# Quasiperfect Domination in Trees

Jose Cáceres, Maria Luz Puertas<sup>1</sup>

Estadística y Matemática Aplicada, Universidad de Almería, Almería, Spain

Carmen Hernando, Merce Mora, Ignacio M Pelayo<sup>2</sup>

Matemàtica Aplicada, Universitat Politècnica de Catalunya, Barcelona, Spain

#### Abstract

A k-quasiperfect dominating set  $(k \ge 1)$  of a graph G is a vertex subset S such that every vertex not in S is adjacent to at least one and at most k vertices in S. The cardinality of a minimum k-quasiperfect dominating set of G is denoted by  $\gamma_{1k}(G)$ . Those sets were first introduced by Chellali et al. (2013) as a generalization of the perfect domination concept (which coincides with the case k = 1) and allow us to construct a decreasing chain of quasiperfect dominating parameters

(1) 
$$\gamma_{11}(G) \ge \gamma_{12}(G) \ge \ldots \ge \gamma_{1,\Delta}(G) = \gamma(G),$$

in order to indicate how far is G from being perfectly dominated. In this work, we study general properties, tight bounds, existence and realization results involving the parameters of the so-called *QP-chain* (1), for trees.

Keywords: Domination, Perfect domination, Quasiperfect domination, Trees.

<sup>&</sup>lt;sup>1</sup> Email: jcaceresQual.es, mpuertasQual.es

 $<sup>^2 {\</sup>rm \ Email: \ carmen.hernando@upc.edu, \ merce.mora@upc.edu, \ ignacio.m.pelayo@upc.edu}$ 

## 1 Introduction

Recall that a *tree* is a connected acyclic graph. A *leaf* is a vertex of degree 1 and vertices of degree at least 2 are *interior* vertices. We denote by L(T) the set of leaves of a tree T and by  $\ell(T)$  the number of leaves of T. A *support* vertex is a vertex having at least a leaf in its neighborhood and a strong support vertex is a support vertex adjacent to at least two leaves.

Given a graph G, a subset S of its vertices is a *dominating set* of G if every vertex v not in S is adjacent to at least one vertex in S. The *domination* number  $\gamma(G)$  is the minimum cardinality of a dominating set of G, and a dominating set of cardinality  $\gamma(G)$  is called a  $\gamma$ -code [9].

An extreme way of domination occurs when every vertex not in S is adjacent to exactly one vertex in S. In that case, S is called a *perfect dominating* set [2] and  $\gamma_{11}(G)$ , the minimum cardinality of a perfect dominating set of G, is the *perfect domination number*. A dominating set of cardinality  $\gamma_{11}(G)$  is called a  $\gamma_{11}$ -code.

In a perfect dominating set what is gained from the point of view of accuracy is lost in size, comparing it with a dominating set. Between both notions there is a graduation of definitions: k-quasiperfect domination. A kquasiperfect dominating set for  $k \ge 1$  ( $\gamma_{1k}$ -set for short) [7,11] is a dominating set S where every vertex not in S is adjacent to at most k vertices of S. Again the k-quasiperfect domination number  $\gamma_{1k}(G)$  is the minimum cardinality of a  $\gamma_{1k}$ -set of G and a  $\gamma_{1k}$ -code is a  $\gamma_{1k}$ -set of cardinality  $\gamma_{1k}(G)$ .

Given a graph G of order n and maximum degree  $\Delta$ ,  $\gamma_{1\Delta}$ -sets are precisely dominating sets. Thus, one can construct the following chain of quasiperfect domination parameters:

(2) 
$$n \ge \gamma_{11}(G) \ge \gamma_{12}(G) \ge \ldots \ge \gamma_{1\Delta}(G) = \gamma(G),$$

known as the quasiperfect chain of G, or simply the *QP-chain* of G.

### 2 Known general results

In this section, we review some results founded in the literature about quasiperfect parameters. Table 2 summarizes the values of parameters under consideration for some simple families of graphs.

