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Abstract

In this paper we study the existence of rainbow perfect matching and Hamiltonian cycles un-
der minimum degree conditions on an edge-colored graph where every color appears a bounded
number of times. We derive asymptotically tight bounds on the minimum degree for the exis-
tence of such rainbow spanning structures.

1 Introduction

An edge-coloring of G is r-bounded if every color appears in at most r edges of G. A subgraph H
of an edge-colored graph G is rainbow if all the edges of H have a distinct color.

Erdős and Spencer in [6] initiated the study of rainbow spanning structures motivated by a
problem of Ryser on the existence of Latin transversals in Latin squares [11]. They showed that
every k-bounded edge-coloring of the complete bipartite graph Kn,n admits a rainbow perfect
matching, provided that k ≤ (n− 1)/(4e).

Albert, Frieze and Reed in [1] studied the existence of rainbow Hamiltonian cycles in k-bounded
edge-colored complete graphs Kn, provided that k ≤ (n−1)/64. In a more general setting, Böttcher,
Kohayakawa and Proccaci [3] proved that for every graph H on n vertices and maximum degree
at most ∆, there exists a rainbow copy of H in any k-bounded coloring of Kn, provided that
k ≤ n/(51∆2). Their approach used the framework developed by Lu and Székely [10] on negatively
dependency graphs constructed from matchings. While the constant 51 is clearly not optimal, the
dependence on ∆ of the result in [3] is best possible. In fact, as a by-product of the use of the
Lovász Local Lemma, all the upper bounds on k are not tight.

Other related results include the existence of almost spanning rainbow trees in Kn [7], the
existence of spanning rainbow multipartite graphs with bounded degrees in multipartite complete
graphs Kn,n...,n [8] as well as the existence of rainbow subhypergraphs in complete hypergraphs [5,
8]. All these results hold provided that the edge-coloring of the host graph is k-bounded for an
appropriate value of k.
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A natural question is whether one can still find a rainbow copy of a spanning subgraph H in a
host graph G that is sparser than the corresponding complete graph structure (complete graphs,
complete multipartite graphs, complete hypergraphs . . . ). Obviously, a necessary condition is that
G must contain at least one copy of H. Among other conditions, the existence of a spanning
subgraph can be guaranteed by requiring G to have a large minimum degree.

Sudakov and Volec gave a first step on this direction by proving the following (see the concluding
remarks in [13], or Theorem 1.7 in [8] for a formal statement).

Theorem 1 ([13]). There exist positive constants β and c such that the following holds. Let H
be a graph on n vertices of maximum degree ∆ and G a graph on n vertices and minimum degree(
1− c

∆

)
n. Then any k-bounded edge-coloring of G has a rainbow copy of H, provided that k ≤ n

β∆2 .

The theorem can be proved by adding a collection of bad events of size 1 corresponding to the
set of non-edges of G. Again, as a by-product of the local lemma, the minimum degree condition
in Theorem 1 for the existence of a rainbow copy of H is not best possible. We defer the discussion
of which is the tight minimum degree condition to the end of the introduction.

In this paper we study the existence of rainbow copies of H in G with asymptotically tight
conditions on the minimum degree of G, in two particular cases: (1) H is a perfect matching and
G is bipartite and (2) H is a Hamiltonian cycle. In both cases the minimum degree threshold is
n/2 and it follows from classical results.

Our first result states that, provided there are not many edges with the same color, at the
moment the minimum degree ensures the existence of a perfect matching in a bipartite graph, it
also ensures the existence of a rainbow one.

Theorem 2. For every ε > 0, there exist c > 0 and n0 such that for every n ≥ n0 the following
holds: If G = (A,B) is a bipartite graph with |A| = |B| = n and minimum degree at least (1 + ε)n2 ,
then every cn-bounded edge-coloring of G contains a rainbow perfect matching.

Theorem 2 has a direct consequence on Latin squares. A Latin square L of size n is an n × n
array with positive integer entries such that each number appears at most once in each row or
column. A partial Latin square is a latin square where some positions are blank. A transversal of
L is a set of n cells in the array, no two in the same row or column. A transversal is Latin if the
integers contained in its cell are pairwise distinct.

Corollary 3. For every ε > 0, there exist c > 0 and n0 such that for every n ≥ n0 the following
holds: If L is a partial Latin square of size n where each row and column have at least (1 + ε)n2
entries and no entry appears more than cn times, then L contains a Latin transversal.

