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Abstract

A k−quasiperfect dominating set (k ≥ 1) of a graph G is a vertex subset S such
that every vertex not in S is adjacent to at least one and at most k vertices in S.
The cardinality of a minimum k−quasiperfect dominating set of G is denoted by
γ

1k
(G). Those sets were first introduced by Chellali et al. (2013) as a generalization

of the perfect domination concept (which coincides with the case k = 1) and allow
us to construct a decreasing chain of quasiperfect dominating parameters

γ11(G) ≥ γ12(G) ≥ . . . ≥ γ
1,∆

(G) = γ(G),(1)

in order to indicate how far is G from being perfectly dominated. In this work, we
study general properties, tight bounds, existence and realization results involving
the parameters of the so-called QP-chain (1), for trees.
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1 Introduction

Recall that a tree is a connected acyclic graph. A leaf is a vertex of degree
1 and vertices of degree at least 2 are interior vertices. We denote by L(T )
the set of leaves of a tree T and by `(T ) the number of leaves of T . A support
vertex is a vertex having at least a leaf in its neighborhood and a strong
support vertex is a support vertex adjacent to at least two leaves.

Given a graph G, a subset S of its vertices is a dominating set of G if every
vertex v not in S is adjacent to at least one vertex in S. The domination
number γ(G) is the minimum cardinality of a dominating set of G, and a
dominating set of cardinality γ(G) is called a γ-code [9].

An extreme way of domination occurs when every vertex not in S is adja-
cent to exactly one vertex in S. In that case, S is called a perfect dominating
set [2] and γ11(G), the minimum cardinality of a perfect dominating set of G,
is the perfect domination number. A dominating set of cardinality γ11(G) is
called a γ11-code.

In a perfect dominating set what is gained from the point of view of ac-
curacy is lost in size, comparing it with a dominating set. Between both
notions there is a graduation of definitions: k-quasiperfect domination. A k-
quasiperfect dominating set for k ≥ 1 (γ

1k
-set for short) [7,11] is a dominating

set S where every vertex not in S is adjacent to at most k vertices of S. Again
the k-quasiperfect domination number γ

1k
(G) is the minimum cardinality of a

γ
1k

-set of G and a γ
1k

-code is a γ
1k

-set of cardinality γ
1k

(G).

Given a graph G of order n and maximum degree ∆, γ1∆-sets are precisely
dominating sets. Thus, one can construct the following chain of quasiperfect
domination parameters:

n ≥ γ11(G) ≥ γ12(G) ≥ . . . ≥ γ1∆(G) = γ(G),(2)

known as the quasiperfect chain of G, or simply the QP-chain of G.

2 Known general results

In this section, we review some results founded in the literature about quasiper-
fect parameters. Table 2 summarizes the values of parameters under consid-
eration for some simple families of graphs.

Theorem 2.1 [7] If G is a graph of order n verifying at least one of the
following conditions: (1) ∆(G) ≥ n − 3; (2) ∆(G) ≤ 2; (3) G is a cograph;
(4) G is a claw-free graph, then γ12(G) = γ(G).
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Proposition 2.2 [3] Let G = (V,E) a graph of order n.

(i) If γ(G) ≤ ∆(G), then γ1γ(G) = . . . = γ1∆(G) = γ(G);

(ii) γ
1δ

(G) < n;

(iii) γ11(G) = 1 if and only if ∆(G) = n− 1.

(iv) γ11(G) ≤ n− `(G) where `(G) is the number of vertices of degree one.

Theorem 2.3 [3] Let k, n be positive integers such that n ≥ 6 and 2 ≤ k ≤ n.
Then, there exists a graph G of order n such that ∆(G) = n−2 and γ11(G) = k.

Theorem 2.4 [3] Let (h, k, n) be a triple of integers such that 2 ≤ h ≤ 3,
2 ≤ k ≤ n and n ≥ 9. Then, there exists a graph G such that |V (G)| = n,
∆(G) = n− 3, γ(G) = h and γ11(G) = k.

Theorem 2.5 [3] Let G be a graph of order n and ∆(G) = 3, other than the
bull graph. Then, γ11(G) ≤ n− 3.

Proposition 2.6 [3] Let G be either a cubic graph other than K4, or a tree
with order n ≥ 7 and ∆(G) = 3. Then, γ11(G) ≤ n− 4.

