices in both Y and V (G∗)− Y . Now,

suppose that A′ ⊂ Y (otherwise A′ ⊂ V (G∗)− Y and we take V (G∗)− Y instead of Y ),

and then V (G∗) − Y ⊆ B∗. Since B∗ is an independent set, all edges with a vertex in

V (G∗)−Y must have the other vertex in A′. Since every vertex in B∗ has degree 5, there

are at least 5 edges, each one with vertices in both Y and V (G∗)− Y . �

We conclude that G∗ is a 4-edge-connected 5-regular multigraph with vertex-set A′∪B∗,

where B∗ is an independent set.

Now we work on the multigraph G∗. Since G∗ is 5-regular, G∗ has even order. Thus,

by Theorem 2.7, G∗ contains a perfect matching M∗. The multigraph J∗ = G∗ −M∗ is

a 4-regular multigraph. By Theorem 2.8, J∗ admits a decomposition into 2-factors with

edge-sets, say F ∗ and H∗. Thus, M∗, F ∗, and H∗ define a partition of E(G∗).

Now let us go back to the bipartite graph G. Let xy be an edge of G∗. If xy joins

a vertex of A′ to a vertex of B∗, then xy corresponds to an edge of G. If xy joins two

vertices of A′, then there is a vertex vxy of B′ and two edges of G′ incident to it, xvxy

and vxyy, such that xy was obtained by an xy-lifting at vxy (either by an application of

Mader’s Lifting Theorem or by the supression of vertices of degree 2). Thus, each edge

of G∗ represents an edge of G or a 2-path in G such that the internal vertices of these

2-paths are always in B. For every edge xy ∈ E(G∗), define f(xy) = {xy} if xy joins a

vertex of A′ to a vertex of B∗, and f(xy) = {xvxy, vxyy} if xy joins two vertices of A′.

Note that, for every edge xy of G∗, we have f(xy) ⊂ E(G). For a set S of edges of G∗,

put f(S) = ∪e∈Sf(e). The partition of E(G∗) into M∗, F ∗ and H∗ induces a partition of

E(G) into M = f(M∗), F = f(F ∗) and H = f(H∗).
8



Now we construct an Eulerian orientation of G[F ] and G[H ] induced by any Eulerian

orientation of G∗[F ∗] and G∗[H∗]. Let xy be an edge of G∗ −M∗ oriented from x to y.

If xy joins a vertex of A′ to a vertex of B′, let xy be oriented from x to y in G − M .

Otherwise, recall that f(xy) = {xvxy, vxyy}, and let xvxy be oriented from x to vxy in

G−M , and vxyy be oriented from vxy to y in G−M . The obtained orientation of G−M

is Eulerian. Finally, orient all edges of M from B to A. Let ~G be the directed graph

obtained by such an orientation of G.

Let us prove that (M,F,H) is a fractional factorization of ~G for A. Let v be a vertex

of A in G of degree 5d′(v). The vertex v is represented by d′(v) vertices in G∗. Since M∗

is a perfect matching in G∗, there are d′(v) edges of M entering v. Since G∗[F ∗] (resp.

G∗[H∗]) is a 2-factor in G∗, there are d′(v) edges of F (resp. H) entering v and d′(v)

edges of F (resp. H) leaving v. Since G∗[F ∗] (resp. G∗[H∗]) is a 2-factor in G∗, we have

d+F (v) = d−F (v) = d+H(v) = d−H(v), concluding the proof.

�

3.2. Canonical decompositions.

In this subsection we show that if a 6-edge-connected bipartite directed graph admits

a fractional factorization, then it admits a very special trail decomposition. We make

precise what are the properties of such a special trail decompositon.

Let ~G be a directed graph such that A( ~G) is the union of pairwise disjoint sets of

directed edges M , F and H . The following definitions refer to the triple F = (M,F,H).

Let T = abcde be a trail of length 4 in ~G, where ab ∈ M , bc, cd ∈ F and de ∈ H . We

say that T is an F-basic path if T is a path; and T is an F-basic cycle if T is a cycle (see

Figure 2). Furthermore, let T = abcdef be a trail in ~G such that abcde is an F -basic path.