Our second result studies the rainbow Hamiltonian cycles in sparse graphs.

Theorem 4. For every ε > 0, there exist c′ > 0 and n0 such that for every n ≥ n0 the following
holds: If G is a graph on n vertices with minimum degree at least (1 + ε)n2 , then every cn-bounded
edge-coloring of G contains a rainbow Hamiltonian cycle.

In contrast to [13], the main ingredient in our proofs is to directly study the probability space
given by the set of perfect matchings (or Hamiltonian cycles) of the graph G. This allows us to
be more precise in the minimum degree condition needed to find the existence of such rainbow
subgraph.
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Note that If n is even, Theorem 4 immediately provides the existence of a rainbow matching
in the graph. This does not supersede the result of Theorem 2 as the minimum degree condition
there is much weaker.

Also note that the condition on the minimum degree in both theorems is asymptotically tight,
since there are bipartite graphs with minimum degree dn/2e − 1 and no perfect matching, as well
as graphs with minimum degree dn/2e− 1 and no Hamiltonian cycle. However, the dependence on
the number of colors is not best possible. As we already stated, the use of the local lemma forces
us to pay a constant factor. The dependence of c in ε is c = O(ε2) for Theorem 2 and c = O(ε3)
for Theorem 4. We believe that the correct dependence in both cases should be c = O(ε). As a
corollary, we obtain that Theorem 2 and 4 are still valid for minimum degree at least n

2 + O(
√
n)

and n
2 + O(n2/3), respectively, provided that the coloring is 2-bounded. We conjecture that any

2-bounded coloring of a bipartite graph with minimum degree at least n
2 has a rainbow perfect

matching and any 2-bounded coloring of a graph with minimum degree at least n
2 has a rainbow

Hamiltonian cycle.
An immediate corollary of Theorem 2 follows from the fact that by removing a perfect matching

we decrease the minimum degree of the graph by exactly one.

Corollary 5. For every ε, γ > 0, there exist c > 0 and n0 such that for every n ≥ n0 the following
holds: If G = (A,B) is a bipartite graph with |A| = |B| = n and minimum degree at least

(
1
2 + ε

)
n,

then every cn-bounded edge-coloring of G contains (1−γ)εn edge-disjoint rainbow perfect matching.

A similar statement for Hamiltonian cycles also follows from Theorem 4.
Finally, it would be interesting to study the existence of such rainbow subgraphs under other

conditions that ensure the existence of a copy. Two examples are the following:

a) Does every 2-bounded coloring of a regular bipartite graph have a rainbow perfect matching?

b) Does every 2-bounded coloring of a graph satisfying Ore’s condition1 have a rainbow Hamil-
tonian cycle?

1.1 Minimum degree threshold

A necessary condition for G to contains a rainbow copy of H is to contain at least one copy
of H. Define δ(∆, n) to be the infimum over all δ such that every graph G on n vertices and
minimum degree at least δn contains any graph H on n vertices and maximum degree ∆. Let
δ(∆) = lim supn→∞ δ(∆, n).

Bollobás and Eldridge [2] and Catlin [4] independently conjectured that δ(∆) = 1− 1
∆+1 . The

lower bound δ(∆) ≥ 1 − 1
∆+1 is given by considering H to be the union of n/(∆ + 1) cliques

and G a slightly unbalanced (∆ + 1)-partite complete graph. Sauer and Spencer [12] proved that
δ(∆) ≤ 1− 1

2∆ and this was improved by Kaul and Kostochka [9] to δ(∆) ≤ 1− 3
5∆ .

Here we make the following conjecture.

Conjecture 6. For every ε and ∆, there exist c > 0 and n0 such that for every n ≥ n0 the following
holds: If G is a graph on n vertices with minimum degree at least (1 + ε)δ(∆) and H is a graph on
n vertices with maximum degree at most ∆, then every cn-bounded edge-coloring of G contains a
rainbow copy of H.

1A graph G satisfies Ore’s condition if for every xy /∈ E(G) we have d(x) + d(y) ≥ n.
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While Theorem 2 and 4 are the sparse analogues of the results in [6, 1], Conjecture 6 is the
sparse analogue of [3]. We do not dare to conjecture which is the correct dependency of c in terms
of ε and ∆.

