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THE EVOLUTION OF RANDOM GRAPHS ON SURFACES

CHRIS DOWDEN, MIHYUN KANG, AND PHILIPP SPRÜSSEL

Graz University of Technology, Institute of Discrete Mathematics, Steyrergasse 30,
8010 Graz, Austria

Abstract. For integers g,m ≥ 0 and n > 0, let Sg(n,m) denote the graph
taken uniformly at random from the set of all graphs on {1, 2, . . . , n} with
exactly m = m(n) edges and with genus at most g. We use counting arguments
to investigate the components, subgraphs, maximum degree, and largest face
size of Sg(n,m), finding that there is often different asymptotic behaviour
depending on the ratio m

n
.

In our main results, we show that the probability that Sg(n,m) contains
any given non-planar component converges to 0 as n → ∞ for all m(n); the
probability that Sg(n,m) contains a copy of any given planar graph converges
to 1 as n → ∞ if lim inf m

n
> 1; the maximum degree of Sg(n,m) is Θ(lnn)

with high probability if lim inf m
n

> 1; and the largest face size of Sg(n,m) has

a threshold around m
n

= 1 where it changes from Θ(n) to Θ(lnn) with high
probability.

1. Introduction

1.1. Background and motivation. Random planar graphs have been the subject
of much activity, and many properties of the standard random planar graph P (n)
(taken uniformly at random from the set of all planar graphs with vertex set [n] :=
{1, 2, . . . , n}) are now known. For example, asymptotic results have been obtained
for the probability that P (n) will contain given components and subgraphs [20, 28],
for the number of vertices of given degree [13], and for the size of the maximum
degree and largest face [12, 27]. In addition, clever algorithms for generating and
sampling planar graphs have been designed [6, 15], and random planar maps have
been studied [14, 16, 17].

The classical Erdős-Rényi random graph G(n,m) is taken uniformly at random
from the set of all graphs on [n] with exactly m edges. Hence, it is natural to also
examine the planar analogue P (n,m), taken uniformly at random from the set of
all planar graphs on [n] with exactly m edges. Note that the extra condition on the
number of edges typically makes P (n,m) more challenging to study than P (n), but
many exciting results have nevertheless been obtained [3, 4, 8, 10, 11, 19, 20, 22].

Although the constraint on the number of edges makes P (n,m) more difficult to
analyse, it also has the effect of producing richer and more complex behaviour. In
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2 THE EVOLUTION OF RANDOM GRAPHS ON SURFACES

particular, results are often found to feature thresholds, meaning that the various
probabilities change dramatically according to which ‘region’ the ratio m

n falls into.
It is well known that P (n,m) behaves in the same way as G(n,m) if m <

n
2 − ω(n2/3), since the probability that G(n,m) will be planar converges to 1 as
n → ∞ for this range of m (see, for example, [21]). However, different properties
have been found to emerge when we are beyond this region [10, 11, 19, 20, 22].

In this paper, we shall be interested in graphs with genus at most g. A graph is
said to have genus at most g if it can be embedded without any crossing edges on an
orientable surface of genus g (i.e. a sphere to which g handles have been attached).
Hence, the simplest case when g = 0 corresponds to planar graphs.

We shall let Sg(n) denote the graph taken uniformly at random from the set of
all graphs on [n] with genus at most g, and we shall let Sg(n,m) denote the graph
taken uniformly at random from the set of all graphs on [n] with exactly m edges
and with genus at most g (it is known that this then implies that we must have
m ≤ 3n− 6 + 6g). Throughout the paper, m = m(n) will be a function of n, while
g will be a constant independent of n.

Many of the results on P (n) (i.e. S0(n)) have now also been generalised to Sg(n)
[7, 26, 27]. However, similar extensions have not yet been achieved for the full
Sg(n,m) case, where the complexity of the general genus setting is combined with
the extra restriction on the number of edges. As with the planar case, one might
expect to find even more interesting behaviour for Sg(n,m) than Sg(n), and so it
is the random graph Sg(n,m) that is to be the subject of this paper.

We shall investigate the probability that Sg(n,m) will contain given components
and subgraphs, as well as the size of the maximum degree and largest face (max-
imised over all embeddings with genus at most g). We shall find that the restriction
on the number of edges does indeed enrich the results, by providing different be-
haviour depending on the ratio m

n . Hence, this change as m
n varies can be thought

of as the ‘evolution’ of random graphs on surfaces.

1.2. Main results. We shall now identify the main results of the paper (the proofs
of which will be given later).

One of the most important aspects to consider when building an understanding
of how a random graph behaves is to gain knowledge of the typical components
and subgraphs. For the g = 0 case, it is known that the probability that P (n,m)
will have any given planar component is bounded away from 0 if m

n is in the region
1 < lim inf m

n ≤ lim sup m
n < 3 (see [11]). However, for the general genus case, we

surprisingly discover that the probability that Sg(n,m) will have any given non-
planar component actually converges to 0 as n → ∞ for every function m(n), even
for a component with genus at most g:

Theorem 1.1. Let H be a (fixed) connected non-planar graph, let g ≥ 0 be a
constant, and let m = m(n) satisfy m ≤ 3n− 6 + 6g for all n. Then

P[Sg(n,m) will have a component isomorphic to H ] → 0 as n → ∞.

One of the key tools in our proofs will be the use of ‘appearances’ and ‘triangu-
lated appearances’, through which we are able to derive many interesting results.
One of the most fundamental is to show that the probability that Sg(n,m) will
contain a copy of any given planar subgraph converges to 1 as n → ∞ as long as
lim inf m

n > 1:
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Theorem 1.2. Let H be a (fixed) connected planar graph, let g ≥ 0 be a constant,
and let m = m(n) satisfy lim inf m

n > 1 and m ≤ 3n− 6 + 6g for all n. Then

P[Sg(n,m) will have a copy of H ] → 1 as n → ∞.