We say that T is an F-canonical path if T is a path; and an F-canonical trail, otherwise

(see Figure 3). We say that a decomposition D of ~G is an F-basic decomposition if each

element of D is an F -basic path or an F -basic cycle. Analogously, D is an F-canonical

decomposition if each element of D is an F -canonical path or an F -canonical trail.

a b c d e

a b

cd

Figure 2. An F -basic path and an F -basic cycle.

To prove the next lemma, we use some ideas inspired by the techniques in [23].

Lemma 3.4. Let ~G be a 6-edge-connected bipartite directed graph. If ~G admits a frac-

tional factorization F for A, then ~G admits an F-canonical decomposition.

Proof. Let ~G be a bipartite directed graph with vertex classes A and B that admits a

fractional factorization F = (M,F,H) for A. Let H+(A) be the set of edges of H leaving
9



a b c d e f

a b c

de

Figure 3. An F -canonical path and an F -canonical trail.

vertices of A, and let H−(A) be the set of edges of H entering vertices of A. Note that

F ′ = (M,F,H+(A)) decomposes the edge-set of G′ = G[M ∪ F ∪H+(A)].

We start by proving that G′ admits an F ′-basic path decomposition. For that, we

first show that G′ admits an F ′-basic decomposition and after we prove that there is an

F ′-basic decomposition without cycles.

By item (iii) of Definition 3.1, for every v ∈ B, we have d−F (v) = d+F (v). Then, the

subgraph of G′ induced by the edges of F admits a P2-decomposition such that the

endpoints of the elements of the decomposition are in A. Let D2 be a P2-decomposition

of G′[F ]. By item (ii) of Definition 3.1, for every v ∈ A, we have d−M(v) = d+F (v) and

d−F (v) = d+H(v). Therefore, one can extend D2 to an F ′-basic decomposition of G′ by

adding two edges to each element of D2. Precisely, for each path xyz that is an element

of D2, it is possible to extend it to either an F ′-basic path or an F ′-basic cycle by adding

one edge of M to x and one edge of H+ to z.

For each F ′-basic decomposition D of G′, let ρ(D) be the number of F ′-basic cycles

in D. Let D be an F ′-basic decomposition of G′ that minimizes ρ(D) over all F ′-basic

decompositions of G′. If ρ(D) = 0 then D is an F ′-basic path decomposition of G′. Thus,

suppose ρ(D) > 0.

By definition, every element T of an F ′-basic decomposition contains exactly one di-

rected path P of length two on the edges of F (see Figure 2), which we call the center

of T . Moreover, suppose that P starts at a vertex x and ends at a vertex y. We say

that x and y are the starting and ending vertices of T , and we denote them start(T ) and

end(T ), respectively. Note that x, y ∈ A.

Since G is 6-edge-connected and every vertex in A has degree divisible by 5, every

vertex in A has degree at least 10. Then, since for every v ∈ A we have d−F (v) = d+F (v) =

d−H(v) = d+H(v) = d−M(v), we conclude that every v ∈ A contains at least two incoming

edges of F and two outgoing edges of F . Therefore, given an element T2 of D, there

exists an element T1 of D such that start(T1) = start(T2) and there exists an element

T3 of D, such that end(T3) = end(T2) (note that possibly T3 = T1). Then, there is a

maximal sequence S = T0, T1, T2, · · · of elements of D such that T0 is an F ′-basic cycle

and, for every k ≥ 0, we have end(T2k) = end(T2k+1) and start(T2k+1) = start(T2k+2) (see

Figure 4 for an example).

Consider the sequence R = t0, t1, t2, · · · of vertices of A that belong to elements of S,

i.e., for every k ≥ 0, we have t2k = start(T2k) and t2k+1 = end(T2k+1). Since G is finite,
10



s0

t0
T0

s1

t1
T1

t2 t3

s2

T2 · · ·

Figure 4. Example of a sequence T0, T1, T2, · · · such that T0 is an
F ′-basic cycle and, for every k ≥ 0, we have end(T2k) = end(T2k+1) and
start(T2k+1) = start(T2k+2).

