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Abstract

The goal of our work is to analyze random cubic planar graphs according to the
uniform distribution. More precisely, let G be the class of labelled cubic planar
graphs and let gn be the number of graphs with n vertices. Then each graph in G
with n vertices has the same probability 1/gn. This model was analyzed first by
Bodirsky et al. [1], and here we revisit and extend their work. The motivation for
this revision is twofold. First, some proofs in [1] where incomplete with respect to
the singularity analysis and we aim at providing full proofs. Secondly, we obtain
new results that considerably strengthen those in [1] and shed more light on the
structure of random cubic planar graphs. We present a selection of our results on
asymptotic enumeration and on limit laws for parameters of random graphs.
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1 Results on enumeration

Theorem 1.1 The number cn of connected cubic planar graphs with n vertices

is asymptotically

cn ∼ c · n−7/2γnn!,

with c ≈ 0.030487 and γ = ρ−1 ≈ 3.132591, where ρ ≈ 0.319523 is the smallest

positive root of the equation

729x12+17496x10+148716x8+513216x6−7293760x4+279936x2+46656 = 0,

Theorem 1.2 The number gn of cubic planar graphs with n vertices is asymp-

totically

gn ∼ g · n−7/2γnn!,

where γ is as in Theorem 1.1 and g ≈ 0.030505. As a consequence, the limiting

probability p that a random cubic planar graph is connected is equal to

p =
c

g
≈ 0.999397.

The previous theorems were stated in [1, Theorem 2] in a less precise way and
with incomplete proofs regarding the singularity analysis. Our first goal is to
provide a full proof of these estimates. We remark that the actual value of p
was not computed in [1]. As we will see later, p can be computed exactly using
the so-called dissymmetry theorem for tree-like structures. We also remark
that some of the constants given in [1] are slightly incorrect.

Theorem 1.3 The number hn of cubic planar multigraphs is asymptotically

hn ∼ h · n−7/2γn
mn!,

with h ≈ 0.115965 and γm = ρ−1
m ≈ 3.985537, where ρm ≈ 0.250907 is the

smallest positive root of

729x12−17496x10+148716x8−513216x6−7293760x4−279936x2+46656 = 0.

The same estimate holds for the number of connected cubic planar multigraphs,

but with h replaced by the constant h′ ≈ 0.104705. The limiting probability of

connectivity is

pm =
h′

h
≈ 0.902905.

This result is also claimed in [3] without a detailed proof, but the equation
defining ρm is incorrect, as well as the claimed value γm ≈ 3.973.



We remark that the proof needs again an application of the dissymmetry
theorem, since the presence of loops and multiple edges does not allow us, as
for simple graphs, to relate directly the number of graphs rooted at a vertex
with those rooted at an edge.

2 Results on limit laws

Our main results in this section deal with the number of copies of a fixed
subgraph. We start with the number of triangles.

Theorem 2.1 Let Xn be the number of triangles in a random cubic planar

graph. Then Xn is asymptotically normal with moments

EXn ∼ µn, VarXn ∼ λn,

where

µ ≈ 0.121974, λ ≈ 0.064985.

It was proved in [1] that Xn is linear with high probability. Our result is a
considerable sharpening of this fact. We wish to remark that this is the first
time one is able to determine precisely the number of copies of a fixed graph
H containing a cycle in classes of random planar graphs. The proof, based
on the so-called quasi-powers theorem, is technically involved and we are not
able to extend it, for instance, to the number of quadrilaterals.

Using the combinatorial decompositions introduced for counting triangles
we can enumerate triangle-free graphs.

Theorem 2.2 The number tn of triangle-free cubic planar graphs with n ver-

tices is asymptotically

tn ∼ t · n−7/2γn
t n!,

where γt ≈ 2.646686 and t > 0.

Our next results concern the number of copies of graphs which are close to
being cubic. We define a cherry as a planar graph in which all vertices have
degree 3 except for one distinguished vertex of degree 1. The smallest cherry
has 6 vertices and is obtained by subdividing an edge of K4 and adding one
vertex of degree one.

Theorem 2.3 Let XH,n be the number of copies of a fixed cherry H in a ran-

dom cubic planar graph. Then XH,n is asymptotically normal with moments

EXH,n ∼ µn, VarXH,n ∼ ηn,



where µ and η depend on the constant γ in Theorem 1.1 and H.

The previous result improves on [1], where it is shown that the number of
copies of a fixed cherry is linear w.h.p.