**Theorem 2.1** [7] If G is a graph of order n verifying at least one of the following conditions: (1)  $\Delta(G) \ge n-3$ ; (2)  $\Delta(G) \le 2$ ; (3) G is a cograph; (4) G is a claw-free graph, then  $\gamma_{12}(G) = \gamma(G)$ .

| _                | paths                                  | cycles                                                                           | cliques   | stars       | bicliques         | wheels    |
|------------------|----------------------------------------|----------------------------------------------------------------------------------|-----------|-------------|-------------------|-----------|
| G                | $P_n$                                  | $C_n$                                                                            | $K_n$     | $K_{1,n-1}$ | $K_{p,n-p}$       | $W_n$     |
| n                | $n \ge 3$                              | $n \ge 4$                                                                        | $n \ge 2$ | $n \ge 4$   | $2 \le p \le n-p$ | $n \ge 3$ |
| $\Delta(G)$      | 2                                      | 2                                                                                | n-1       | n-1         | n-p               | n-1       |
| $\gamma_{11}(G)$ | $\left\lceil \frac{n}{3} \right\rceil$ | $\left\lceil \frac{2n}{3} \right\rceil - \left\lfloor \frac{n}{3} \right\rfloor$ | 1         | 1           | 2                 | 1         |
| $\gamma_{12}(G)$ | $\left\lceil \frac{n}{3} \right\rceil$ | $\left\lceil \frac{n}{3} \right\rceil$                                           | 1         | 1           | 2                 | 1         |
| $\gamma(G)$      | $\left\lceil \frac{n}{3} \right\rceil$ | $\left\lceil \frac{n}{3} \right\rceil$                                           | 1         | 1           | 2                 | 1         |

**Proposition 2.2** [3] Let G = (V, E) a graph of order n.

- (i) If  $\gamma(G) \leq \Delta(G)$ , then  $\gamma_{1\gamma}(G) = \ldots = \gamma_{1\Delta}(G) = \gamma(G)$ ;
- (ii)  $\gamma_{1\delta}(G) < n;$
- (iii)  $\gamma_{11}(G) = 1$  if and only if  $\Delta(G) = n 1$ .

(iv)  $\gamma_{11}(G) \leq n - \ell(G)$  where  $\ell(G)$  is the number of vertices of degree one.

**Theorem 2.3** [3] Let k, n be positive integers such that  $n \ge 6$  and  $2 \le k \le n$ . Then, there exists a graph G of order n such that  $\Delta(G) = n-2$  and  $\gamma_{11}(G) = k$ .

**Theorem 2.4** [3] Let (h, k, n) be a triple of integers such that  $2 \le h \le 3$ ,  $2 \le k \le n$  and  $n \ge 9$ . Then, there exists a graph G such that |V(G)| = n,  $\Delta(G) = n - 3$ ,  $\gamma(G) = h$  and  $\gamma_{11}(G) = k$ .

**Theorem 2.5** [3] Let G be a graph of order n and  $\Delta(G) = 3$ , other than the bull graph. Then,  $\gamma_{11}(G) \leq n-3$ .

**Proposition 2.6** [3] Let G be either a cubic graph other than  $K_4$ , or a tree with order  $n \ge 7$  and  $\Delta(G) = 3$ . Then,  $\gamma_{11}(G) \le n - 4$ .

The join  $G = G_1 \vee G_2$  of graphs  $G_1$  and  $G_2$  is the graph such that  $V(G) = V(G_1) \cup V(G_2)$  and  $E(G) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\}.$ 

**Theorem 2.7** [3] Let  $G = G_1 \vee G_2$  be a join graph of order n. Then,

(i)  $\gamma_{11}(G) = 1$  if and only if  $G_1$  or  $G_2$  have a universal vertex.

(ii)  $\gamma_{11}(G) = 2$  if and only if both  $G_1$  and  $G_2$  have at least an isolated vertex.

(iii)  $\gamma_{11}(G) = n$  in other case.

**Corollary 2.8** [3] Let  $G = G_1 \vee G_2$  be a connected cograph without universal vertices. Then,  $\gamma_{11}(G) = 2$  if both  $G_1$  and  $G_2$  have at least an isolated vertex, and  $\gamma_{11}(G) = n$  in any other case.