tj = ti for some 0 ≤ i < j. Therefore, there exists a “cycle” of elements of D in the

sequence S. Let i be the minimum integer such that ti = tj for some j > i. Note that if

i 6= 0, then Ti−1 6= Tj−1. For each element Tk of S, let sk be the vertex of Tk such that

either sktk+1 ∈ E(Tk)−F or tk+1sk ∈ E(Tk)−F , i.e, sk is the vertex of Tk that is neighbor

of tk+1 and is not incident to the edges in E(Tk) ∩ F . We claim that sk 6= s0 for some

k > 0. If i = 0, then tj = t0. Since T0 is an F ′-basic cycle, we have s0t0 ∈ E(T0) − F ,

from where we conclude that s0tj /∈ E(Tj−1), implying that sj−1 6= s0. Thus, suppose

i > 0. Note that, since Ti−1 6= Tj−1 and ti = tj , we have si 6= sj. Thus, at least one

vertex in {si, sj} is different from s0.

Let k∗ be the minimum integer such that sk∗ 6= s0. We want to disentangle the elements

of D to obtain an F ′-basic decomposition with fewer copies of F ′-basic cycles than D.

For that, consider the following notation for the elements of D. For 0 ≤ ℓ ≤ k∗, let

Tℓ = aℓ0 a
ℓ
1 a

ℓ
2 a

ℓ
3 a

ℓ
4 such that aℓ0a

ℓ
1 ∈ M , aℓ1a

ℓ
2, a

ℓ
2a

ℓ
3 ∈ F and aℓ3a

ℓ
4 ∈ H . Thus, note that

aℓ1 = tℓ and aℓ3 = tℓ+1 if ℓ is even, and that aℓ1 = tℓ+1 and aℓ3 = tℓ if ℓ is odd. Let

T ′

0 = a00 a
0
1 a

0
2 a

0
3 a

1
4;

T ′

ℓ =

{

a
ℓ+1

0 aℓ1 a
ℓ
2 a

ℓ
3 a

ℓ−1

4 , if ℓ is odd,

a
ℓ−1

0 aℓ1 a
ℓ
2 a

ℓ
3 a

ℓ+1

4 , if ℓ is even,
for 0 < ℓ < k∗;

T ′

k∗ =

{

ak
∗

0 ak
∗

1 ak
∗

2 ak
∗

3 a
k∗

−1

4 , if k∗ is odd,

a
k
∗
−1

0 ak
∗

1 ak
∗

2 ak
∗

3 ak
∗

4 , if k∗ is even.

Then, D′ = D − T0 − T1 · · · − Tk∗ + T ′

0 + T ′

1 · · ·+ T ′

k∗ is an F ′-basic decomposition (see

Figure 5 for an example). Furthermore, ρ(D′) < ρ(D), contradicting the minimality of

ρ(D). Therefore, G′ admits an F ′-basic path decomposition D.

To finish the proof we extend the F ′-basic path decomposition D of G′ to an

F -canonical decomposition of G by using the edges of H−(A). Note that each F -basic

path in D is a directed path ending with an edge of F+
2 (A) and at a vertex of B. But

since, by item (iii) of Definition 3.1, d−H(v) = d+H(v) for every v ∈ B, we can easily ex-

tend D to an F -canonical decomposition of G by adding one edge of H−(A) to each one

of its F ′-basic paths, concluding the proof. �

Combining Lemmas 3.2 and 3.4 we obtain the following corollary.
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a00, a
0
4, a

1
0, a

2
4

a01

a02

a03T0 T1 a11

a12

a13

a14

T2

a20

a21

a22

a23 T3

a30, a
3
4

a31

a32

a33

a00, a
0
4, a

1
0, a

2
4

a01

a02

a03T ′

0 T ′

1 a11

a12

a13

a14

T ′

2

a20

a21

a22

a23 T ′

3

a30, a
3
4

a31

a32

a33

Figure 5. Example of a sequence T0, T1, T2, T3 and the corresponding
paths T ′

0, T
′

1, T
′

2, T
′

3.

Corollary 3.5. Let G = (A ∪ B,E) be a 6-edge-connected bipartite graph such that the

vertices in A have degree divisible by 5. Then, G is the underlying graph of a directed

graph ~G that admits a fractional factorization F and an F-canonical decomposition.

4. Proof of the Main Theorem

In this section we manage to “disentangle” the trails of a canonical decomposition to

obtain a decomposition into paths of length 5. Denote by T5 the only bipartite trail of

length 5 that is not a path. We recall that a {P5, T5}-decomposition D of a directed

graph ~G is a decomposition of ~G such that every element of D is either a copy of P5 or

a copy of T5.