The topic of maximum degree (which we denote throughout by ∆) is one of the
core areas in the study of random graphs, both as a matter of great interest in its
own right and for its connections to colouring algorithms. However, this issue has
not previously been explored even for the g = 0 case of the random planar graph
P (n,m). In this paper, we derive bounds for the full general genus case, observing
that intriguingly there is different behaviour depending on the ratio of m to n (see
Definition 2.2 for details of the terminology and notation used):

Theorem 1.3. Let g ≥ 0 be a constant, and let m = m(n) satisfy m ≤ 3n− 6+6g
for all n. Then with high probability1

∆(Sg(n,m)) =



















Θ
(

lnn
ln lnn

)

for 0 < lim inf m
n ≤ lim sup m

n < 1
2 ,

O(lnn) for 1
2 ≤ lim inf m

n ≤ lim sup m
n ≤ 1,

Θ(lnn) for 1 < lim inf m
n .

The size of the largest face is another exciting topic that has not previously been
investigated for P (n,m). We let F (Sg(n,m)) denote the size of the largest face
of Sg(n,m) (maximised over all embeddings with genus at most g), and we again
deal with the full general genus case, finding that there is an interesting threshold
around m

n = 1:

Theorem 1.4. Let g ≥ 0 be a constant, and let m = m(n) satisfy m ≤ 3n− 6+6g
for all n. Then with high probability

F (Sg(n,m)) =







Θ(n) for 0 < lim inf m
n ≤ lim sup m

n < 1,

Θ(lnn) for 1 < lim inf m
n ≤ lim sup m

n < 3.

1.3. Techniques and outline of the paper. Many of our proofs rely on the
technique of double-counting. For example, suppose that we wish to relate the
number of graphs in two sets Gn and G′

n (e.g. G′
n may be the set of all graphs

on [n] with exactly m edges and genus at most g, and Gn may be the subset of
G′
n consisting of those graphs that have a particular property). For each graph in

Gn, we would aim to construct many graphs in G′
n by making various alterations

(e.g. adding/deleting edges in suitable places), and we would then try to show that
each graph in G′

n is not constructed too many times.
If, say, each graph in Gn can be used to construct f1(n) = Ω(n) graphs in G′

n,
and each graph in G′

n is only constructed f2(n) = o(n) times in total, then this

would imply that |G′
n| =

Ω(n)|Gn|
o(n) , and so |Gn|

|G′

n|
= o(n)

Ω(n) → 0 as n → ∞. Hence, if Gn

is the set of graphs in G′
n with a particular property, then we would conclude that

the probability that a random graph in G′
n has this property must converge to 0 as

n → ∞.
The challenge when creating such a proof lies in finding a successful way to

construct many graphs of the desired type without introducing a large amount
of double-counting. Hence, the alterations used in the construction process need

1meaning with probability tending to 1 as n → ∞ — see Definition 2.2.
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to be carefully controlled, in order to allow some way of bounding the number of
possibilities for the original graph.

Our restriction on the total number of edges in the graph provides a further
serious complication, as any inserted edges need to be exactly balanced by deleted
edges without losing control of the double-counting. For graphs on surfaces, an
additional major difficulty arises when inserting edges, as it is crucial to ensure
that any conditions on the genus are not violated.

Thus, to obtain workable double-counting arguments, we shall typically require
information about the number of choices we have for where to add/delete certain
types of edges. In particular, we shall find that it will often be useful to have many
ways (e.g. linear in the number of vertices) to insert an edge without increasing
the genus of the graph, or to know that there are many ‘pendant’ edges or many
‘appearances’ of certain subgraphs (see Definitions 2.4 and 2.6).

The paper is consequently structured as follows: in Section 2, we provide the
necessary definitions and state the various key lemmas that will be used during our
counting arguments; in Section 3, we collect together results on the probability that
Sg(n,m) will contain given components (including Theorem 1.1); in Section 4, we
will do likewise for subgraphs (including Theorem 1.2); in Section 5, we will look
at the maximum degree of Sg(n,m) (obtaining Theorem 1.3); in Section 6, we shall
investigate the size of the largest face of Sg(n,m) (obtaining Theorem 1.4); in Sec-
tions 7 and 8, we will prove two important results from Section 2 on ‘appearances’
(Lemma 2.10) and ‘triangulated appearances’ (Lemma 2.11); and then in Section 9,
we shall discuss various questions that remain unanswered.

Let us note that some existing results for the planar case P (n,m) can immedi-
ately be carried over to Sg(n,m). In particular, this is true if the relevant proofs
only utilise basic properties such as being able to delete an edge or insert an edge
between components without increasing the genus. When we meet such cases, we
shall consequently just state our results without repeating full details of the proofs.

2. Preliminaries

In this section, we shall provide details of some preliminary matters that will
be of importance to us later. We begin (in Subsection 2.1) by stating the notation
and definitions that will be used, and then (in Subsection 2.2) we introduce various
lemmas that will be essential for many of our proofs.

2.1. Notation and definitions. Throughout this paper, we shall always take g,
n and m = m(n) to be integers satisfying g ≥ 0, n > 0 and 0 ≤ m ≤ 3n− 6 + 6g,
even if this is not always explicitly stated.

We start with the notation for our random graph:

Definition 2.1. We shall let Sg(n,m) denote the set of all labelled graphs on the
vertex set [n] := {1, 2, . . . , n} with exactly m edges and with genus at most g, and
we shall let Sg(n,m) denote a graph taken uniformly at random from Sg(n,m).