**Theorem 2.9** [3] Let h, k, n be integers such that  $4 \le n, 2 \le h \le k \le n$ satisfying either  $h + k \le n$  or  $3h + k + 1 \le 2n$ . Then, there exists a claw-free graph G of order n such that  $\gamma(G) = h$  and  $\gamma_{11}(G) = k$ .

The *corona* of a graph G, denoted by cor(G), is the graph obtained by attaching a leaf to each vertex of G.

**Theorem 2.10** [8,10] For any graph G the domination number satisfies  $\gamma(G) \leq n/2$ . And if G is a graph of even order n, then  $\gamma(G) = n/2$  if and only if G is the cycle of order 4 or the corona of a connected graph.

Graphs with odd order n and maximum domination number  $\gamma(G) = \lfloor n/2 \rfloor$  are also completely characterized in [1], as a list of six graph classes.

**Proposition 2.11** [5] Let T be a tree of order  $n \ge 3$ . Then

- (i) Every  $\gamma$  code of T contains all its strong support vertices.
- (ii) Every  $\gamma_{11}$  code of T contains all its strong support vertices.
- (iii)  $\gamma_{11}(T) \le n/2.$
- (iv)  $\gamma_{11}(T) = n/2$  if and only if  $\gamma(T) = n/2$  if and only if T = cor(T') for some tree T'.

A tree for which removal of all its leaves results in a path is called a caterpillar.

**Proposition 2.12** [7] If T is a caterpillar, then  $\gamma(T) = \gamma_{12}(T)$ .

### 3 Our results on Trees

**Theorem 3.1** [4] Let T be a tree. Then,  $\gamma_{1k}(T) \leq \gamma(T) + \lceil \frac{\gamma(T)}{k} \rceil - 1$ , for every integer  $k \in \{1, \ldots, \Delta(T)\}$ .

**Corollary 3.2** For every tree T,  $\gamma_{11}(T) \leq 2\gamma(T) - 1$ .

**Remark 3.3** This bound is not true for general graphs and the difference between both parameters can be as large as desired. For example, the graph displayed in Figure 1 satisfies  $\gamma(G) = 2$  and  $\gamma_{11}(G) = |V(G)| > 2\gamma(G) - 1$ .

Next, we present a realization theorem for the short chain  $\gamma \leq \gamma_{11}(T) \leq 2\gamma - 1$ . Note that, for every caterpillar T of order  $n \geq 3$ , Proposition 2.12



Fig. 1. The pair of white vertices form a  $\gamma$ -code.

and Corollary 3.2 just allow two possible situations, namely, either  $\gamma(T) = \gamma_{11}(T) \leq n/2$  or  $\gamma(T) < \gamma_{11}(T) < n/2$ . In the following result, we show that both of them are feasible and that parameters  $\gamma$  and  $\gamma_{11}$  can take every possible value in each case.

**Proposition 3.4** [4] Let a, b, n be positive integers.

- (i) If  $2 \le 2a \le n$ , then there exists a caterpillar T of order n such that  $\gamma(T) = \gamma_{11}(T) = a$ .
- (ii) If  $2 \le a < b \le 2a 1$  and n > 2b, then there exists a caterpillar T of order n such that  $\gamma(T) = a$  and  $\gamma_{11}(T) = b$ .

**Proposition 3.5** [4] A caterpillar T satisfies  $\gamma_{11}(T) = 2\gamma(T) - 1$  if and only if belongs to the family shown in Figure 2.



Fig. 2. Caterpillar with  $\gamma_{11}(T) = 2\gamma(T) - 1$ .

Let T a tree with maximum degree  $\Delta \geq 3$ . Next theorem shows that for each inequality of the QP-chain, both possibilities, the equality and the strict inequality, are feasible.

**Theorem 3.6** [4] There exists a tree with maximum degree  $\Delta \geq 3$ , satisfying each one of the  $2^{\Delta-1}$  possible combinations of the inequalities of the QP- chain.

Finally, we present the general form of the QP-chain in the case of k-ary trees, that has just two different terms.

