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Abstract

In the main part of this paper we present polynomial expressions for the cardinalities
of some sets of interest of the nice distance-layer structure of the well-known De
Bruijn and Kautz digraphs. More precisely, given a vertex v, let S⋆

i (v) be the set of
vertices at distance i from v. We show that |S⋆

i (v)| = di−ai−1d
i−1 −· · ·−a1d−a0,

where d is the degree of the digraph and the coefficients ak ∈ {0, 1} are explicitly
calculated. Analogously, let w be a vertex adjacent from v such that S⋆

i (v)∩S
∗

j (w) 6=

∅ for some j. We prove that |S⋆
i (v) ∩ S∗

j (w)| = di − bi−1d
i−1 − . . .− b1d− b0, where

the coefficients bt ∈ {0, 1} are determined from the coefficients ak of the polynomial
expression of |S⋆

i (v)|. An application to deflection routing in De Bruijn and Kautz
networks serves as motivation for our study. It is worth-mentioning that our analysis
can be extended to other families of digraphs on alphabet or to general iterated line
digraphs.
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Deflection routing.
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1 Motivation

Deflection routing [1] is a routing scheme for bufferless networks based on the
idea that if a packet cannot be sent through a certain link due to congestion,
it is deflected through any other available link (instead of being buffered in
the node queue) and will be rerouted to destination from the node at which
the packet arrives. The efficiency of this protocol depends on the decision
criteria used to deflect packets when there exists a collision as well as on the
network topology. This kind of routing is nowadays interesting in the context
of optical networks [7,8] because it is not possible to buffer data without optical
to electrical conversion.

In [5] an analytical model for evaluating the performance of deflection
routing schemes under different deflection criteria based on Markov chains is
proposed. A Markov chain is defined with states 0, 1, . . . , D, corresponding to
the possible distances that a packet may be to its destination, where D stands
for the diameter of the network. The transition probabilities in the Markov
chain depend on the deflection criteria as well as on the network topology.

If the network topologies under consideration correspond to digraphs on
alphabet [4] or, more generally, to some families of iterated line digraphs [6],
a careful study of the vertex layer structure can be performed, allowing us to
formulate explicit expressions for the deflection probabilities. In this paper
we consider the case of De Bruijn and Kautz digraphs B(d,D) and K(d,D)
[2] as models for the network topology. In particular, we are interested in the
computation of the following two probabilities, which appear in the Markov
chain described in [5]:

• Input probability Pin(i): Given a uniform random vertex v, let Pin(i) be the
probability that another uniformly random choosed vertex w, w 6= v, is at
distance i from v.

• Deflection probability Pd(i, j): If a packet is deflected when it is visiting a
vertex at distance i to the destination vertex z, Pd(i, j) is the probability
that the new distance to z after the deflection has occurred is j.

In this paper we present a convenient characterization of the layer structure
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of De Bruijn and Kautz digraphs (Section 3) that is used to compute the given
probabilities (Section 4). Because of the lack of space we omit proofs which
are technical and tedious as well as algorithmic aspects that will be presented
in a full paper.

2 Layer structure of B(d,D) and K(d,D)

We will use the well-known sequence representation of the vertices of B(d,D)
andK(d,D). Each vertex ofB(d,D) corresponds to a sequence v = v1v2 · · · vD,
where each element vk belongs to an alphabet A of d symbols, and vertex v
is adjacent to the d vertices w = v2 · · · vDvD+1, vD+1 ∈ A. Analogously,
each vertex of K(d,D) corresponds to a sequence v = v1v2 · · · vD, where now
vk 6= vk+1, 1 ≤ k < D, and the base alphabet A has d + 1 symbols, d ≥ 2.
Vertex v is adjacent to the d vertices w = v2 · · · vDvD+1, vD+1 ∈ A, vD+1 6= vD.
The digraphs B(d,D) and K(d,D) are d-regular and have diameter D.

In order to describe the layer structure of the vertex set V of these di-
graphs in a way convenient to compute input and deflection probabilities
in the corresponding networks we introduce the following definitions. Given
v ∈ V , let Si(v) be the set of vertices for which there exists a walk from v
of length i, i ≥ 0, and let S⋆

i (v) be the set of vertices at distance i from v,
0 ≤ i ≤ D. Moreover, for 0 ≤ k ≤ i let Sk,i(v) = Sk(v) if Sk(v) ⊂ Si(v) and
Sk(v) 6⊂ Sj(v) ⊂ Si(v) for k < j < i, and let Sk,i(v) = ∅ otherwise. The next
result follows easily.

Proposition 2.1 Let v ∈ V . Then

(i) |Si(v)| = di for 0 ≤ i ≤ D.

(ii) If G = B(d,D) and i ≥ D, then Si(v) = V .

(iii) If G = K(d,D) and i ≥ D + 1, then Si(v) = V .

(iv) If k ≤ i < D, then either Sk(v) ⊂ Si(v
′) or Sk(v)∩Si(v

′) = ∅. Moreover,

Sk(v) ⊂ Si(v
′) if and only if vk+1 = v′i+1, vk+2 = v′i+2, . . . , vD+k−i = v′D.

The following proposition provides a description of the layers S⋆
i (v) and a

polynomial expression of its cardinality.

Proposition 2.2 If v ∈ V , then

(i) S⋆
i (v) = Si(v) \

(

i−1
⋃

k=0

Sk,i(v)
)

.