The join G = G1∨G2 of graphs G1 and G2 is the graph such that V (G) =
V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

Theorem 2.7 [3] Let G = G1 ∨G2 be a join graph of order n. Then,

(i) γ11(G) = 1 if and only if G1 or G2 have a universal vertex.

(ii) γ11(G) = 2 if and only if both G1 and G2 have at least an isolated vertex.

(iii) γ11(G) = n in other case.



Corollary 2.8 [3] Let G = G1 ∨G2 be a connected cograph without universal
vertices. Then, γ11(G) = 2 if both G1 and G2 have at least an isolated vertex,
and γ11(G) = n in any other case.

Theorem 2.9 [3] Let h, k, n be integers such that 4 ≤ n, 2 ≤ h ≤ k ≤ n
satisfying either h+ k ≤ n or 3h+ k+ 1 ≤ 2n. Then, there exists a claw-free
graph G of order n such that γ(G) = h and γ11(G) = k.

The corona of a graph G, denoted by cor(G), is the graph obtained by
attaching a leaf to each vertex of G.

Theorem 2.10 [8,10] For any graph G the domination number satisfies γ(G) ≤
n/2. And if G is a graph of even order n, then γ(G) = n/2 if and only if G
is the cycle of order 4 or the corona of a connected graph.

Graphs with odd order n and maximum domination number γ(G) = bn/2c
are also completely characterized in [1], as a list of six graph classes.

Proposition 2.11 [5] Let T be a tree of order n ≥ 3. Then

(i) Every γ − code of T contains all its strong support vertices.

(ii) Every γ11 − code of T contains all its strong support vertices.

(iii) γ11(T ) ≤ n/2.

(iv) γ11(T ) = n/2 if and only if γ(T ) = n/2 if and only if T = cor(T ′) for
some tree T ′.

A tree for which removal of all its leaves results in a path is called a
caterpillar.

Proposition 2.12 [7] If T is a caterpillar, then γ(T ) = γ12(T ).

3 Our results on Trees

Theorem 3.1 [4] Let T be a tree. Then, γ
1k

(T ) ≤ γ(T ) + dγ(T )

k
e − 1, for

every integer k ∈ {1, . . . ,∆(T )}.
Corollary 3.2 For every tree T , γ11(T ) ≤ 2γ(T )− 1.

Remark 3.3 This bound is not true for general graphs and the difference
between both parameters can be as large as desired. For example, the graph
displayed in Figure 1 satisfies γ(G) = 2 and γ11(G) = |V (G)| > 2γ(G)− 1.

Next, we present a realization theorem for the short chain γ ≤ γ11(T ) ≤
2γ − 1. Note that, for every caterpillar T of order n ≥ 3, Proposition 2.12



Fig. 1. The pair of white vertices form a γ-code.

and Corollary 3.2 just allow two possible situations, namely, either γ(T ) =
γ11(T ) ≤ n/2 or γ(T ) < γ11(T ) < n/2. In the following result, we show
that both of them are feasible and that parameters γ and γ11 can take every
possible value in each case.

Proposition 3.4 [4] Let a, b, n be positive integers.

(i) If 2 ≤ 2a ≤ n, then there exists a caterpillar T of order n such that
γ(T ) = γ11(T ) = a.

(ii) If 2 ≤ a < b ≤ 2a − 1 and n > 2b, then there exists a caterpillar T of
order n such that γ(T ) = a and γ11(T ) = b.

Proposition 3.5 [4] A caterpillar T satisfies γ11(T ) = 2γ(T )− 1 if and only
if belongs to the family shown in Figure 2.

Fig. 2. Caterpillar with γ11(T ) = 2γ(T )− 1.

Let T a tree with maximum degree ∆ ≥ 3. Next theorem shows that for
each inequality of the QP-chain, both possibilities, the equality and the strict
inequality, are feasible.

Theorem 3.6 [4] There exists a tree with maximum degree ∆ ≥ 3, satisfying
each one of the 2∆−1 possible combinations of the inequalities of the QP- chain.

Finally, we present the general form of the QP-chain in the case of k-ary
trees, that has just two different terms.

