Computing an Evolutionary Ordering is Hard

Laurent Bulteau, Gustavo Sacomoto, Blerina Sinaimeri

Université Lyon 1; INRIA Rhône-Alpes; CNRS, UMR5558; Laboratoire de Biométrie et Biologie Evolutive

We study the problem of computing evolutionary orderings of families of sets, as introduced by Little and Campbell [1].

Definition 1. Let S be a family of subsets of some universe U. We say that S is evolutionary if there exists an ordering of its sets $S = \{S_1, S_2, \ldots, S_m\}$ such that:

- Each set brings a new element, i.e. $S_i \nsubseteq \bigcup_{i=1}^{i-1} S_j$
- Each set, except the first one, has an old element, i.e. $S_i \cap \bigcup_{j=1}^{i-1} S_j \neq \emptyset$

The associated algorithmic problem is the following: EVOLUTIONARY ORDERING Input: A family of subsets S of some universe U. Question: Is S evolutionary?

We determine the computational complexity of this problem.

Theorem 1. EVOLUTIONARY ORDERING is NP-hard.

By a reduction from 3-SAT. Consider a formula Φ with n variables and m clauses. Assume that each clause appears twice (i.e., Φ can be written $\Phi = \Phi' \wedge \Phi'$). This is not restrictive, 3-SAT is clearly hard even when restricted to this class of formulas. For ease of presentation, assume that each literal occurs exactly k times, and each clause has exactly 3 literals. Note that 2kn = 3m.

The universe on which the sets are constructed contains the following 6n + 5m elements:

- 2n assignment elements, denoted x_i and \bar{x}_i for each $1 \leq i \leq n$
- 2n+1 trigger elements, denoted t_i and \bar{t}_i for each $1 \leq i \leq n$ and τ
- 2n free elements, denoted f_i and \overline{f}_i for each $1 \leq i \leq n$
- 2kn literal elements, denoted ℓ_i^h and $\overline{\ell}_i^h$ for each $1 \leq i \leq n$ and $1 \leq h \leq k$
- 2*m* clause elements, denoted c_j and c'_j for each $1 \le j \le j'$

We now create the following sets:

• Two triggering sets:

$$T := \{\tau\} T' := \{\tau, t_1, \bar{t}_1, t_2, \dots, \bar{t}_n\}$$

• For each $1 \le i \le n$, define two variable sets and a verification set:

$$L_i := \{x_i, t_i, f_i, \ell_i^1, \dots, \ell_i^k\}$$
$$\bar{L}_i := \{\bar{x}_i, \bar{t}_i, \bar{f}_i, \bar{\ell}_i^1, \dots, \bar{\ell}_i^k\}$$
$$V_i := \{x_i, \bar{x}_i, c_1, c'_1, c_2, c'_2, \dots, c_m, c'_m\}$$

• For each $1 \leq j \leq m$, where the *j*th clause uses, say, literals ℓ_1^1 , ℓ_2^1 , $\bar{\ell}_3^1$, define two *clause sets*

$$C_j := \{\ell_1^1, \ell_2^1, \ell_3^1, c_j\}$$

 $C'_j := \{c_j, c'_j\}$

We prove that this collection of sets has an evolutionary ordering if, and only if, Φ is satisfiable. If. Given a truth assignment, we simply give an ordering of the sets by *adding* them one by one.

- Start with the triggering sets T and T'. No condition need to be satisfied for $T = \{\tau\}$, and, in T', τ is old and t_1 is new.
- For each variable x_i , add L_i if x_i is assigned true, \overline{L}_i otherwise. For each one, t_i (or \overline{t}_i) is old, and f_i (or \overline{f}_i) is new.
- For each clause c_j , add set C_j followed by C'_j . Since the clause is satisfied, some literal ℓ^h_i (or ℓ^h_i) must be assigned true, so the corresponding element in L_i (or \bar{L}_i) is old for set C_j . Element c_j is new for set C_j , and then old for set C'_j . Element c'_j is new for set C'_j .
- For each variable x_i , add the verification set V_i . Element c_1 is old. If x_i is assigned true (resp. false), then element \bar{x}_i (resp. x_i) is new.
- For each variable x_i , add \bar{L}_i if x_i is assigned true, L_i otherwise. For each one, t_i (or \bar{t}_i) is old, and f_i (or \bar{f}_i) is new.

Overall, we have an ordering of the sets where each one has an old and a new element: the set is evolutionary.

Only if. Assume that our family of sets is evolutionary and consider such an ordering. Note that $T = \{\tau\}$ must be the very first set of this ordering (since otherwise iot cannot contain both old and new elements). This means that all other sets have an old and a new element. Write \mathcal{A} for the family of the sets L_i and \bar{L}_i that appear before their corresponding verification sets V_i . We make the following observations.

First, for each clause c_j and each variable x_i , set C'_j appears before V_i . This is because $C'_j \subset V_i$.

Now, for each variable x_i , it is not possible to have both $L_i \in \mathcal{A}$ and $\bar{L}_i \in \mathcal{A}$. Otherwise, V_i would not have any new element, since $V_i \subseteq L_i \cup \bar{L}_i \cup \bigcup_{j=1}^m C'_j$ and each C'_j is already before V_i . Thus, we design a truth assignment such that x_i is true if $L_i \in \mathcal{A}$, and false otherwise. This way, for each L_i or \bar{L}_i in \mathcal{A} , the corresponding literal $(x_i \text{ or } \bar{x}_i)$, is assigned true.

It remains to show that the assignment satisfies formula Φ . Consider each clause c_j . First, C_j appears before C'_j . Indeed, the only sets intersecting C'_j are C_j and each V_i . Remember that V_i s appear after C'_j , so the old element in C'_j must be from C_j , and C'_j appears after C_j . It follows that the old element of C_j cannot be c_j , hence it is a literal element ℓ^h_i or $\bar{\ell}^h_i$. So the corresponding variable set L_i or \bar{L}_i must be before C'_j , hence before C'_j and V_i . Overall, for each clause, one of L_i or \bar{L}_i corresponding to a literal of the clause is in \mathcal{A} , and the literal is satisfied by our assignment. So the whole formula Φ is satisfiable.

References

 Little, C. H. C., Campbell, A. E. Evolutionary Families of Sets. The Electronic Journal of Combinatorics, 7(R10), 2, 2000.