Next, we provide details of the order notation that will be used throughout this
paper:

Definition 2.2. Given non-negative functions f(n) and h(n), we shall use the
following notation:
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• f(n) = Ω(h(n))
means there exists a constant c > 0 such that f(n) ≥ ch(n) for all large n;

• f(n) = O(h(n))
means there exists a constant C such that f(n) ≤ Ch(n) for all large n;

• f(n) = ω(h(n))

means f(n)
h(n) → ∞ as n → ∞;

• f(n) = o(h(n))

means f(n)
h(n) → 0 as n → ∞.

We shall say that a random event Xn happens with high probability (whp) if
P(Xn) → 1 as n → ∞. Given a non-negative random variable f(n) and a non-
negative function h(n), we shall use the following notation:

• f(n) = Ω(h(n)) whp
means there exists a constant c > 0 such that f(n) ≥ ch(n) whp;

• f(n) = O(h(n)) whp
means there exists a constant C such that f(n) ≤ Ch(n) whp;

• f(n) = ω(h(n)) whp

means that, given any constant K, we have f(n)
h(n) > K whp;

• f(n) = o(h(n)) whp

means that, given any constant ǫ > 0, we have f(n)
h(n) < ǫ whp.

Throughout this paper, we shall always take all asymptotics to be as n → ∞,
even if this is not always explicitly stated.

We shall often obtain different results for different types of subgraphs, and con-
sequently we shall find it convenient to use the following definitions:

Definition 2.3. We shall say that a connected graph H is unicyclic if e(H) = |H |,
and multicyclic (also known as ‘complex’, see e.g. [21, 22]) if e(H) > |H |.

Many of our counting arguments will rely heavily on the use of ‘pendant’ edges
and copies:

Definition 2.4. We shall use pendant vertex to mean a vertex of degree 1, and
pendant edge to mean an edge incident to such a vertex.

Given a (small) graph H and a (large) graph G, we shall use the term copy of
H to mean any subgraph of G isomorphic to H . If H is connected, we shall use
pendant copy of H to mean an induced copy of H that is joined to the rest of G by
exactly one edge.

Since a graph H can only have at most |H | − 1 cut-edges, we may make the
following useful observation:

Observation 2.5. A pendant copy of a connected graph H can only have a vertex
in common with at most |H | − 1 other pendant copies of H.

One particular type of pendant copy that will be extremely important to us is
an ‘appearance’:

Definition 2.6. Let H be a connected graph on the vertex set [|H |], and let G be a
graph on the vertex set [n], where n > |H |. Let W ⊂ V (G) with |W | = |H |, and let
the ‘root’ rW denote the smallest element in W . We say that H appears at W in G
if (a) the increasing bijection from [|H |] to W gives an isomorphism between H and
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the induced subgraph G[W ] of G; and (b) there is exactly one edge in G between
W and the rest of G, and this edge is incident with the root rW . See Figure 1
(and note that, in the particular example shown, any non-trivial permutation of
the labels {2, 4, 5, 7} would violate the definition of an appearance).

We say that two appearances at W1 and W2 are vertex-disjoint if W1 ∩W2 = ∅.

H G[W ]

1r 4r 2r
❏
❏
❏
❏❏
3

r
6r 3r

1

r
8

r
2r 7r 4r
❏
❏
❏
❏❏
5

r

Figure 1. A graph H and an appearance of H .

When m is close to 3n, we will find appearances rather scarce (since each in-
volves a cut-edge), and so we will instead often employ the concept of ‘triangulated
appearances’ (a modified version of ‘6-appearances’ from [10]):

Definition 2.7. We say that a connected graph H has a triangulated appearance
at W ⊂ V (G) if (a) the increasing bijection from V (H) to W gives an isomor-
phism between H and the induced subgraph G[W ] of G; and (b) there are ex-
actly six edges in G between W and the rest of G, and these are of the form
EW = {r1v1, v1r2, r2v2, v2r3, r3v3, v3r1}, where {r1, r2, r3} ⊂ W and {v1, v2, v3} ⊂
V (G) \W , and where G[{v1, v2, v3}] is a triangle. See Figure 2.

We shall call E(G[W ]) ∪ EW the total edge set of the triangulated appearance,
and we shall say that two triangulated appearances are totally edge-disjoint if the
two total edge sets do not share a common edge. We say that two triangulated
appearances at W1 and W2 are vertex-disjoint if W1 ∩ W2 = ∅. Note that total
edge-disjointness is consequently a stronger condition than vertex-disjointness.

We say that a triangulated appearance is rooted if r1, r2 and r3 are the three
lowest labelled vertices in W .

✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍

✂
✂
✂
✂✂

�
�
�

❇
❇
❇
❇❇

❅
❅
❅

✘✘✘✘✘✘
❳❳❳❳❳❳

r

r
rr r

r
W

v3

v1

v2

r3

r1

r2

Figure 2. A triangulated appearance at W .

Another critical ingredient in many of our proofs is the number of choices for
where to insert an edge:
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Definition 2.8. Given any fixed g ≥ 0 and any fixed graph G with genus at most
g, we call a non-edge e g-addable in G if the graph G + e obtained by adding e as
an edge still has genus at most g, and we let addg(G) denote the set of g-addable
non-edges of G (note that the graph obtained by adding two edges in addg(G) may
well have genus greater than g).

Observe that the set of g-addable edges always includes any edge between two
vertices in different components (see [1, 2, 9, 25, 29] for many interesting results on
the related topic of ‘bridge-addable’ classes).

We now conclude this subsection by stating our definition for the ‘size’ of a face
(which will be the topic of Section 6):

Definition 2.9. Given a particular embedding of a graph, we shall use the size of
a face to mean the number of edges with a side in the face, counting an edge twice
if both sides are in the face.