**Proposition 3.7** [4] Let T = T(k, h) the full k-ary tree of order  $n = \frac{k^{h+1} - 1}{k - 1}$ , where all leaves are at distance h - 1 from the root, with  $k \ge 2$ ,  $h \ge 3$ . Then

$$n - \ell(T) = \gamma_{11}(T) = \gamma_{12}(T) = \dots = \gamma_{1,k-1}(T) > \gamma_{1,k}(T) = \gamma_{1,k+1}(T) = \gamma(T)$$

### References

- X. BAOGEN, E.J. COCKAYNE, T.W. HAYNES, S.T. HEDETNIEMI AND Z. SHANGCHAO: Extremal graphs for inequalities involving domination parameters. Discrete Math., 216 (2000), 1–10.
- [2] N. BIGGS: Perfect codes in graphs. J. Combin. Theory Ser. B, 15 (1973), 289–296.
- [3] J. CÁCERES, C. HERNANDO, M. MORA, I. M. PELAYO AND M. L. PUERTAS: On Perfect and Quasiperfect Dominations in Graphs. Submitted. http://arxiv.org/pdf/1411.7818v1.pdf
- [4] J. CÁCERES, C. HERNANDO, M. MORA, I. M. PELAYO AND M. L. PUERTAS: *Perfect* and *Quasiperfect Dominations in Trees.* Submitted.
- [5] Y. CARO, A. HANSBERG AND M. HENNING: Fair domination in graphs. Discrete Math., **312 (19)** (2012), 2905–2914.
- [6] G. CHARTRAND, L. LESNIAK, P. ZHANG: Graphs and Digraphs, (5th edition). CRC Press, Boca Raton, Florida, 2011.
- M. CHELLALI, T.W. HAYNES, S.T. HEDETNIEMI, A. MCRAE: [1, 2]-sets in graphs. Discrete Appl. Math., 161(18) (2013), 2885–2893.
- [8] J.F. FINK, M.S. JACOBSON, L.F. KINCH AND J. ROBERTS: On graphs having domination number half their order. Periodica Mathematica Hungarica, 16 (1985), 287–293.
- [9] T.W. HAYNES, S.T. HEDETNIEMI, P.J. SLATER: Fundamentals of domination in graphs. Marcel Dekker, New York, 1998.
- [10] C. PAYAN AND N. H. XUONG: Domination-balanced graphs. J. Graph Theory, 6 (1982), 23–32.
- [11] X. YANG, B. WU. [1,2]-domination in graphs. Discrete Appl. Math. 175 (2014), 79–86.

# Appendix

### Proof of Theorem 3.1

**Remark 1** Let T be a tree and S a dominating set. Then, since T has no cyles, every vertex not in S has at most one neighbor at each connected component of the subgraph T[S].

**Remark 2** Let T be a tree and S a dominating set such that the subgraph T[S] has at most k connected components. Then, S is a  $\gamma_{1k}$ -set.

Let S be a  $\gamma$ -code of T. If S is also a  $\gamma_{1k}$ -set, then the inequality stated in the theorem holds.

Suppose on the contrary that S is not a  $\gamma_{1k}$ -set.

We construct a  $\gamma_{1k}$ -set  $S^*$  containing S and satisfying the inequality stated in the theorem. Let r be the number of connected components of the subgraph induced by S, denoted by T[S]. Then,  $\gamma(T) \ge r$  and, by **Remark 2**, r > k.

Consider a vertex  $x_0 \in V(T) \setminus S$  with at least k + 1 neighbors in S and let  $S_1 = S \cup \{x_0\}$ . By **Remark 1**, all the neighbors of  $x_0$  in S lie in different connected components of T[S], therefore  $S_1$  is a dominating set inducing a subgraph  $T[S_1]$  with at most r - k connected components. If  $S_1$  is a  $\gamma_{1k}$ -set, let  $S^* = S_1$ .

Otherwise, consider a vertex  $x_1 \in V(T) \setminus S_1$  having at least k+1 neighbors in  $S_1$  and let  $S_2 = S_1 \cup \{x_1\}$ . By **Remark 1**, all the neighbors of  $x_1$  in  $S_1$ lie in different connected components of  $T[S_1]$ , therefore  $S_2$  is a dominating set inducing a subgraph  $T[S_2]$  with at most (r-k) - k = r - 2k connected components. If  $S_2$  is a  $\gamma_{1k}$ -set, let  $S^* = S_2$ .