2 Notation and Tools

All graphs are undirected and simple. Given a graph G, we denote by V = V (G) it vertex set and
by E = E(G) its edge set. We denote by n the size of V . For every x ∈ V , we will denote by N(x)
the set of vertices G that are adjacent to x. We denote by d(x) the size of N(x). Similarly, for a
set S ⊆ V we denote by N(S) the union of N(x) for every x ∈ S. We denote by δ(G) and by ∆(G)
the minimum and maximum degree of the graph G, respectively. We use log x to denote the base
2 logarithm of x.

Lemma 7 (Lopsided Lovász Local Lemma [6]). Consider a set E of (typically bad) events in a
probability space Ω. Let P ∈ (0, 1). For every E ∈ E, consider a set D(E) of at most D other
events in E. Suppose that for all T ⊆ E \ ({E} ∪ D(E)) we have that

P

[
E |

⋂
F∈T

F c

]
≤ P . (1)

If 4PD ≤ 1, then with positive probability, none the events in E occur.

3 Proof of Theorem 2

Our goal is to apply the Lopsided version of the Local Lemma in a similar way as in [6] but to a
different probability space. Let Ω be the space of perfect matchings of G equipped with the uniform
measure. Since δ(G) ≥ n/2, it is a direct consequence of Hall’s theorem that Ω 6= ∅. Let M ∈ Ω be
a perfect matching of G chosen uniformly at random among all the perfect matchings of G.

Let c = ε2/32. Write k = cn and d = (1 + ε)n2 . Let χ : E → N be a k-bounded edge-coloring
of G. An unordered pair of edges a1b1, a2b2 of G is called dangerous with respect to χ (or simply,
dangerous) if a1 6= a2, b1 6= b2 and χ(a1b1) = χ(a2b2). For every unordered pair {a1b1, a2b2} of

dangerous edges, we define the event Eb1,b2a1,a2 ⊆ Ω as a1b1, a2b2 ∈ M . Note that Eb1,b2a1,a2 and Eb2,b1a2,a1

denote the same event. Let E be the set of events containing all such events for each pair of
dangerous edges. Note that if none of the events in E are satisfied, then no color appears twice in
M , and M is a rainbow perfect matching of G. Our goal will be to prove that the probability none
of the events in E occur is positive, which provides the existence of a rainbow matching.

For every dangerous pair a1b1, a2b2, let D(Eb1,b2a1,a2) be the collection of events of the form Eb3,b4a3,a4

in E \ {Eb1,b2a1,a2}, such that the set of edges {a1b1, a2b2, a3b3, a4b4} does not induce a matching in

G. Let us first bound the size of the sets D(Eb1,b2a1,a2). Let us upper bound the number of ways to

construct Eb3,b4a3,a4 ∈ D(Eb1,b2a1,a2).There are 4 ways to select a vertex in {a1, a2, b1, b2} that intersects
{a3, a4, b3, b4}. Assume that a3 is the chosen one. Then, there are at most n ways to select the
edge a3b3. Since the coloring is k-bounded, there are at most k − 1 ways to choose an edge a4b4
different than a3b3 and with color χ(a3b3). It follows that

|D(Eb1,b2a1,a2)| ≤ 4n(k − 1) ≤ 4cn2 ≤ ε2

8
· n2 =: D . (2)
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The following claim shows that (1) holds for a sufficiently small P .

Lemma 8. For every T ⊆ E \
(
{Eb1,b2a1,a2} ∪ D(Eb1,b2a1,a2)

)
, we have

P

[
Eb1,b2a1,a2 |

⋂
F∈T

F c

]
≤ 2ε−2/n2 =: P .

Assuming that the claim holds, we can conclude. Since for every E ∈ E we have |D(E)| ≤ D =
(ε2/8)n2, it follows that 4PD ≤ 1. So we can use Lemma 7 to conclude that P[∩E∈EEc] > 0. Thus,
it suffices to prove the claim.

Proof of the claim. We call a matching M of G good if it satisfies ∩F∈T F c. We may assume that
there is at least one good matching since otherwise

P

[
Eb1,b2a1,a2 ∩

⋂
F∈T

F c

]
≤ P

[ ⋂
F∈T

F c

]
= 0 ,

and the inequality in (1) holds trivially.
Since Ω is equipped with the uniform probability measure, we will proceed by a counting

argument. Denote byM the set of all good perfect matchings. Consider the subsetM0 ⊆M that
contains all perfect matchings M ∈M such that a1b1, a2b2 ∈M .