Let ~G be a directed graph and ab an edge of ~G. Let D be a decomposition of ~G, and

let T be the element of D that contains ab. We say that ab is inward in D if dT (a) = 1.

Suppose that ~G admits a fractional factorization F = (M,F,H). Let D be a {P5, T5}-

decomposition of ~G. We say that D is M-complete if every edge of M is inward in D.

Note that if T is an F -canonical path or an F -canonical trail, then the edge of M in T

is inward in D. Therefore, if D is an F -canonical decomposition, then D is M-complete.

The next theorem is our main result.

Theorem 4.1. There exists a natural number kT such that, if G is a kT -edge-connected

graph and |E(G)| is divisible by 5, then G admits a P5-decomposition.
12



Our main theorem follows directly from Theorem 1.3 and the next result.

Theorem 4.2. If G is a 48-edge-connected bipartite graph and |E(G)| is divisible by 5,

then G admits a P5-decomposition.

Proof. Let G = (A ∪ B,E) be a 48-edge-connected bipartite graph such that |E| is

divisible by 5. By Lemma 2.6 (taking r = 6 and k = 5), G can be decomposed into

graphs G1 and G2 such that G1 is 6-edge-connected and dG1
(v) is divisible by 5 for every

v ∈ A, and G2 is 6-edge-connected and dG2
(v) is divisible by 5 for every v ∈ B. Thus, by

Corollary 3.5, Gi is the underlying graph of a directed graph ~Gi that admits a fractional

factorization Fi = (Mi, Fi, Hi) and an Fi-canonical decomposition Di, for i = 1, 2.

By definition, D1 is an M1-complete decomposition of G1 and D2 is an M2-complete

decomposition ofG2. LetM = M1∪M2 and F = (M,F1∪F2, H1∪H2). Then, D = D1∪D2

is an M-complete F -canonical decomposition of ~G, where ~G = ~G1 ∪ ~G2. Note that, for

every vertex v of ~G, there is at least one edge of M pointing to v. Moreover, since an

F -canonical path is a copy of P5, and an F -canonical trail is a copy of T5, we have that

any F -canonical decomposition of ~G is also a {P5, T5}-decomposition of ~G. Therefore, D

is an M-complete {P5, T5}-decomposition of ~G.

Let D be an M-complete {P5, T5}-decomposition of ~G with minimum number of copies

of T5. If there is no copy of T5 in D, then D is a P5-decomposition of ~G and the proof is

complete. Therefore, we may suppose that there is at least one copy of T5 in D. In what

follows, we aim for a contradiction.

Let T = v0v1v2v3v4v5 with v5 = v1 be a copy of T5 in D. Recall that there exists an

edge uv2 of M pointing to v2. Let B1 be the element of D that contains uv2. Since D

is M-complete, dB1
(u) = 1. Therefore, we may suppose that B1 = b0b1b2b3b4b5, where

b1 = v2, and, possibly, b1 = b5.

We divide the proof in two cases, depending on whether v1 belongs or not to V (B1).

Case 1: v1 /∈ V (B1).

Let T ′ = v0v1v4v3v2b0, B
′

1 = v1b1b2b3b4b5, and D′ = D−T −B1+T ′+B′

1. We claim that

T ′ is a path, B′

1 is of the same type of element as B1 (i.e., the underlying graphs of B′

1

and B1 are isomorphic), and the edges of M in A(T ′)∪A(B′

1) are inward in D′. Thus D′

is an M-complete decomposition with fewer copies of T5 than D, a contradiction.

First, let us prove that T ′ is a path. Note that b0 6= v0 and b0 6= v4, otherwise

b0b1v1 would induce a triangle in G, a contradiction. We also know that b0 6= v1 and

b0 6= v3, since G has no parallel edges. Furthermore, b0 6= v2, since G has no loops. Since

v1 /∈ V (B1), if B1 is a path, then B′

1 is a path; and B′

1 is a copy of T5, otherwise.