Otherwise, we repeat this procedure until we obtain a  $\gamma_{1k}$ -set. Observe that this procedure will end since the number of connected components induced by the sets  $S_1, S_2, \ldots$  is strictly decreasing. Moreover, since  $T[S_i]$  has at most r-ik connected components, by **Remark 2**,  $S_i$  is a  $\gamma_{1k}$ -set whenever  $r-ik \leq k$ . Therefore, the number of steps needed in order to obtain that  $S_i$  is a  $\gamma_{1k}$ -set, is at most  $i = \lceil \frac{r-k}{k} \rceil$ .

Let  $S^* = S_j$  be a  $\gamma_{1k}$ -set obtained in this way, where  $j \leq \lfloor \frac{r-k}{k} \rfloor$ . Then,

$$\gamma_{1k}(T) \le |S^*| = |S| + j \le \gamma(T) + \left\lceil \frac{r-k}{k} \right\rceil \le \gamma(T) + \left\lceil \frac{\gamma(T)-k}{k} \right\rceil = \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$$

### **Proof of Proposition 3.4**

(i) Consider the caterpillar obtained by attaching a leaf to each of the first a-1 vertices of a path of order a and  $n-2a+1 \ge 1$  leaves to the last vertex of the path (see Figure 3). Then the vertices of the path is both a  $\gamma$ -code and a  $\gamma_{11}$ -code, and  $\gamma(T) = \gamma_{11}(T) = a$ .



Fig. 3. T has order  $n, \gamma(T) = \gamma_{11}(T) = a$ .

(ii) Note that  $\gamma(T) = 1$  implies  $\gamma_{11}(T) = 1$ , so if both parameter do not agree them  $\gamma(T) \ge 2$ .

Using that  $1 \leq b - a \leq a - 1$ , let P be the path of order b with consecutive vertices labeled with

$$u_1, v_1, \ldots, u_{b-a}, v_{b-a}, u_{b-a+1}, u_{b-a+2}, \ldots, u_a$$

and consider the caterpillar obtained by attaching two leaves to each of the vertices  $u_1, u_2, \ldots, u_{b-a}$ , one leaf to each of the vertices  $u_{b-a+2}, u_{b-a+3}, \ldots, u_a$  and n - 2b + 1 leaves to vertex  $u_{b-a+1}$  (see Figure 4). Since  $n - 2b + 1 \ge 2$  we obtain that  $\{u_1, u_2, \ldots, u_a\}$  is a  $\gamma$ -code with a vertices and  $\{u_1, u_2, \ldots, u_a\} \cup \{v_1, \ldots, v_{b-a}\}$  is a  $\gamma_{11}$ -code with b vertices.



Fig. 4. T has order n > 2b,  $a = \gamma(T) < \gamma_{11}(T) = b \le 2a - 1$ .

#### Proof of Theorem 3.6

**Remark 1** If u is a vertex of a graph G with at least d leaves in its neighborhood, then u is in every  $\gamma_{1,h}$ -code, for any  $h \in \{1, \ldots, d-1\}$ .

**Remark 2** If G is a graph with maximum degree  $\Delta$  and u is a vertex with at least  $\Delta - 1$  leaves in its neighborhood, then u is in every  $\gamma_{1,h}$ -code, for any  $h \in \{1, \ldots, \Delta - 2\}$ .

**Remark 3** Let T be a tree with maximum degree  $\Delta$  and s support vertices. Then  $\gamma_{1,\Delta}(T) = \gamma(T) \ge s$ .

Let  $\Delta \geq 3$ . For all  $i \in \{1, \ldots, \Delta - 1\}$ , we write  $\circledast_i$  for the symbol '=' or '>' in  $\gamma_{1,i}(T) \geq \gamma_{1,i+1}(T)$ .