Proposition 3.7 [4] Let T = T (k, h) the full k-ary tree of order n =
kh+1 − 1

k − 1
,

where all leaves are at distance h− 1 from the root, with k ≥ 2, h ≥ 3. Then

n− `(T ) = γ11(T ) = γ12(T ) = . . . = γ1,k−1(T ) > γ1,k(T ) = γ1,k+1(T ) = γ(T )
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Appendix

Proof of Theorem 3.1

Remark 1 Let T be a tree and S a dominating set. Then, since T has no cyles,
every vertex not in S has at most one neighbor at each connected component
of the subgraph T [S].

Remark 2 Let T be a tree and S a dominating set such that the subgraph
T [S] has at most k connected components. Then, S is a γ1k-set.

Let S be a γ-code of T . If S is also a γ1k-set, then the inequality stated in the
theorem holds.

Suppose on the contrary that S is not a γ1k-set.

We construct a γ1k-set S∗ containing S and satisfying the inequality stated
in the theorem. Let r be the number of connected components of the subgraph
induced by S, denoted by T [S]. Then, γ(T ) ≥ r and, by Remark 2, r > k.

Consider a vertex x0 ∈ V (T ) \ S with at least k + 1 neighbors in S and
let S1 = S ∪ {x0}. By Remark 1, all the neighbors of x0 in S lie in different
connected components of T [S], therefore S1 is a dominating set inducing a
subgraph T [S1] with at most r − k connected components. If S1 is a γ1k-set,
let S∗ = S1.

Otherwise, consider a vertex x1 ∈ V (T )\S1 having at least k+1 neighbors
in S1 and let S2 = S1 ∪ {x1}. By Remark 1, all the neighbors of x1 in S1

lie in different connected components of T [S1], therefore S2 is a dominating
set inducing a subgraph T [S2] with at most (r − k) − k = r − 2k connected
components. If S2 is a γ1k-set, let S∗ = S2.

Otherwise, we repeat this procedure until we obtain a γ1k-set. Observe that
this procedure will end since the number of connected components induced
by the sets S1, S2, . . . is strictly decreasing. Moreover, since T [Si] has at most
r− ik connected components, by Remark 2, Si is a γ1k-set whenever r− ik ≤
k. Therefore, the number of steps needed in order to obtain that Si is a γ1k-set,
is at most i = d r−k

k
e.

Let S∗ = Sj be a γ1k-set obtained in this way, where j ≤ d r−k
k
e. Then,

γ1k(T ) ≤ |S∗| = |S|+j ≤ γ(T )+
⌈r − k

k

⌉
≤ γ(T )+

⌈γ(T )− k
k

⌉
= γ(T )+

⌈γ(T )

k

⌉
−1.



Proof of Proposition 3.4

(i) Consider the caterpillar obtained by attaching a leaf to each of the first
a− 1 vertices of a path of order a and n− 2a + 1 ≥ 1 leaves to the last
vertex of the path (see Figure 3). Then the vertices of the path is both
a γ-code and a γ11-code, and γ(T ) = γ11(T ) = a.

u1 u2 uaua−1u3

n− 2a+ 1)

Fig. 3. T has order n, γ(T ) = γ11(T ) = a.

(ii) Note that γ(T ) = 1 implies γ11(T ) = 1, so if both parameter do not agree
them γ(T ) ≥ 2.

Using that 1 ≤ b − a ≤ a − 1, let P be the path of order b with
consecutive vertices labeled with

u1, v1, . . . , ub−a, vb−a, ub−a+1, ub−a+2, . . . , ua

and consider the caterpillar obtained by attaching two leaves to each of
the vertices u1, u2, . . . , ub−a, one leaf to each of the vertices ub−a+2, ub−a+3, . . . , ua
and n − 2b + 1 leaves to vertex ub−a+1 (see Figure 4). Since n − 2b +
1 ≥ 2 we obtain that {u1, u2, . . . , ua} is a γ-code with a vertices and
{u1, u2, . . . , ua} ∪ {v1, . . . , vb−a} is a γ11-code with b vertices.

u1 v1 u2 v2 ub−a vb−a ub−a+1 uaua−1ub−a+2

n− 2b+ 1)

Fig. 4. T has order n > 2b, a = γ(T ) < γ11(T ) = b ≤ 2a− 1.