It is left to prove that every directed edge in M is inward in D′. We just need to

prove this for the directed edges in M ∩
(

A(T ′) ∪ A(B′

1)
)

. Note that the only edges

in M ∩
(

A(T ′) ∪ A(B′

1)
)

are b0v2 and, possibly, v0v1 and b5b4. Since dT ′(b0) = 1 and

dT ′(v0) = 1, the edges b0b1 and v0v1 are inward in D′. If b5b4 is an edge of M , then B1 is
13



a path ending at b5. Therefore, B
′

1 is a path ending at b5, and b5b4 is inward in D′.

Case 2: v1 ∈ V (B1).

Consider a sequence B = B1B2 . . . Bk−1 of elements of D, where b11 = v2, Bi = bi0b
i
1b

i
2b

i
3b

i
4b

i
5

for i ≤ k−1. We say that B is a coupled sequence centered at v1 if the following properties

hold (See Figure 6).

(i) bi0b
i
1 ∈ M , for 1 ≤ i ≤ k − 1;

(ii) bi1 = bi−1
3 , for 2 ≤ i ≤ k − 1;

(iii) bi4 = v1, for 1 ≤ i ≤ k − 1.

Note that, by hypothesis, v1 is a vertex of B1. Since G is a bipartite graph, v1 = b14.

Therefore, B1 is a coupled sequence centered at v1 with only one element (that is, k = 2).

Thus, we may suppose that there is a maximal coupled sequence B centered at v1.

Claim 4.3. Bi is a path of length 5, for 1 ≤ i ≤ k − 1.

Proof. If for some i ∈ {1, . . . , k − 1}, the element Bi is a copy of T5, then dBi
(bi0) = 1

and bi5 = bi1, because (by item (i)) bi0b
i
1 is an edge of M and, since D is M-complete, bi0b

i
1

must be inward in D. Since v1 ∈ V (Bi), we know that either v1 = bi2 or v1 = bi4, because

G is bipartite. Note that the edge v2v1 is an edge of T . If i = 1, then b11v1 and v2v1 are

parallel edges. If i > 1, then (by item (ii)) bi−1
3 v1 = bi1v1 must be an edge of Bi−1 and of

Bi, and D covers this edge twice. Therefore, for every 1 ≤ i ≤ k − 1, the element Bi is a

copy of P5. �

v0

b24 = b14 = v1 = v5

v2 = b11

v3

v4

T

B1

B2

b10

b12

b13 = b21

b15

b20

b22

b23

b25

Figure 6. Example of a trail T = v0v1v2v3v4v5 with v5 = v1, and a coupled
sequence B1, B2 centered at v1.
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Claim 4.4. Bi 6= Bj, for 1 ≤ i < j ≤ k − 1.

Proof. Suppose, by contradiction, that B has repeated elements. Let Bi be the first

element of B such that Bi = Bj for some j with i < j. Since bi0b
i
1 ∈ M and bj0b

j
1 ∈ M

(item (i)), and the elements of B belong to an M-complete decomposition, either bj0 = bi0
or bj0 = bi5. If bj0 = bi5, then we know that bj4 = bi1 = v1 (by item (iii)), from where we

conclude that Bi contains the triangle b
j
4 b

j
3 b

j
2 b

j
4, a contradiction. Therefore, assume that

bj0 = bi0. Note that bj−1
3 = bj1 = bi1 (by item (ii)). Also, i > 1, otherwise bj−1

3 = v2 and

bj−1
3 bj−1

4 = v2v1 ∈ E(Bj−1), but v1v2 ∈ E(T ) and T and Bj−1 are different, by the choice

of i. Therefore, by item (iii), bj−1
4 = bi−1

4 = v1, implying that bi−1
3 bi−1

4 = bj−1
3 bj−1

4 and,

then, Bi−1 = Bj−1, a contradiction to the minimality of i. Therefore, Bi 6= Bj for every

1 ≤ i < j ≤ k − 1. �

Recall that there is at least one edge e in M pointing to bk−1
3 . Let Bk be the element of

D that contains e. We may suppose that Bk = bk0 b
k
1 b

k
2 b

k
3 b

k
4 b

k
5, where e = bk0b

k
1. Note that

B′ = B1B2 · · ·Bk−1Bk satisfies items (i) and (ii). Also, item (iii) holds for 1 ≤ i ≤ k − 1.

Since B is maximal, B′ is not a coupled sequence. Thus, item (iii) does not hold for i = k.