2.2. Key lemmas. As mentioned, we will now collect together various key lemmas
that will be used to prove our main results.

We start by stating two very useful ingredients (Lemma 2.10 and Lemma 2.11)
concerning the number of appearances and triangulated appearances (the proofs of
which will be given in Sections 7 and 8):

Lemma 2.10. Let H be a (fixed) connected planar graph on [|H |], let g ≥ 0 be a
constant, and let m = m(n) satisfy 1 < lim inf m

n ≤ lim sup m
n < 3. Then there

exist α > 0 and N such that

P[Sg(n,m) will have at least αn vertex-disjoint appearances of H ] > 1− e−αn

for all n ≥ N .

Lemma 2.11. Let T be a (fixed) planar triangulation, let g ≥ 0 be a constant, and
let m = m(n) satisfy lim inf m

n > 1. Then there exist α > 0 and N such that

P[Sg(n,m) will have at least αn totally edge-disjoint triangulated appearances of T ]

> 1− e−αn for all n ≥ N.

The following result, recently given in [24] (see also [23]), will be of use to us as
well (note that the brace notation used here is to be understood as meaning that
both conditions must be satisfied simultaneously):

Lemma 2.12. ([24], Theorem 5.2) Let g ≥ 0 be a constant. Then whp the total
number of vertices of Sg(n,m) in non-multicyclic components and the total number
of edges of Sg(n,m) in non-multicyclic components are both

Θ(n−m) for 0 < n−m =

{

ω(n3/5)
o(n),

Θ(n3/5) for |m− n| = O(n3/5),

and Θ

(

(

n

m− n

)3/2
)

for 0 < m− n =

{

ω(n3/5)

o
(

n
(log n)2/3

)

.

We note that it is not known whether the o
(

n
(logn)2/3

)

condition in Lemma 2.12

can be amended to o(n).
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Information on the number of pendant edges will be important in many of our
proofs, and we will often utilise the following result:

Lemma 2.13. Let g ≥ 0 be a constant, and let m = m(n) satisfy 0 < lim inf m
n ≤

lim sup m
n < 3. Then there exist α > 0 and N such that

P[Sg(n,m) will have at least αn pendant edges] > 1− e−αn for all n ≥ N.

Sketch of Proof. The case when 1 < lim inf m
n ≤ lim sup m

n < 3 already follows
from Lemma 2.10, with H as an isolated vertex. For the remaining region when
0 < lim inf m

n ≤ lim sup m
n ≤ 1, we may use the same proof as given for the planar

case in Lemma 15 of [10], as the details actually generalise to any genus g ≥ 0. �

We finish this section with three results on the number of addable edges. Firstly,
recall that inserting an edge between any two vertices in different components
cannot increase the genus, and so for lim sup m

n < 1 we obtain the following (since
there are at least n−m components):

Lemma 2.14. Let g ≥ 0 be a constant, and let m = m(n) satisfy lim sup m
n < 1.

Then

|addg(Sg(n,m))| = Θ(n2).

�

Secondly, note that we can also always insert an edge between a vertex in a
tree/unicyclic component and any non-adjacent vertex, and so Lemma 2.12 provides
us with another useful result:

Lemma 2.15. Let g ≥ 0 be a constant, and let m = m(n) satisfy m ≤ n +

o
(

n
(logn)2/3

)

. Then whp

|addg(Sg(n,m))| = ω(n).

�

For the planar case, the number of addable edges is always at least 3n− 6−m,
since any planar graph can always be extended into a triangulation without inserting
any multi-edges. This is not the case for graphs of higher genus, but we may still
obtain the following result as a corollary to Lemma 2.10 (e.g. let H = C4 and note
that each appearance of C4 provides us with two addable edges):

Lemma 2.16. Let g ≥ 0 be a constant, and let m = m(n) satsify 1 < lim inf m
n ≤

lim sup m
n < 3. Then whp

|addg(Sg(n,m))| = Ω(n).

�

For those who are interested, a very detailed account of the number of addable
edges for the planar case is given in Section 5 of [10].

3. Components: proof of Theorem 1.1

We now come to the first main section of this paper, where we look at the
probability that Sg(n,m) will have a component isomorphic to H , for various fixed
H . The main feature of this section will be a proof of Theorem 1.1, but we will
also collect together various other results on this topic.
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We shall let CH(Sg(n,m)) denote the number of components in Sg(n,m) iso-
morphic to H , and we shall let

P
H
cpt := P[CH(Sg(n,m)) ≥ 1],

i.e. the probability that Sg(n,m) will have at least one component isomorphic to
H . An informal summary of the results is given in Table 1, which shows that the
asymptotic behaviour depends on both the type of component H and on the ratio
of m to n.

Table 1. A summary of PH
cpt := P[Sg(n,m) will have a component isomorphic to H ].

e(H) < |H | e(H) = |H | e(H) > |H |

H planar H non-planar

lim inf m

n
> 0 P

H
cpt → 1 P

H
cpt → 0

& m ≤ n+ o

(

n

(logn)2/3

)

(Thm. 3.3) lim inf PH
cpt > 0 (Thm. 3.5)

m ≥ n+ Ω
(

n

(log n)2/3

)

unknown lim supPH
cpt < 1 unknown

& m ≤ n+ o(n) (Thm. 3.4) P
H
cpt → 0

1 < lim inf m

n
lim inf PH

cpt > 0 (Thm. 1.1)

& lim sup m

n
< 3 lim supPH

cpt < 1

(Thm. 3.6)

m

n
→ 3 P

H
cpt → 0 (Thm. 3.8)

We start with a useful lemma on the number of isolated vertices:

Lemma 3.1. Let g ≥ 0 be a constant, and let m = m(n) satisfy lim inf m
n ≥ 1.