(ii) |S⋆
i (v)| = di − ai−1d

i−1 − · · · − a1d − a0, where ak ∈ {0, 1} and ak = 1 if



and only if Sk,i(v) 6= ∅.

In a similar way, we can give a precise polynomial description of |S⋆
i (v) ∩

S∗

j (w)| when w is a vertex adjacent from v.

Proposition 2.3 Let w be a vertex adjacent from v such that S⋆
i (v)∩S

∗

j (w) 6=
∅ for some j, i ≤ j < D. Then |S⋆

i (v)∩S∗

j (w)| = di− bi−1d
i−1− . . .− b1d− b0,

where the coefficients bt ∈ {0, 1} are determined from the coefficients ak of the

polynomial expression of |S⋆
i (v)|. More precisely,

(i) If ai−1 = 1, then bk = ak for all k.

(ii) If ai−1 = 0 and either Si−1,j(w) = ∅ or ∅ 6= Si−1,j(w) 6⊂ Si(v), then

bk = ak for all k.

(iii) If ai−1 = 0 and ∅ 6= Si−1,j(w) ⊂ Si(v), then bi−1 = 1, and for k < i − 1
we have: bk = 0 if ak = 0, bk = 0 if ak = 1 and Sk(v) ⊂ Si−1,j(w), or
bk = 1 if ak = 1 and Sk(v) 6⊂ Si−1,j(w).

3 Input and deflection probabilities

In this section we use Propositions 2.2 and 2.3 to compute the input and
deflection probabilities in B(d,D) and K(d,D) networks.

Let V = V1 ∪ · · · ∪ Vl be the partition induced by the equivalence relation
defined by v = v1v2 . . . vD ∼ v′ = v′1v

′

2 . . . v
′

D if and only if there exists a
permutation σ of the symbol alphabet A such that σ(vk) = v′k, 1 ≤ k ≤ D.
The classes Vr correspond to the different sequence structures of the vertices.

Proposition 3.1

(i) |Vr| is easily computed from d and the number s of distinct symbols in

the sequence representation of v ∈ Vr.

(ii) If ns is the number of vertex classes Vr such that |Vr| = ms, then ns does

not depend on d and it can be computed recursively using the equality
∑

s nsms = n.

(iii) If v, v′ ∈ Vr then |S⋆
i (v)| = |S⋆

i (v
′)|.

Given a vertex v selected at random (uniformly) from V , let Pin(i) be the
(input) probability that a uniformly random selected vertex from V \ {v} is
at distance i from v. We have Pin(i) =

∑

r Pin(i | v ∈ Vr)P(v ∈ Vr), where
Pin(i | v ∈ Vr) = |S⋆

i (v)|/n− 1 and P(v ∈ Vr) = |Vr|/n. In this way we obtain
the following result.



Theorem 3.2 The input probability Pin(i) can be expressed as

Pin(i) =
1

n(n− 1)

l
∑

r=1

|Vr|
(

di − a
(r,i)
i−1 d

i−1 − · · · − a
(r,i)
1 d− a

(r,0)
0

)

where a
(r,i)
k ∈ {0, 1}. If v ∈ Vr, then a

(r,i)
k = 1 if and only if Sk,i(v) 6= ∅.

Notice that Pin(i | v ∈ Vr) = Θ
(

1/dD−i
)

independently of the vertex class
Vr, and, hence, Pin(i) = Θ

(

1/dD−i
)

.

If a packet is deflected when it is visiting a vertex at distance i to the
destination vertex z, the probability Pd(i, j) that the new distance to z after a
deflection has occurred is j can also be calculated as Pd(i, j) =

∑

r Pd(i, j | v ∈
Vr)P(v ∈ Vr), where Pd(i, j | v ∈ Vr) = (1/(d − 1))|S⋆

i (v) ∩ S⋆
j (w)|/|S

⋆
i (v)|.

Finally we have:

Theorem 3.3 The deflection probabilities Pd(i, j), 1 ≤ i ≤ j < D, are given

by

Pd(i, j) =
1

n(d− 1)

l
∑

r=1

c(r,i,j) |Vr| p
(r,i,j)

where

p(r,i,j) =
di − b

(r,i,j)
i−1 di−1 − · · · − b

(r,i,j)
1 d− b

(r,i,j)
0

di − a
(r,i)
i−1 d

i−1 − · · · − a
(r,i)
1 d− a

(r,i)
0

and a
(r,i)
k , b

(r,i,j)
k , c(r,i,j) ∈ {0, 1}. Moreover, let v ∈ Vr and let w be the vertex

adjacent form v given by w = v2 · · · vDvi+(D−j). Then

(i) c(r,i,j) = 0 if and only if Si(v) ⊂ St,j(w) for some t, i ≤ t < j.

(ii) a
(r,i)
k = 1 if and only if Sk,i(v) 6= ∅ and b

(r,i,j)
k is determined from a

(r,i)
k .

4 Final remarks

The probabilities given in Theorems 3.2 and 3.3 can be used to calculate the
efficiency of deflection routing in De Bruijn and Kautz networks by means of
the Markov model mentioned in Section 2.1, which can be found in [5].

We emphasize that our analysis of the layer structure of the digraph and
the efficiency of deflection routing in the corresponding network topology can
be extended to other families of digraphs on alphabet or to general iterated
line digraphs such that, for instance, generalized De Bruijn cycles [3].
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