(i) <u>Case 1</u>. If ⊛<sub>i</sub> is '=' for all i ∈ {1,..., Δ-2}. We distinguish two subcases.
(a) Case 1.1. If ⊛<sub>Δ-1</sub> is '='. The complete bipartite graph T = K<sub>1,Δ</sub> is a tree with maximum degree Δ satisfying:

$$\gamma_{11}(T) \ = \ \gamma_{12}(T) \ = \ \ldots \ = \ \gamma_{1,\Delta-1}(T) \ = \ \gamma_{1,\Delta}(T) \ = \ \gamma(T) = 1.$$

(b) Case 1.2. If  $\circledast_{\Delta-1}$  is '>'. We consider the following tree T with maximum degree  $\Delta$ : let u be a vertex of degree  $\Delta$  adjacent to vertices  $x_1, x_2, \ldots, x_{\Delta}$ , and attach  $\Delta - 1$  leaves to each  $x_i, 1 \leq i \leq \Delta$ . Then, we easily derive from **Remark 2** that  $\{x_1, \ldots, x_{\Delta}\}$  is a  $\gamma$ -code and  $\{u, x_1, \ldots, x_{\Delta}\}$  is a  $\gamma_{1,i}$ -code for any i such that  $i < \Delta$ . Therefore, T satisfies

$$\Delta + 1 = \gamma_{11}(T) = \gamma_{12}(T) = \ldots = \gamma_{1,\Delta-1}(T) > \gamma_{1,\Delta}(T) = \gamma(T) = \Delta.$$



Fig. 5. Trees illustrating Case 1. of Theorem 3.6.

(ii) <u>Case 2</u>. If  $\circledast_i$  is '>' for some  $i \in \{1, ..., \Delta - 2\}$ . If  $\Delta = 3$ , consider the graphs showed in Figure 6. The tree *T* on the left side satisfies  $6 = \gamma_{11}(T) > \gamma_{12}(T) = \gamma_{1,3}(T) = \gamma(T) = 4$ , since support vertices form a  $\gamma$ -code (and also a  $\gamma_{12}$ -code and a  $\gamma_{13}$ -code), and all vertices but the leaves form a  $\gamma_{11}$ -code. The tree T on the right side satisfies  $\gamma_{11}(T) = 18 > \gamma_{12}(T) = 12 > \gamma_{1,3}(T) = \gamma(T) = 11$ , since support vertices together with vertex u form a  $\gamma$ -code (and also a  $\gamma_{13}$ code), support vertices together with vertices u and v form a  $\gamma_{12}$ -code, and all vertices but the leaves form a  $\gamma_{11}$ -code.



Fig. 6. Trees illustrating Case 2 of Theorem 3.6 when  $\Delta = 3$ .

Now suppose  $\Delta \geq 4$ . Let

$$\{i_1, i_2, \dots, i_k\} = \{j : \gamma_{1,j}(T) > \gamma_{1,j+1}(T), \ j \le \Delta - 2\},\$$

where  $k \ge 1$  by hypotheses, and assume  $1 \le i_1 < \ldots < i_k \le \Delta - 2$ . We distinguish two subcases.



Fig. 7. Trees illustrating Case 2.1 (above) and Case 2.2 (bottom).

(a) Case 2.1. If  $\circledast_{\Delta-1}$  is '='.

Consider a path P of length k+2 with consecutive vertices labeled  $u_{i_1}, \ldots, u_{i_k}, v, w$ . Attach  $i_j$  new vertices to  $u_{i_j}$  and  $\Delta - 1$  leaves to each one of those new vertices. Attach also  $\Delta - 2$  leaves to vertex v.

For each vertex x of the path P, let N'(x) be the set of vertices of N(x) not belonging to the path P. Let  $A = \bigcup_{j=1}^{k} N'(u_{ij})$ .

It is not hard to verify that  $A \cup \{v\}$  is a  $\gamma$ -code of T, and also a  $\gamma_{1,\Delta-1}$ -code. Moreover,  $A \cup \{v\} \cup \{u_{i_j} : h \leq j \leq k\}$  is a  $\gamma_{1i}$ -code if  $i_{h-1} < i \leq i_h$ .

(b) Case 2.2. If  $\circledast_{\Delta-1}$  is '>'.