Proof of Theorem 3.6

Remark 1 If u is a vertex of a graph G with at least d leaves in its neighbor-
hood, then u is in every γ1,h-code, for any h ∈ {1, . . . , d− 1}.
Remark 2 If G is a graph with maximum degree ∆ and u is a vertex with
at least ∆− 1 leaves in its neighborhood, then u is in every γ1,h-code, for any
h ∈ {1, . . . ,∆− 2}.
Remark 3 Let T be a tree with maximum degree ∆ and s support vertices.
Then γ1,∆(T ) = γ(T ) ≥ s.

Let ∆ ≥ 3. For all i ∈ {1, . . . ,∆ − 1}, we write ~i for the symbol ‘=’ or ‘>’
in γ1,i(T ) ≥ γ1,i+1(T ).

(i) Case 1. If ~i is ‘=’ for all i ∈ {1, . . . ,∆−2}. We distinguish two subcases.
(a) Case 1.1. If ~∆−1 is ‘=’. The complete bipartite graph T = K1,∆ is

a tree with maximum degree ∆ satisfying:

γ11(T ) = γ12(T ) = . . . = γ1,∆−1(T ) = γ1,∆(T ) = γ(T ) = 1.

(b) Case 1.2. If ~∆−1 is ‘>’. We consider the following tree T with
maximum degree ∆: let u be a vertex of degree ∆ adjacent to vertices
x1, x2, . . . , x∆, and attach ∆− 1 leaves to each xi, 1 ≤ i ≤ ∆. Then,
we easily derive from Remark 2 that {x1, . . . , x∆} is a γ-code and
{u, x1, . . . , x∆} is a γ1,i-code for any i such that i < ∆. Therefore, T
satisfies

∆+1 = γ11(T ) = γ12(T ) = . . . = γ1,∆−1(T ) > γ1,∆(T ) = γ(T ) = ∆.

u

x1 x2 x∆

u

x1 x2 x∆

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
∆ − 1 ∆ − 1 ∆ − 1

Fig. 5. Trees illustrating Case 1. of Theorem 3.6.

(ii) Case 2. If ~i is ‘>’ for some i ∈ {1, . . . ,∆− 2}.
If ∆ = 3, consider the graphs showed in Figure 6. The tree T on the

left side satisfies 6 = γ11(T ) > γ12(T ) = γ1,3(T ) = γ(T ) = 4, since
support vertices form a γ-code (and also a γ12-code and a γ13-code), and



all vertices but the leaves form a γ11-code. The tree T on the right side
satisfies γ11(T ) = 18 > γ12(T ) = 12 > γ1,3(T ) = γ(T ) = 11, since
support vertices together with vertex u form a γ-code (and also a γ13-
code), support vertices together with vertices u and v form a γ12-code,
and all vertices but the leaves form a γ11-code.

γ11 > γ12 = γ13 γ11 > γ12 > γ13

u v

Fig. 6. Trees illustrating Case 2 of Theorem 3.6 when ∆ = 3.

Now suppose ∆ ≥ 4. Let

{i1, i2, . . . , ik} = {j : γ1,j(T ) > γ1,j+1(T ) , j ≤ ∆− 2},

where k ≥ 1 by hypotheses, and assume 1 ≤ i1 < . . . < ik ≤ ∆ − 2. We
distinguish two subcases.

w

︸ ︷︷ ︸
∆ − 2

v

︸ ︷︷ ︸
∆ − 1

︸ ︷︷ ︸
∆ − 1

ik)

uik

︸ ︷︷ ︸
∆ − 1

︸ ︷︷ ︸
∆ − 1

i1)

ui1

︸ ︷︷ ︸
∆ − 1

︸ ︷︷ ︸
∆ − 1

i2)

ui2

︸ ︷︷ ︸
∆ − 1

︸ ︷︷ ︸
∆ − 1

w

∆ − 1)︸ ︷︷ ︸
∆ − 2

v

︸ ︷︷ ︸
∆ − 1

︸ ︷︷ ︸
∆ − 1

ik)

uik

︸ ︷︷ ︸
∆ − 1

︸ ︷︷ ︸
∆ − 1

i1)

ui1

︸ ︷︷ ︸
∆ − 1

︸ ︷︷ ︸
∆ − 1

i2)

ui2

Fig. 7. Trees illustrating Case 2.1 (above) and Case 2.2 (bottom).