Construct an auxiliary bipartite graph G = (M0,M \M0). Two matchings M0 ∈ M0 and
M ∈ M \M0 are joined by an edge in G if there exists distinct a3, a4 ∈ A \ {a1, a2} and distinct
b3, b4 ∈ B \ {b1, b2} with a3b3, a4b4 ∈ M such that a1b3, a2b4, a3b1, a4b2 ∈ M , and M0 and M
coincide when restricted to (A \ {a1, a2, a3, a4}) × (B \ {b1, b2, b3, b4}). In other words, if M0 ∪M
induces a subgraph composed by a partial matching of size n− 4 and two vertex-disjoint cycles of
length 4: a1b1a3b3 and a2b2a4b4.

Let δ(M0) and ∆(M\M0) be the minimum degree ofM0 and the maximum degree ofM\M0,
respectively. By double-counting the number of edges of G we obtain

δ(M0)|M0| ≤ e(G) ≤ ∆(M\M0)|M \M0| .

It follows that,

P

[
Eb1,b2a1,a2 |

⋂
F∈T

F c

]
=

|M0|
|M0|+ |M \M0|

≤ |M0|
|M \M0|

≤ ∆(M\M0)

δ(M0)
.

Let us bound the two degrees. We first lower bound δ(M0). Recall that, given M0 ∈M0 with
a1b1, a2b2 ∈M0 and two cycles of length 4 of the form a1b1a3b3 and a2b2a4b4 with a3b3, a4b4 ∈M0,
there exists a matching M such that M0 and M are adjacent in G. It remains to lower bound
the number of ways to find such cycles. For S ⊆ A, let M0(S) ⊆ B be the vertices of B that are
matched to S by M0. For every b3 ∈ (N(a1) ∩M0(N(b1))) \ {b1, b2} with a3 = M−1

0 (b3) ∈ N(b1),
we obtain a cycle a1b1a3b3 that satisfies our conditions. Moreover, since the minimum degree of G
is at least (1 + ε)n2 ,

|(N(a1) ∩M0(N(b1))) \ {b1, b2}| = |N(a1)|+ |M0(N(b1))| − |N(a1) ∪M0(N(b1))| − 2

≥ |N(a1)|+ |N(b1)| − n− 2

≥ εn− 2 .
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Thus, a1b1 is contained in at least εn− 2 cycles of length 4 that contain another edge from M0. An
analogous argument shows that, given that the cycle a1b1a3b3 has been chosen, a2b2 is contained
in at least εn − 3 cycles of length 4 disjoint from the previous one. We conclude that δ(M0) ≥
(εn− 2)(εn− 3) ≥ ε2n2/2.

Now we proceed to upper bound ∆(M\M0). Given a matching M ∈M\M0 there is at most
one way to select two cycles of length 4 such that a1 and b1 belong to the first cycle and a2 and b2
belong to the second one. Thus, ∆(M\M0) ≤ 1.

We conclude that

P := P

[
Eb1,b2a1,a2 |

⋂
F∈T

F c

]
≤ 2ε−2

n2
. (3)

4 Proof of Theorem 4

Let Ω be the space of Hamiltonian cycles of G equipped with the uniform measure. Since δ(G) ≥
(1 + ε)n2 ≥

n
2 , by Dirac’s theorem Ω 6= ∅. Let H ∈ Ω be a Hamiltonian cycle chosen uniformly at

random among all Hamiltonian cycles of G.
Let c = (ε3/8000) · n and write k = cn. Let χ : E → N be a k-bounded edge-coloring of G.

We slightly modify the definition of dangerous pair of edges. An unordered pair of edges x1y1, x2y2

of G is called dangerous if χ(x1y1) = χ(x2y2). The main difference with respect to the previous
section, is that here we allow x1 = y2.

For every dangerous pair x1y1, x2y2 of dangerous edges, we define the event Ey1,y2x1,x2 ⊆ Ω as
x1y1, x2y2 ∈ H. Let E be the collection of events defined by pairs of dangerous edges. Again, in
order to provide the existence of a rainbow Hamiltonian cycle, we aim to prove that with positive
probability, none of the events in E hold. We also consider D(Ey1,y2x1,x2), the set of events of the form
Ev1,v2u1,u2 in E \ {Ey1,y2x1,x2} such that {x1, y1, x2, y2} ∩ {u1, v1, u2, v2} 6= ∅.