Consider the tree constructed in case 2.1 and attach  $\Delta - 1$  new vertices to w and  $\Delta - 1$  leaves to each one of those new vertices. With the same notations as in Case 2.1, it is easy to verify that  $A \cup \{v\} \cup N'(w)$  is a  $\gamma$ -code of T and  $A \cup \{v, w\} \cup N'(w)$  is a  $\gamma_{1,\Delta-1}$ code. Moreover,  $A \cup \{v, w\} \cup N'(w) \cup \{u_{i_j} : h \leq j \leq k\}$  is a  $\gamma_{1i}$ -code if  $i_{h-1} < i \leq i_h$ .

**Lemma 3.8** Let T be a tree of order  $n \ge k+1$   $(k \ge 2)$  with all interior vertices of degree at least k+1, except at most one vertex of degree k, then  $\gamma_{1,k-1}(T) = n - \ell(T)$ .

**Proof.** Notice that  $V(T) \setminus L(T)$  is a  $\gamma_{1,k-1}$ -set for all  $k \geq 2$ . Suppose that S is a  $\gamma_{1,k-1}$ -code such that  $S \neq V(T) \setminus L(T)$ . If  $V(T) \setminus L(T) \subset S$ , then  $|S| > |V(T) \setminus L(T)|$  which is a contradiction. Therefore, there exists a vertex  $u_0 \in V(T) \setminus L(T)$  such that  $u_0 \notin S$ . Consider the connected component  $T_0$  of  $u_0$  in  $T \setminus S$ . Notice that  $T_0$  is a tree of order  $n_0 \geq 1$ . If  $T_0$  has only the vertex  $u_0 \notin L(T)$ , then  $u_0$  is adjacent to at least k vertices of S, which is a contradiction. If  $T_0$  has at least two vertices,  $T_0$  has at least two leaves in  $T_0$ . Observe that a leaf w of  $T_0$  can not be a leaf of T, otherwise the only neighbor of w is not in S, contradicting the fact that S is a dominating set. Therefore,  $T_0$  has a leaf  $w_0$  that is a vertex of degree al least k + 1, implying that  $\geq k$  neighbors of  $w_0$  are in S, which is again a contradiction.

#### Proof of Proposition 3.7

The set of interior vertices of a tree is a  $\gamma_{1,i}$ -set for any  $i \ge 1$ . Therefore, by Lemma 3.8,  $n - \ell(T) = \gamma_{11}(T) = \gamma_{12}(T) = \ldots = \gamma_{1,k-1}(T)$ . On the other hand, for any  $h \ge 3$  consider the set S described as follows:

$$S = \bigcup_{0 \le i \le r-1} L_{2+3i}, \text{ if } h = 3r, r \ge 1;$$
  

$$S = \{z\} \cup \bigcup_{1 \le i \le r} L_{3i}, \text{ where } z \in L_2, \text{ if } h = 3r+1, r \ge 1;$$
  

$$S = \bigcup_{0 \le i \le r} L_{1+3i}, \text{ if } h = 3r+2, r \ge 1.$$

Notice that S contains exactly the vertices of one of each three consecutive levels, taking into account that S must contain the strong support vertices, i.e., the vertices of level h - 1, and in the case h = 3r + 1 we have to add a vertex z of level 2 to dominate the root (see in Figure 8 an illustration of case k = 2).



Fig. 8. If we add new groups of three levels in each case, being black vertices those of the middle level, the set of black vertices is a dominating code of T(2, h),  $h \ge 3$ .

By construction, it is obvious that S is a  $\gamma_{1,k}$ -set and a  $\gamma_{1,k+1}$ -set, since a vertex not in S has at most k neighbors in S. We claim that S is a dominating code and consequently a  $\gamma_{1,k}$ -code and a  $\gamma_{1,k+1}$ -code. Let S be a dominating code of  $T(k, h), k \ge 2, h \ge 3$ . We know that S contains all its strong support vertices,  $L_{h-1}$ , and these vertices dominate vertices of levels h, h-1 and h-2. So, we may assume that S does not contain any vertex of level h-2, otherwise we can change a vertex  $x \in S \cap L_{h-2}$  by its neighbor in level h-3 obtaining also a dominating code. Therefore, S is obtained by adding a dominating code of the tree T(k, h-3). Reasoning recursively, we deduce that S is a dominating code.