We comment briefly on the notable differences of this model with the
classical model of random cubic (not necessarily planar) graphs [7]. A random
cubic graph is w.h.p. 3-connected. Also, the number of triangles follows
a Poisson law with expectation 4/3. Finally a random cubic planar graph
is 3-colorable, whereas a random cubic graph has a (small) probability of
containing K4 as a component, hence of being 4-chromatic.

3 Discussion of the proofs

All graphs are labelled and the corresponding generating functions are expo-
nential, expect for the family of rooted triangulations.

The starting point is, as in [1], the enumeration of cubic 3-connected pla-
nar graphs, which by duality are in bijection with planar triangulations. Tutte
showed in one of his seminal papers on the enumeration of maps [6] the (or-
dinary) generating function of rooted 3-connected triangulations is given by

T (z) = U(z) (1− 2U(z)) , where z = U(1− U)3.

The unique singularity of T is τ = 27/256, and we have U(τ) = 1/4, T (τ) =
1/8. If now M(x, y) is the GF for labelled 3-connected cubic planar graphs
rooted at a directed edge, where x marks vertices and y marks edges, by
duality we have

M(x, y) =
1

2

(

T (x2y3)− x2y3
)

.(1)

We define networks as in [1], but deviate slightly from the notation there.
A network is a connected cubic multigraph G with an ordered pair of adjacent
vertices (s, t), such that the graph obtained by removing the edge st is simple.
We show that the generating function D(x) satisfies

(1 +D)
√

(2 + x2)2 − 4x2D − 2− T (x2(1 +D)3) = 0.(2)

Finally, we let C(x) be the generating function of connected cubic planar
graphs. By double counting the edges, one shows that

3xC ′(x) =
L(x)

x2
+D(x)− L(x)− x2D(x)− L(x)2,(3)



where L(x) is the generating function of loop networks, given by

L(x) =
1

2

(

2 + x2 −
√

(2 + x2)2 − 4x2D(x)
)

.

When solving (2) there are two possible sources of singularities for D:
either a singularity coming from T or a branch point. We show that there is
no branch point (this is a key point not addressed in [1]), hence the singularity
ρ comes from T . By eliminating from the previous equations, we show that ρ
is as claimed in Theorem 1.1.

Next we compute the singular expansion of D(x) at ρ, which is of the form

D(x) = D0 +D2X
2 +D3X

3 +O(X4), X =
√

1− x/ρ.

The coefficients Di are computed from (2) and the known expansion

T (z) =
1

8
− 3

16
Z2 +

√
6

24
Z3 +O(Z4), Z =

√

1− z/τ .

Finally, plugging the singular expansion ofD into Equation (3) and integrating
we obtain an expansion for C(x). By singularity analysis (see [4]), the estimate
in Theorem 1.1 follows.

In order to prove Theorem 1.2, we proceed as follows. The limiting prob-
ability of a random graph being connected is (see [5]) p = e−C(ρ). Hence,
with the notations of theorems 1.1 and 1.2, we have cn ∼ p · gn. In order to
compute C(ρ) we need an explicit expression for C(x). The natural approach
is to integrate (3), but this needs integrating D(x), and we are not able to
do it algebraically. Instead we compute C(x) directly by using the dissymme-
try theorem for tree-decomposable structures, as in [2]. In other words, we
integrate combinatorially, instead of algebraically. We obtain an explicit (too
long to reproduce here) expression for C(x) in terms of D(x), from which we
can compute C(ρ).

The proof of the Gaussian limit law is based on the quasi-powers theorem
[4]. In the case of Theorem 2.1, we add a variable u for marking triangles and
we show that the associated bivariate generating function D(x, u) of networks
has a unique dominant singularity ρ(u) and locally an expansion of the form

D(x, u) = D0(u) +D2(u)X
2 +D3(u)X

3 +O(X4), X =
√

1− x/ρ(u).

The probability generating function pn(u) of the random variable counting



triangles is

pn(u) =
[xn]D(x, u)

[xn]D(x, 1)
.

By singularity analysis we have an estimate near u = 1 (uniform on u) of the
form

pn(u) = A(u)B(u)n
(

1 +O
(

n−1
))

.

Thus pn(u) is ‘close’ to being an exact power and we deduce a central limit
theorem for the number of triangles. From the values pn(1) and p′n(1) one
gets an estimate for the first and second moments. The main difficulty here
is to keep track of the triangles in the combinatorial decompositions and to
locate the singularities. In fact, the equations definingD(x, u) are considerably
involved. Once this is done, it translates easily into connected and arbitrary
cubic planar graphs.

Theorem 2.2 is obtained setting u = 0 in D(x, u). Since 0 is away from
1, care must be taken to guarantee that, once more, there is no branch point
and the singularity comes from that of triangulations.
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