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Abstract

We introduce a variant of the well-studied sum choice number of graphs, which we
call the interactive sum choice number. In this variant, we request colours to be
added to the vertices’ colour-lists one at a time, and so we are able to make use
of information about the colours assigned so far to determine our future choices.
The interactive sum choice number cannot exceed the sum choice number and we
conjecture that, except in the case of complete graphs, the interactive sum choice
number is always strictly smaller than the sum choice number. In this paper we
provide evidence in support of this conjecture, demonstrating that it holds for a
number of graph classes, and indeed that in many cases the difference between the
two quantities grows as a linear function of the number of vertices.
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1 Introduction

The choice number of a graph G is the minimum length of colour-list that must
be assigned to each vertex of GG so that, regardless of the choice of colours in
these lists, there is certain to be a proper colouring of GG in which every vertex
is coloured with a colour from its list. A small subgraph of G which is, in
some sense, “hard” to colour, can therefore force the choice number for G
to be large, even if most of the graph is “easy” to colour. The sum choice
number of G (written xsc(G)), introduced by Isaak [9], captures the “average
difficulty” of colouring a graph: each vertex can now be assigned a different
length of colour-list, and the aim is to minimise the sum of the list lengths
(while still guaranteeing that there will be a proper list colouring for any choice
of lists). A long odd cycle is an example of a graph where most of the graph
is “easier” to colour than the choice number indicates.

For any graph G = (V, ), we have xsc(G) < |V|+ |E|: we can order the
vertices arbitrarily and assign to each vertex d~(v) + 1 colors, where d~(v)
is the number of neighbors of v that are before it in the order, and colour
greedily in this order. Graphs for which this so-called greedy bound is in fact
equal to the sum choice number are said to be sc-greedy, and one of the main
topics for research into the sum choice number has been the identification of
families of graphs which are (or are not) sc-greedy; a lot of work has been
done on the sum choice number of graphs (see, for example [2,6,7,8,10,11]),
but relatively little is known.

In this paper we introduce a variation of the sum choice number, called
the interactive sum choice number of G (written x1sc(G)), in which we do not
have to determine in advance all of the lengths of the colour lists: at each step
we ask for a new colour to be added to the colour list for some vertex of our
choosing and, depending on what colours have been added to lists so far, we
can adapt our strategy. It is clear that xisc(G) < xsc(G) for any graph G,
as we can simply ask for the appropriate number of colours to be added to
the list for each vertex without paying any attention to the colours that have
been added so far. The natural question is then whether we are in fact able
to improve on the sum choice number of G by exploiting partial information
about the colour lists.

If G = (V,F) is a complete graph, the answer to this question is no. To
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see this, suppose that for every vertex v € V, the first time we ask to add a
vertex to the colour list for v it will be given colour 1, the second time it will
be given colour 2, and so on. Then, whatever order we request to add colours,
we know that there can then be at most one vertex for which we never request
a second colour (otherwise two adjacent vertices would have to be assigned
colour 1), at most one vertex for which we request exactly two colours, and
more generally for each 1 < i < n = |V| there can be at most 1 vertex for
which we request exactly ¢ colours in total. Thus we see that

xise(G) =Y i = [V +|E] > xsc(G).

i=1

However, we believe that this may be the only case in which there is
equality:

Conjecture 1.1 If G is not a complete graph, then xsc(G) < xso(G).

The main purpose of this paper is to give evidence for Conjecture 1.1. We
confirm it for sc-greedy graphs, and prove more strongly that the gap between
x1sc(G) and xsc(G) is an increasing function of the number of vertices for
various graph classes including trees, unbalanced complete bipartite graphs
and grids (the latter two being classes which are known not to be sc-greedy). A
particular challenge in proving special cases of our conjecture is that, for many
graphs G, xsc(G) is only lower and upper bounded, not fully determined.

Two other variants of sum-choosability have also been introduced recently.
In the sum-paintability variant [4,12], the painter decides a budget for each
vertex in advance (as in sum list colouring), then in each round the lister re-
veals a subset of vertices which have colour ¢ in the list and the painter must
decide immediately which of these vertices to paint with colour ¢. Thus, there
is less information available than in the standard setting of sum-choosability
since painter must fix the colour of some vertices before knowing the entire con-
tents of the colour lists. The relationship between the interactive sum choice
number and the second of these variants, the slow-colouring game [13,14] is
less clear. In this variant, at each round, lister reveals a nonempty subset M
of the remaining vertices (scoring |M| points), from which painter chooses an
independent set to delete; painter seeks to maximise the total score when all
vertices have been deleted, while lister seeks to minimise this quantity. Com-
pared with our setting, lister has the advantage of discovering at the same
time all vertices which are permitted to use colour ¢, but on the other hand
he must decide immediately which of these to colour with c.



2 Graphs that are sc-greedy

In this section we consider the interactive sum choice number for graphs that
are known to be sc-greedy. We begin with the result that Conjecture 1.1 holds
for all sc-greedy graphs.

Theorem 2.1 Let G be a connected graph on n > 3 wvertices, which is not
isomorphic to the complete graph K,. If G is sc-greedy, then xiso(G) <
Xso(G); in particular, if w(G) is the cardinality of the largest clique in G,
then x1sc(G) < xsc(G) — %(G)

The key observation we use in this proof is that, if P3 denotes the path on
3 vertices, we have xisc(Ps) = 4 < xsc(Ps). Any graph that is not complete
must contain an induced copy of P3; by the assumption that the graph is
sc-greedy we can first colour the induced P; and then extend this colouring
greedily to a colouring of the whole graph, still beating the greedy bound for
G. Repeating this process gives the result.