Recall that the coloring is k-bounded. Given x1, x2, y1, y2, the number of ways we can select
a dangerous pair of edges u1v1, u2v2 such that one of them is incident to at least one vertex in
{x1, x2, y1, y2} is

|D(Ey1,y2x1,x2)| ≤ 4n(k − 1) ≤ 4cn2 ≤ ε3

8000
· n2 =: D . (4)

Before bounding the conditional probability of an event, we present the following technical
lemma.

Lemma 9. Let A,B ⊆ [n] such that |A| + |B| ≥ (1 + γ)n. Then there exist at least γ2n/20 pairs
(a1, a2) ∈ A×A with |a1 − a2| ≤ γ−1 such that a1 + 1 ∈ B and a2 − 1 ∈ B.

Proof. Write ` = dγ−1/4e. Let S = {S1, . . . , St, St+1} be a partition of [n] into t = bn/`c consecutive
intervals of size ` and a (possibly empty) interval St+1 of size at most `. In other words, Si =
[(i−1)`+ 1, i`] for every 1 ≤ i ≤ t and St+1 = [t`+ 1, n]. We claim that there exists a set of indices
I ⊆ [t] such that |I| ≥ γt/3 and for every i ∈ I we have

|A ∩ Si|+ |B ∩ Si| ≥ `+ 2 . (5)
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Suppose this is not the case. Then

|A|+ |B| =
t∑
i=1

|A ∩ Si|+ |B ∩ Si|

≤ γ

3
t · 2`+

(
1− γ

3

)
t(`+ 2)

≤ t`+
(γ

3
`+ 2

)
t

≤ n+

(
γ

3
+

2

`

)
n

< (1 + γ)n

contradicting the hypothesis of the lemma.
Fix i ∈ I and denote by Ai = A∩Si and by Bi = B∩Si. We are going to show that there exist

a1, a2 ∈ Ai such that a1 − 1 and a2 + 1 belong to Bi. We do not insist that a1 6= a2.
Let Ai + 1 = {a+ 1 : a ∈ Ai} ∩ Si and note that |Ai + 1| ≥ |Ai| − 1. Recall that i ∈ I implies

|Ai|+ |Bi| ≥ `+ 2. Since |(Ai + 1) ∪Bi| ≤ |Si| ≤ ` and using (5), we have

|(Ai + 1) ∩Bi| = |Ai + 1|+ |Bi| − |(Ai + 1) ∪Bi|
≥ |Ai| − 1 + |Bi| − |(Ai + 1) ∪Bi|
≥ 1 .

Since this intersection is non-empty, we let b1 ∈ Bi be an element of it, and a1 = b1 − 1 ∈ Ai.
Analogously, we can find a2 ∈ Ai and b2 ∈ Bi with a2 = b2 + 1.

Observe that |a1 − a2| ≤ |Si| = ` ≤ γ−1, as desired. Moreover, since the sets Si are pairwise
disjoint, we can find at least |I| ≥ γt/3 = γ2n/20 of such pairs (a1, a2), concluding the proof of the
lemma.

We can now state the corresponding bound on the conditional probability claim shows that (1)
holds for a sufficiently small P .

Lemma 10. For every T ⊆ E \ ({Ey1,y2x1,x2} ∪ D(Ey1,y2x1,x2)), we have

P

[
Ey1,y2x1,x2 |

⋂
F∈T

F c

]
≤ 2000ε−3

n2
:= P .

Assuming that the claim holds, we obtain 4PD ≤ 1 and we use Lemma 7 to conclude that
P[∩E∈EEc] > 0.

Proof of the claim. Let H be a Hamiltonian cycle of G that contains the edges x1y1 and x2y2.
Recall that we allow for x1 = y2. We introduce an operation on the edges of H that will give rise
to another 2-regular subgraph of G. This subgraph is not always a Hamiltonian cycle.