Then whp Sg(n,m) has o(n) components, and hence o(n) isolated vertices.

Sketch of Proof. The lemma follows from the same proofs (using |Sg(n,m)| ≥
|S0(n,m)| at relevant points) as for Lemma 41 and Proposition 50 of [10], which
give upper bounds of type o(n) on the number of components in a random planar
graph when m ≥ n and m = (1− o(1))n, respectively. �

We shall now employ Lemma 3.1 in the proof of the main result of this section
(Theorem 1.1):

Proof of Theorem 1.1. The result for the cases when lim sup m
n < 1 and m

n → 3
will be covered separately by Theorems 3.5 and 3.8, so we will assume here that we
have 1 ≤ lim inf m

n ≤ lim sup m
n < 3.

Let ǫ > 0. We will aim to show that P
H
cpt < ǫ for all sufficiently large n. Let

α be as given by Lemma 2.13, and let Gn denote the set of graphs in Sg(n,m)
with a component isomorphic to H , at least αn pendant edges, and at most αǫn

8g

isolated vertices. By Lemmas 2.13 and 3.1, it will suffice to show |Gn|
|Sg(n,m)| <

ǫ
2 for

all sufficiently large n.
For each graph in Gn, let us insert an edge between a component isomorphic to

H and any vertex outside this component. Note that we have |H |(n − |H |) ways
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to do this, and the overall graph will still have genus at most g. Let us then also
delete a pendant edge to create an isolated vertex (or perhaps two). Note that
we still have at least αn − 2 choices for this pendant edge. Thus, we find that we
can construct at least |Gn||H |(n− |H |)(αn− 2) (not necessarily distinct) graphs in
Sg(n,m).

Let us now consider the amount of double-counting. Given one of our constructed
graphs, there are at most αǫn

8g +2 possibilities for the newly created isolated vertex,

and at most n possibilities for the other endpoint of the deleted pendant edge.
There are then at most |H |g possibilities for the edge that was inserted, since there
can only be at most |H |g pendant copies of H in the graph (using the observation
that there can only be at most g vertex-disjoint copies of H in the graph, since H
is non-planar, together with the fact that any pendant copy of H can only have a
vertex in common with at most |H | − 1 others, by Observation 2.5). Thus, we find

that we have built each graph at most |H |g
(

αǫn
8g + 2

)

n times.

Hence, the number of distinct graphs (in Sg(n,m)) that we have constructed
must be at least

|Gn||H |(n− |H |)(αn− 2)

|H |g
(

αǫn
8g + 2

)

n
≥

|Gn||H |n2αn

|H |g αǫn
4g n

for all sufficiently large n

= |Gn|
2

ǫ
,

and so |Gn|
|Sg(n,m)| <

ǫ
2 , as desired. �

In the remainder of this section, we collect together other interesting results on
P
H
cpt for various different cases. The proofs all follow those given in [10] and [11] for

a random planar graph, and so we shall just state these theorems without providing
full details of the proofs. The only difference to the planar case is that we only

have the addability result of Lemma 2.15 for m ≤ n+ o
(

n
(logn)2/3

)

here, whereas

the analogous result for planar graphs is known to hold for m ≤ (1 + o(1))n, and

so Theorems 3.3 and 3.5 will consequently only be stated for m ≤ n+ o
(

n
(log n)2/3

)

too.
We start with a stronger result than given in Table 1, showing that whp there are

actually linearly many components isomorphic to any given tree if lim sup m
n < 1:

Theorem 3.2. Let H be a (fixed) tree, let g ≥ 0 be a constant, and let m = m(n)
satisfy 0 < lim inf m

n ≤ lim sup m
n < 1. Then there exist α > 0 and N such that

P[CH(Sg(n,m)) ≥ αn] > 1− e−αn for all n ≥ N.

Sketch of Proof. The (double-counting) proof involves deleting |H | pendant edges,
building a component isomorphic to H on the |H | newly isolated vertices (using
|H |−1 edges), and inserting an edge elsewhere in the graph (see Theorem 11 of [11]
for the full proof of the analogous planar case). We use Lemma 2.13 and Lemma 2.14
to obtain the required numbers of pendant edges and g-addable edges. �

By Lemma 3.1, we certainly cannot expect to find linearly many components if
m
n → 1, but it is still possible to show that whp there is at least one component

isomorphic to any given tree, as long as m ≤ n+ o
(

n
(logn)2/3

)

:
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Theorem 3.3. Let H be a (fixed) tree, let g ≥ 0 be a constant, and let m = m(n)

satisfy m ≤ n+ o
(

n
(logn)2/3

)

. Then

P
H
cpt → 1 as n → ∞.

Sketch of Proof. We adopt the same proof as with Theorem 3.2, using Lemma 2.15
instead of Lemma 2.14 (see Theorem 10 of [11] for details of the analogous planar
case). �

By contrast, for the unicyclic case (i.e. when e(H) = |H |) we find that the
probability is bounded away from 1:

Theorem 3.4. Let H be a (fixed) connected unicyclic graph, let g ≥ 0 be a constant,
and let m = m(n) satisfy 0 < lim inf m

n ≤ lim sup m
n < 3. Then

lim inf PH
cpt > 0

and lim supPH
cpt < 1.

Sketch of Proof. To show lim inf PH
cpt > 0, we again apply the same proof as with

Theorem 3.2, but without inserting an extra edge elsewhere in the graph (see The-
orem 9 of [11] for details of the analogous planar case). To show lim supPH

cpt < 1,
we use the g = 0 proof of Theorem 13 of [11], which involves deleting an edge from
a cycle in H and then inserting an edge to join this component to the rest of the
graph. �

For the multicyclic case (i.e. when e(H) > |H |), we find that the probability

actually converges to 0 for m ≤ n+ o
(

n
(logn)2/3

)

:

Theorem 3.5. Let H be a (fixed) connected multicyclic graph, let g ≥ 0 be a

constant, and let m = m(n) satisfy m ≤ n+ o
(

n
(logn)2/3

)

. Then

P
H
cpt → 0 as n → ∞.