As an immediate corollary of this result, we obtain an upper bound on the
interactive sum choice number of trees. As trees are known to be sc-greedy
[10], we have that xsc(7) = 2n — 1 for any tree 7" on n vertices, so the
difference between the two quantities grows linearly in the number of vertices.

Corollary 2.2 Let T be a tree on n vertices. Then xsc(T) < [3].

We observe that the bound in Theorem 2.2 is tight for paths; however, for
the case of stars there is in fact an even larger difference between the two
quantities.

Lemma 2.3 x5¢(K1,) =p+q+ 1, where ¢ = max{q € N\% < p}.

We can also prove that there is a linear gap between the sum-choice and
interactive sum-choice number for cycles, which were shown to be sc-greedy
in [2].

Theorem 2.4 Let C,, be the cycle on n > 3 wertices. Then xsc(Cr) =

L3(n2—|—1)J '

Surprisingly, removing a single edge can make a relatively big difference.

Theorem 2.5 For every p > 10, we have xsc(K, —€) < xsc(K,) — ’%2.



3 Graphs that are not sc-greedy

Since we know that Conjecture 1.1 holds for all sc-greedy graphs, the next
challenge is to try to extend our results to deal with graphs that are not sc-
greedy. The most natural family of non-sc-greedy graphs to consider first is
perhaps that of complete bipartite graphs: Kj 3 is the smallest graph which
is not sc-greedy. For the case of complete bipartite graphs, where one side of
the bipartition is much larger than the other, we can show that our conjecture
holds.

Theorem 3.1 If p < q then xsc(Kpq) < xsc(G).

We prove this result in two phases, showing first that for any p, g > 2 we have
xsc(Kpq) > 2(p+q), and demonstrating on the other hand that xisc(K,,4) <
p + q + p*/2q. We therefore have that yisc(K,,) < xsc(K,,) so long as ¢ is
sufficiently large compared with p that p?y/2q < p+¢q. In fact, the methods we
use to prove this result can be generalised to deal with a slightly more general
family of graphs: any graph that contains a very (very) large subgraph with

small maximum degree satisfies Conjecture 1.1.
Theorem 3.2 Let G = (AU B, E) be a graph. If (max(A(G[A]), A(G]B]) +
1) - [A[*\/2|B] < |A| + |B|, then x15¢(G) < xsc(G).

Another family of bipartite graphs that are not, in general, sc-greedy is
that of grid graphs. In this case, we can show that the interactive sum choice

number is strictly smaller than the sum choice number of the k£ x ¢ grid Gy,
for any positive integers k£ and /¢; in fact we prove the following result.

Theorem 3.3 Let Gy denote the k x € grid, where k < £, and suppose that
¢ > 3. Then

1
Xs5c(Gre) — X1sc(Grye) > Ekf.

To prove this theorem, we first bound from below the sum-choice number of
G, using the formula for xsc(Gsy) derived by Heinold [8]; we then prove an
upper bound on xisc(Gy,e) by decomposing the grid into a number of paths.

4 Conclusions and open problems

We have introduced the interactive sum choice number of graphs, a variation
of the sum choice number in which we are able to exploit partial information



about the contents of colour lists in order to inform our strategy. We demon-
strated that in many cases this additional information allows us to guarantee a
proper list colouring when the sum of list lengths over all the vertices is strictly
smaller than the sum choice number of the graph, and for several families of
graphs we were in fact able to prove the existence of a large gap between
the sum choice number and the interactive sum choice number. Proofs and
additional statements can be found in [3].

As is often the case when a new problem is introduced, this paper raises
more questions than it solves. The key open question arising from this work
is to prove Conjecture 1.1, namely that if G is not a complete graph then
x1sc(G) < xsc(G); a first step would be to attempt to prove the conjecture for
further graph classes, for example k-degenerate graphs, chordal graphs, planar
graphs, cographs or graphs of bounded treewidth. Since graphs with high
degeneracy are known to have high choice number [1] with a proof that only
really uses arguments around one arbitrary vertex, it might be worth trying
to prove similarly that they have (very) high sum choice number. In turn,
that would be a step towards Conjecture 1.1 for graphs with high degeneracy.

It would also be interesting to investigate further just how much these two
quantities can differ; in particular, the upper bounds on the interactive sum
choice number that we have obtained for unbalanced bipartite graphs and
grids are unlikely to be tight, so it seems natural to seek better bounds for
these graph classes. A natural next step is to attempt to find further classes
of graphs for which the difference between the sum choice number and the
interactive sum choice number is a growing function of the number of vertices.
Our proof that Conjecture 1.1 holds for sc-greedy graphs actually seems to
indicate that sc-greedy graphs may well form such a class. On the other hand,
what can we say about the structure of graphs for which the difference between
the sum choice number and interactive sum choice number is bounded by some
constant independent of the number of vertices?

In addressing any of these questions, it would be extremely helpful to
understand how to use cut-edges, cut-vertices, modules, joins, and similar
decompositions of graphs.
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