First, orient the edges of H in an arbitrary and cyclic order. We denote by ~H the oriented
Hamiltonian cycle. We may assume that the edges x1y1 and x2y2 are traversed from xi to yi in ~H.
Otherwise, we can reverse the cyclic order of ~H. Let Hy1,y2

x1,x2 be the Hamiltonian cycle H where the
ordered pair of edges (x1y1, x2y2) is labelled.

We now define two different type of operations, called switchings and denoted by s(.) and t(.)
respectively, that transform a Hamiltonian cycle Hy1,y2

x1,x2 into a 2-regular spanning subgraph of G.
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- Switching of type s: for every edge u1v1 ∈ E( ~H) such that u1 ∈ N(x2) and v1 ∈ N(y2), and
every edge u2v2 ∈ E( ~H) such that u2 ∈ N(x1) and v2 ∈ N(y1), we construct sv1,v2u1,u2(Hy1,y2

x1,x2) as
follows: delete the edges x1y1, x2y2, u1v1 and u2v2 from H and add the edges x1u2, x2u1, y1v2

and y2v1.

Note that the resulting spanning subgraph sv1,v2u1,u2(Hy1,y2
x1,x2) is a 2-regular multigraph (loops and

double edges may appear if some endpoints of the edges coincide). Moreover, sv1,v2u1,u2(Hy1,y2
x1,x2)

is a Hamiltonian cycle if H is of the form,

x1, y1, . . . , u1, v1, . . . , x2, y2, . . . , u2, v2, . . . , x1 , (6)

or of the form,

x1, y1, . . . , u2, v2, . . . , u1, v1, . . . , x2, y2, . . . , x1 . (7)

- Switching of type t: for every edge u1v1 ∈ E( ~H) such that u1 ∈ N(x2) and v1 ∈ N(y2), and
every edge v2u2 ∈ E( ~H) such that u2 ∈ N(x1) and v2 ∈ N(y1), we construct tv1,v2u1,u2(Hy1,y2

x1,x2) as
follows: delete the edges x1y1, x2y2, u1v1 and u2v2 from H and add the edges x1u2, x2u1, y1v2

and y2v1.

As before, the resulting spanning subgraph tv1,v2u1,u2(Hy1,y2
x1,x2) is a 2-regular multigraph and it is

Hamiltonian cycle if H is of the form

x1, y1, . . . , u1, v1, . . . , v2, u2, . . . , x2, y2, . . . , x1 . (8)

Figure 1: Cases (6), (7) and (8).

The following claim shows that there are many switchings that transform Hy1,y2
x1,x2 into a Hamil-

tonian cycle.

Claim A. For every edge u1v1 ∈ E( ~H), there exist at least ε2n/30 edges u2 ∈ E( ~H) such that
either sv1,v2u1,u2(Hy1,y2

x1,x2) or tv1,v2u1,u2(Hy1,y2
x1,x2) is a Hamiltonian cycle.

Proof. Without loss of generality, we can assume ~H follows the cyclic order

x1, y1, . . . , u1, v1, . . . , x2, y2, . . . , x1 ,

otherwise we can obtain it by relabelling the edges x1y1 and x2y2.
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Select an arbitrary vertex u ∈ V , and let (u = h1, . . . , hn, h1) be the vertices of the Hamiltonian
cycle ordered following the chosen orientation and starting at u. Let A := {i ∈ [n] : hi ∈ N(x1)}
and B := {i ∈ [n] : hi ∈ N(y1)}. By the hypothesis of the theorem, we have |A|+ |B| ≥ (1 + ε)n.
By Lemma 9 with γ = ε, there exist a set S of pairs (a1, a2) ∈ A×A with |a1−a2| ≤ ε−1 such that

a1 + 1 ∈ B and a2 − 1 ∈ B, with |S| ≥ ε2n
20 .

For each (a1, a2) ∈ S, if w2 = ha1 , z2 = ha1+1, then sv1,z2u1,w2(Hy1,y2
x1,x2) is well-defined. Similarly, if

w′2 = ha2 , z′2 = ha2−1, then t
v1,z′2
u1,w′2

(Hy1,y2
x1,x2) is also well-defined.

Now partition H \ {x1y1, u1v1, x2y2} into three paths: P1 = y1, . . . , u1, P2 = v1, . . . , x2 and
P3 = y2, . . . , x1; and note that some of these paths might be edgeless. We say that a pair (c1, c2) ∈
[n]× [n] is valid if both hc1hc1+1 and hc2−1hc2 belong to the same path.