Therefore, bk4 6= v1.

Now consider the following elements:

• T ′ = T − v2v1 + b10b
1
1.

• B′

1 = B1 − b10b
1
1 + v2v1 − b13v1 + b20b

2
1.

• B′

i = Bi − bi0b
i
1 + bi−1

3 v1 − bi3v1 + bi+1
0 bi+1

1 , for 2 ≤ i ≤ k − 1.

• B′

k = Bk − bk0b
k
1 + bk−1

3 v1.

We claim that T ′, B′

1, . . . , B
′

k−1 are paths and B′

k is of the same type of element as

Bk. The following arguments are very similar to the ones above, we present them for

completeness.

To check that T ′ is a path, we prove that b10 /∈ V (T ) − v0. Note that b10 6= v0 and

b10 6= v4, otherwise b
1
0b

1
1v1 would induce a triangle in G. Also b10 6= v1 and b10 6= v3, because

G has no parallel edges, and since G has no loops, b10 6= v2. Therefore, T
′ is a path.

Let us check that B′

i is a path for 1 ≤ i ≤ k − 1. Since V (B′

i) = V (Bi) − bi0 + bi+1
0 ,

we just have to prove that bi+1
0 /∈ {bi1, b

i
2, b

i
3, b

i
4, b

i
5}. If bi+1

0 = bi1, then bi1 b
i
2 b

i
3 b

i+1
0 is a

triangle in G. If bi+1
0 = bi2, then bi3b

i
2 and bi+1

1 bi+1
0 are parallel edges. Since bi3 = bi+1

1 and

bi+1
1 6= bi+1

0 , we have bi+1
0 6= bi3. If b

i+1
0 = bi4, then bi3b

i
4 and bi+1

1 bi0 are parallel. If bi+1
0 = bi5,

then bi+1
0 bi3 b

i
4 b

i
5 is a triangle in G. Therefore, B′

2, . . . , B
′

k−1 are paths.

Now, let us prove that v1 /∈ {bk1, b
k
2, b

k
3, b

k
4, b

k
5}. Since bk1 = bk−1

3 and G is bipartite, we

conclude that v1 /∈ {bk1, b
k
3, b

k
5}. Furthermore, since bk1 = bk−1

3 and bk−1
3 v1 ∈ E(G), we

conclude that bk2 6= v1. By the maximality of the sequence B, we conclude that bk4 6= v1.

Thus, B′

k is a trail. If bk5 6= bk1, then Bk and B′

k are both paths of length five. If bk5 = bk1 ,

then Bk and B′

k are both copies of T5. Therefore, B
′

k is of the same type of element as Bk.
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Let D′ = D − T − B1 − · · · − Bk + T ′ +B′

1 + · · ·+ B′

k. Since the edges of M are bi0b
i
1

and, possibly bi5b
i
4, every edge of M is inward in D′. Therefore, D′ is an M-complete

decomposition with fewer copies of T5 than D, a contradiction. �

5. Concluding remarks

The technique we have shown here (in Section 4) to disentangle elements of the canon-

ical decomposition seems to be useful to deal with more general structures. Besides our

current work [6] on generalizations of these results to show that Conjecture 1.1 holds for

paths of any fixed length, in another direction, we were able to prove a variant of our

results to deal with Pℓ-decompositions of regular graphs of prescribed girth [7]. These

results were obtained by combining ideas from this paper and a special result, which we

named “Disentangling Lemma”, that generalizes the ideas used in Section 4. We were not

able to generalize Lemma 3.4 and Corollary 3.5 to obtain decompositions into paths of

any given length. But, considering more powerful factorizations and higher connectivity,

we can obtain a kind of generalized versions of these results.
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[29] F. Von Baebler, Über die Zerlegung regulärer Streckenkomplexe ungerader Ordnung, Comment.

Math. Helv. 10 (1937), no. 1, 275–287.

17


	1. Introduction
	2. Notation and auxiliary results
	2.1. Vertex splittings
	2.2. Edge liftings
	2.3. Some consequences of high connectivity

	3. Fractional factorizations and canonical decompositions
	3.1. Fractional factorizations
	3.2. Canonical decompositions

	4. Proof of the Main Theorem
	5. Concluding remarks
	References