Sketch of Proof. The proof involves deleting two edges from a component isomorphic
to H without disconnecting it, inserting an edge to join this component to the rest
of the graph, and also inserting an edge elsewhere (see Theorem 12 of [11] for the
full proof of the analogous planar case). Here, we use Lemma 2.15 to show that
the number of g-addable edges is sufficiently large to obtain our result by double-
counting. �

Moving into the region when lim inf m
n > 1, the probability of containing a given

component H is bounded away from 0 for all planar H (cf. the non-planar case of
Theorem 1.1):

Theorem 3.6. Let H be a (fixed) connected planar graph, let g ≥ 0 be a constant,
and let m = m(n) satisfy 1 < lim inf m

n ≤ lim sup m
n < 3. Then

lim inf PH
cpt > 0

and lim supPH
cpt < 1.

Sketch of Proof. For the lower bound, we may delete the cut-edge from an appear-
ance of H and insert an edge elsewhere in the graph, applying Lemma 2.10 on the
number of appearances and Lemma 2.16 on the number of g-addable edges (see
Theorem 8 of [11] for details of a proof for the planar case). The upper bound will
follow from Theorem 3.7. �
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The probability is also bounded away from 1 for lim inf m
n > 1, due to the

following result on the connectivity of Sg(n,m):

Theorem 3.7. Let g ≥ 0 be a constant, and let m = m(n) satisfy lim inf m
n > 1.

Then

lim inf P[Sg(n,m) will be connected] > 0.

Sketch of Proof. The case when m
n → 3 will follow from Theorem 3.8. For the case

when lim sup m
n < 3, we may use the proof of Lemma 42 of [10], which involves

deleting a non-cut-edge from an appearance of a given planar graph (applying
Lemma 2.10), and inserting an edge between two components (using Lemma 3.1 to
bound the amount of double-counting). �

Finally, if m
n → 3, we actually find that Sg(n,m) is connected whp:

Theorem 3.8. Let g ≥ 0 be a constant, and let m = m(n) satisfy m
n → 3 as

n → ∞. Then

P[Sg(n,m) will be connected] → 1 as n → ∞.

Proof. We may employ the method of proof of the g = 0 case from Theorem 14
of [11] (with some small differences). This involves first establishing that (when
m
n → 3) every graph in Sg(n,m) must have (i) Ω(n) triangles containing a vertex
with degree at most 6 and (ii) o(n) cut-edges.

Hence, let G ∈ Sg(n,m), and let us start by considering how many triangles in
G contain at least one vertex with degree at most 6.

First, note that (assuming n ≥ 3) G may be extended to a triangulation of
genus g by inserting 3n − 6 + 6g −m = o(n) ‘phantom’ edges (observe that such
a triangulation may be a multi-graph, rather than a simple graph). Let di denote
the number of vertices of degree i in such a triangulation. Then

7
∑

i≥7

di ≤
∑

i≥1

idi

= 2(3n− 6 + 6g).

Thus,
∑

i≥7 di ≤
6n−12+12g

7 , and so
∑

i≤6 di ≥
n+12−12g

7 .
Let us call a triangle ‘good’ if it contains a vertex with degree at most 6. Since

each (triangular) face contains at most three such vertices, we find that our trian-
gulation must have at least n+12−12g

21 faces that are good triangles. Note that each
of our o(n) phantom edges is in at most two faces of the triangulation, and so our
original graph G must also contain at least n

21 + o(n) of these good triangles (note
that these triangles will still be ‘good’ in G, since the degrees of the vertices will
be at most what they were in the triangulation).

We will now consider how many cut-edges a graph in Sg(n,m) may have. If we
delete all c cut-edges, then the remaining graph will consist of b, say, components,
each of which is either 2-edge-connected or is an isolated vertex. Note that the
graph formed by condensing each of these components to a single node and re-
inserting the cut-edges must be acyclic, so c ≤ b − 1. Label these components
1, 2, . . . b, let ni denote the number of vertices in component i, and let gi denote
the genus of component i (note that the overall genus is equal to the sum of the
genera of these components). Observe that the number of edges in component i is
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at most 3ni − 6 + 6gi if ni ≥ 3 and is 0 = 3ni − 3 otherwise (since ni < 3 implies
that ni = 1). Thus, since max{3ni − 6 + 6gi, 3ni − 3} ≤ 3ni − 3 + 6gi, we have

m ≤
b
∑

i=1

(3ni − 3 + 6gi) + c

≤ 3n− 3b+ 6g + c

< 3n+ 6g − 2c,

and so c < 3n−m+6g
2 = o(n).

We now come to the main part of the proof. Let Gn denote the set of graphs
in Sg(n,m) that are not connected, and choose a graph G ∈ Gn. Choose a good
triangle uvw in G with deg(u) ≤ 6 (at least n

21 + o(n) choices), and delete the edge
vw. Then insert an edge between two vertices in different components — we have
a, say, choices for this edge.

Note that the number of possible edges between disjoint sets X and Y is |X ||Y |,
and if |X | ≤ |Y | then |X ||Y | > (|X | − 1)(|Y | + 1). Hence, it follows that the
number of choices for the edge to insert is minimised when we have one isolated
vertex and one component of n− 1 vertices, and so a ≥ n− 1. Thus, we find that
we can construct at least |Gn|

(

n
21 + o(n)

)

(n− 1) (not necessarily distinct) graphs
in Sg(n,m).