(a) Case 2.1. If ~∆−1 is ‘=’.
Consider a path P of length k+2 with consecutive vertices labeled

ui1 , . . . , uik , v, w. Attach ij new vertices to uij and ∆ − 1 leaves to
each one of those new vertices. Attach also ∆− 2 leaves to vertex v.

For each vertex x of the path P , let N ′(x) be the set of vertices of
N(x) not belonging to the path P . Let A = ∪kj=1N

′(uij).
It is not hard to verify that A ∪ {v} is a γ-code of T , and also a

γ1,∆−1-code. Moreover, A ∪ {v} ∪ {uij : h ≤ j ≤ k} is a γ1i-code if
ih−1 < i ≤ ih.



(b) Case 2.2. If ~∆−1 is ‘>’.
Consider the tree constructed in case 2.1 and attach ∆ − 1 new

vertices to w and ∆− 1 leaves to each one of those new vertices.
With the same notations as in Case 2.1, it is easy to verify that

A∪ {v} ∪N ′(w) is a γ-code of T and A∪ {v, w} ∪N ′(w) is a γ1,∆−1-
code. Moreover, A ∪ {v, w} ∪N ′(w) ∪ {uij : h ≤ j ≤ k} is a γ1i-code
if ih−1 < i ≤ ih.

Lemma 3.8 Let T be a tree of order n ≥ k + 1 (k ≥ 2) with all interior
vertices of degree at least k + 1, except at most one vertex of degree k, then
γ1,k−1(T ) = n− `(T ).

Proof. Notice that V (T ) \ L(T ) is a γ1,k−1-set for all k ≥ 2. Suppose that
S is a γ1,k−1-code such that S 6= V (T ) \ L(T ). If V (T ) \ L(T ) ⊂ S, then
|S| > |V (T ) \ L(T )| which is a contradiction. Therefore, there exists a vertex
u0 ∈ V (T ) \ L(T ) such that u0 /∈ S. Consider the connected component T0

of u0 in T \ S. Notice that T0 is a tree of order n0 ≥ 1. If T0 has only the
vertex u0 /∈ L(T ), then u0 is adjacent to at least k vertices of S, which is a
contradiction. If T0 has at least two vertices, T0 has at least two leaves in T0.
Observe that a leaf w of T0 can not be a leaf of T , otherwise the only neighbor
of w is not in S, contradicting the fact that S is a dominating set. Therefore,
T0 has a leaf w0 that is a vertex of degree al least k + 1, implying that ≥ k
neighbors of w0 are in S, which is again a contradiction. 2

Proof of Proposition 3.7

The set of interior vertices of a tree is a γ1,i-set for any i ≥ 1. Therefore,
by Lemma 3.8, n − `(T ) = γ11(T ) = γ12(T ) = . . . = γ1,k−1(T ). On the other
hand, for any h ≥ 3 consider the set S described as follows:

S =
⋃

0≤i≤r−1

L2+3i, if h = 3r, r ≥ 1;

S = {z} ∪
⋃

1≤i≤r

L3i, where z ∈ L2, if h = 3r + 1, r ≥ 1;

S =
⋃

0≤i≤r

L1+3i, if h = 3r + 2, r ≥ 1.

Notice that S contains exactly the vertices of one of each three consecutive
levels, taking into account that S must contain the strong support vertices,
i.e., the vertices of level h − 1, and in the case h = 3r + 1 we have to add a
vertex z of level 2 to dominate the root (see in Figure 8 an illustration of case
k = 2).



h = 3r h = 3r + 1 h = 3r + 2

z

Fig. 8. If we add new groups of three levels in each case, being black vertices those
of the middle level, the set of black vertices is a dominating code of T (2, h), h ≥ 3.

By construction, it is obvious that S is a γ1,k-set and a γ1,k+1-set, since a
vertex not in S has at most k neighbors in S. We claim that S is a dominating
code and consequently a γ1,k-code and a γ1,k+1-code. Let S be a dominating
code of T (k, h), k ≥ 2, h ≥ 3. We know that S contains all its strong support
vertices, Lh−1, and these vertices dominate vertices of levels h, h−1 and h−2.
So, we may assume that S does not contain any vertex of level h−2, otherwise
we can change a vertex x ∈ S ∩ Lh−2 by its neighbor in level h− 3 obtaining
also a dominating code. Therefore, S is obtained by adding a dominating
code of the tree T (k, h − 3). Reasoning recursively, we deduce that S is a
dominating code.
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