Recall that if (a1, a2) ∈ S, then |a1 − a2| ≤ ε−1. Thus, there are at most 3ε−2 pairs in S that
are not valid. Thus, the number of valid pairs in S is at least

ε2n2

20
− 3ε−2 ≥ ε2n2

30
,

Fix a valid pair (a1, a2) ∈ S. If ha1ha1+1 and ha2−1ha2 are either in P1 or in P3, then, by (6) or by (7),

s
v1,ha1+1

u1,ha1
(Hy1,y2

x1,x2) is a Hamiltonian cycle. If these edges are in P2, then, by (8), t
v1,ha2−1

u1,ha2
(Hy1,y2

x1,x2), is

also a Hamiltonian cycle.
We conclude that there are at least ε2n2

30 choices for u2v2 such that either sv1,v2u1,u2(Hy1,y2
x1,x2) or

tv1,v2u1,u2(Hy1,y2
x1,x2) is a Hamiltonian cycle.

Recall that, given x1y1, x2y2 and a set T ⊆ E \({Ey1,y2x1,x2}∪D(Ey1,y2x1,x2)), we say that a Hamiltonian
cycle is good if it satisfies ∩F∈T F c.

We now construct an auxiliary bipartite graph H = (A,B), where A is composed by all the
good Hamiltonian cycles G that contain both x1y1 and x2y2, and where B is composed by all the
good Hamiltonian cycles of G that contain neither x1y1 nor x2y2. We add edges between H ∈ A
and H ′ ∈ B if there exists a switching that transforms H into H ′, and vice versa.

By double-counting of the edges of H in a similar way as in the proof of Theorem 2, it follows
that

P
[
Ey1,y2x1,x2 | ∩F∈T F

c
]

=
|A|

|A|+ |B|
≤ |A|
|B|
≤ ∆(B)

δ(A)
, (9)

where δ(A) and ∆(B) are the minimum degree in A and the maximum degree in B, respectively.
Let H ′ ∈ B. To count the number of cycles in A that can give rise to H, we need to select

4 edges in E(H ′) adjacent to x1, y1, x2 and y2, respectively; this can be done in 24 ways since
the degree of each vertex in H ′ is 2. Once we have decided if H ′ was created from a Hamiltonian
cycle in A using a switching of type s or of type t, the graph H is determined. Thus, we have
∆(B) ≤ 2× 24 = 32.

Let H ∈ A and let h1, . . . hn be a cyclic ordering of V according to H. Let A := {i ∈ [n] :
hi ∈ N(x2)} and let B := {i ∈ [n] : hi+1 ∈ N(y2)}. Since |A|, |B| ≥ (1 + ε)n2 , there are at least
|A ∩ B| − 2 ≥ εn − 2 ≥ εn/2 ways to select u1v1 with u1 ∈ N(x2), v1 ∈ N(y2) and different from
x1y1 and x2y2. Once u1v1 has been fixed, by Claim A, there are at least ε2n/30 choices for an
edge u2v2 such that either sv1,v2u1,u2(Hy1,y2

x1,x2) or tv1,v2u1,u2(Hy1,y2
x1,x2) gives rise to a Hamiltonian cycle H ′.

By construction, H ′ does not contain the edges x1y1 and x2y2; that is, H ′ ∈ B. Thus, we have
δ(A) ≥ ε3n2/60:

9



Using (9) we conclude

P

[
Ey1,y2x1,x2 |

⋂
F∈T

F c

]
≤ 60 · 32ε−3

n2
≤ 2000ε−3

n2
.
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[2] Béla Bollobás and Stephen E Eldridge, Packings of graphs and applications to computational
complexity, Journal of Combinatorial Theory, Series B 25 (1978), no. 2, 105–124.

[3] Julia Böttcher, Yoshiharu Kohayakawa, and Aldo Procacci, Properly coloured copies and rain-
bow copies of large graphs with small maximum degree, Random Structures & Algorithms 40
(2012), no. 4, 425–436.

[4] Paul Allen Catlin, Embedding subgraphs and coloring graphs under extremal degree conditions,
1976.

[5] Andrzej Dudek, Alan Frieze, and Andrzej Rucinski, Rainbow hamilton cycles in uniform hy-
pergraphs, Electronic Journal of Combinatorics 19 (2011), no. 1, P46.
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