Let us now consider the amount of double-counting. Recall that we have shown
that every graph in Sg(n,m) has o(n) cut-edges. Hence, given one of our con-
structed graphs, there are at most o(n) possibilities for which edge was inserted,
since it must be a cut-edge. There are then at most

(

6
2

)

n possibilities for where
the deleted edge was originally, since it must have been between two neighbours of
a vertex with degree at most 6 (we have at most n possibilities for this vertex, and
then at most

(

6
2

)

possibilities for its neighbours). Thus, we find that we have built

each graph at most o(n2) times.
Hence, the number of distinct graphs (in Sg(n,m)) that we have constructed

must be at least
1
21

n2+o(n2)
o(n2) |Gn|, and so |Gn|

|Sg(n,m)| ≤
o(n2)
Θ(n2) → 0 as n → ∞. �

4. Subgraphs: proof of Theorem 1.2

In this section, we look at the probability that Sg(n,m) will have a copy of H
(i.e. a subgraph isomorphic to H), for various fixed H . We shall let SH(Sg(n,m))
denote the size of the largest set of vertex-disjoint copies of H in Sg(n,m), and we
shall let

P
H
sub := P[SH(Sg(n,m)) ≥ 1],

i.e. the probability that Sg(n,m) will have at least one copy of H .
The main difference to the results on components is that we find there is a copy

of any given planar graph whp when lim inf m
n > 1, as stated in Theorem 1.2. In

Table 2, we again provide a summary.
We start with a stronger result than specified in Theorem 1.2, namely that whp

there are actually linearly many vertex-disjoint copies of any given planar graph H
if lim inf m

n > 1 (note that this follows immediately from Lemma 2.11, by taking T
to be any planar triangulation containing a copy of H):
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Table 2. A summary of PH
sub := P[Sg(n,m) will have a copy of H ].

e(H) < |H | e(H) = |H | e(H) > |H |

H planar H non-planar

0 < lim inf m

n
lim inf PH

sub > 0 P
H
sub → 0

& lim sup m

n
< 1 lim inf PH

sub < 1 (Thm. 4.2)

P
H
sub → 1 (Thms. 3.4 & 4.3)

m ≥ n− o(n) & (Thm. 3.3)

m ≤ n+ o

(

n

(log n)2/3

)

P
H
sub → 1 unknown

m ≥ n+ Ω
(

n

(log n)2/3

)

unknown (Thm. 4.4) unknown

& m ≤ n+ o(n)

lim inf m

n
> 1 P

H
sub → 1 (Thm. 1.2)

Theorem 4.1. Let H be a (fixed) connected planar graph, let g ≥ 0 be a constant,
and let m = m(n) satisfy lim inf m

n > 1. Then there exist α > 0 and N such that

P[SH(Sg(n,m)) ≥ αn] > 1− e−αn for all n ≥ N.

�

The other results in Table 2 follow either directly from Table 1 (note that the
existence of a component isomorphic to H implies the existence of a copy of H) or
from the same proofs as for the random planar graph (see [10, 11]), and so we shall
again just state these theorems without providing full details of the proofs.

If H is multicyclic (i.e. e(H) > |H |), we find that whp we have no copies of H
when lim sup m

n < 1:

Theorem 4.2. Let H be a (fixed) connected multicyclic graph, let g ≥ 0 be a
constant, and let m = m(n) satisfy lim sup m

n < 1. Then

P
H
sub → 0 as n → ∞.

Sketch of Proof. We may apply the proof of Theorem 22 of [11]. This involves
deleting all e(H) edges from a copy of H and inserting them elsewhere in the graph
(using Lemma 2.14 on the number of g-addable edges). The double-counting is
then limited by the fact that the original site of the copy had only |H | < e(H)
vertices. �

IfH is unicyclic (i.e. e(H) = |H |), we already know (from Theorem 3.4) that such
a result would not be true. However, we do find that the probability is bounded
away from 1 when lim sup m

n < 1:

Theorem 4.3. Let H be a (fixed) connected unicyclic graph, let g ≥ 0 be a constant,
and let m = m(n) satisfy lim sup m

n < 1. Then

lim supPH
sub < 1.

Sketch of Proof. We follow the proof of Theorem 18 of [11]. The first part of this
proof involves showing that the probability of having many copies of H is small,
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by transferring the edges of such a copy to some isolated vertices to construct
a component isomorphic to H (using Theorem 3.2 with |H | = 1 to show that
there are many isolated vertices, and our upper bound on P

H
cpt for unicyclic H from

Theorem 3.4 to bound the amount of double-counting). The remainder of the proof
then involves destroying copies of H one-by-one by deleting the edges from them
and inserting edges between components. �

By contrast, we find that the probability actually converges to 1 when m
n → 1:

Theorem 4.4. Let H be a (fixed) connected unicyclic graph, let g ≥ 0 be a constant,
and let m = m(n) satisfy m

n → 1. Then

P
H
sub → 1 as n → ∞.

Sketch of Proof. The proof involves deleting |H | pendant edges (we have many
choices for these, by Lemma 2.13), and then using |H | − 1 of the newly isolated
vertices to convert another pendant edge into an appearance ofH (leaving one extra
isolated vertex, and applying Lemma 3.1 to bound the amount of double-counting).
See Theorem 21 of [11] for full details of the analogous planar proof. �

5. Maximum degree: proof of Theorem 1.3

In this section, we investigate the maximum degree of Sg(n,m) (recall that this
is denoted by ∆(Sg(n,m))), providing the results stated earlier in Theorem 1.3.
For the case when 0 < lim inf m

n ≤ lim sup m
n < 1

2 , we may simply use the fact that

whp ∆(Sg(n,m)) = ∆(G(n,m)), and the latter is already known to be Θ
(

lnn
ln lnn

)

whp (see, for example, Theorem 3.7 of [5]). Hence, we shall concentrate here on
the region lim inf m

n ≥ 1
2 .

For the random graph Sg(n), it is shown in [27] that the maximum degree is
Θ(lnn) whp, and we find that we obtain the same result for our random graph
Sg(n,m) when lim inf m

n > 1. The issue of finding tight bounds for the region
1
2 ≤ lim inf m

n ≤ lim sup m
n ≤ 1 is left as an open problem.

This section will consist of two main results: in Theorem 5.2, we prove an upper
bound of O(lnn) for all m; and then, in Theorem 5.3, we prove a lower bound of
Ω(lnn) for the case when lim inf m

n > 1. A summary is given in Table 3.

Table 3. A summary of the maximum degree of Sg(n,m).

Range of m ∆(Sg(n,m))

0 < lim inf m
n Θ

(

lnn
ln lnn

)

whp

& lim sup m
n < 1

2 (from G(n,m))

1
2 ≤ lim inf m

n O(lnn) whp

& lim sup m
n ≤ 1 (Thm. 5.2)

lim inf m
n > 1 Θ(lnn) whp

(Thms. 5.2 & 5.3)

We start by stating a useful result on pendant vertices:
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Lemma 5.1. Let g ≥ 0 be a constant, and let m = m(n) be any function. Then
whp each vertex of Sg(n,m) is adjacent to at most 2 lnn

ln lnn pendant vertices.

Sketch of Proof. The proof is identical to that of the analogous result for Sg(n)
given in Lemma 2.2 of [27]. �

We may now proceed to our aforementioned upper bound for the maximum
degree:

Theorem 5.2. Let g ≥ 0 be a constant, and let m = m(n) be any function. Then
whp

∆(Sg(n,m)) = O(lnn).

Proof. (i) Case when lim sup m
n < 1

2 :
This follows from standard results on G(n,m).

(ii) Case when 1
2 ≤ lim inf m

n ≤ lim sup m
n < 3:

Let α > 0 be as given by Lemma 2.13, let C > 6
α ln 3 , and let Gn denote the set of

graphs in Sg(n,m) where each vertex is adjacent to at most 2 lnn
ln lnn pendant edges,

where there are at least αn pendant edges in total, and where the maximum degree

is at least C lnn. By Lemmas 2.13 and 5.1, it will suffice to show |Gn|
|Sg(n,m)| → 0 as

n → ∞.
Before we continue, for each graph in Gn let us fix a particular embedding.
Now let us take one of these graphs, and let v be a vertex with deg(v) = d ≥

C lnn. Given our particular embedding of the graph, let us denote the neighbours
of v in clockwise order (in terms of how the edges leave v) as v1, v2, . . . , vd, where
vd is the vertex with largest label.

Now let a = ⌊αC lnn
6 ⌋, and let us choose a of the neighbours of v (at least

(

d
a

)

≥
(

d
a

)a
≥
(

6
α

)a
choices) and a ordered pendant edges not adjacent to v

(at least
(

αn− 2 lnn
ln lnn

)a
≥
(

αn
2

)a
choices for large n). Let us denote the chosen

neighbours of v in our clockwise order as vi1 , vi2 , . . . , via , where vi1 is such that
vd ∈ {vi1 , vi1+1, . . . , vi2−1}, and let us denote the ordered chosen pendant vertices
as u1, u2, . . . , ua. Delete all d edges incident to v, and also delete the a chosen
pendant edges.

Now consider the a vertex sets {vi1 , vi1+1, . . . , vi2−1}, {vi2 , vi2+1, . . . , vi3−1}, . . .,
{via , via+1, . . . , vi1−1}. For all j, let us join uj to all vertices in the jth set, and
let us then join each uj to v (observe that we now have m edges again in total,
and the genus cannot have increased). Thus, we find that we can construct at least
|Gn|(3n)

a (not necessarily distinct) graphs in Sg(n,m). See Figure 3.
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vi3

v

r rr❅
❅
❅

✁
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✁

❆
❆
❆

u1

u2
u3

Figure 3. Using former pendant vertices u1, u2 and u3.

Now let us consider the amount of double-counting. We need to first identify
v (at most n possibilities), after which we can then determine the unordered sets
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{u1, u2, . . . , ua} and {v1, v2, . . . , vd} as being the neighbours and ‘distance 2 neigh-
bours’ of v. We then also need to determine the original neighbours of u1, u2, . . . , ua

(at most na possibilities), after which we then know the original graph and hence the
original embedding. From this, we can then determine the order of v1, v2, . . . , vd,
and hence also the order of u1, u2, . . . , ua. Thus, we find that we have built each
graph at most na+1 times.

Hence, the number of distinct graphs (in Sg(n,m)) that we have constructed

must be at least |Gn|
(3n)a

na+1 = |Gn|
3a

n , and so

|Gn|

|Sg(n,m)|
≤

n

3a

= n1−αC ln 3
6

+o(1)

→ 0 as n → ∞ since C >
6

α ln 3
.

(iii) Case when m
n → 3:

By Lemma 2.11, we know Sg(n,m) has a set of at least αn totally edge-disjoint
triangulated appearances of K4 with high probability. The proof is then similar to
the previous case, but we choose a ordered totally edge-disjoint triangulated appear-
ances of K4 instead of pendant edges, and we use the degree 3 vertex from each one
of these chosen triangulated appearances as our u1, u2, . . . , ua (deleting all 3a edges
incident to these). Note that none of these degree 3 vertices can have been adjacent
to v as long as d > 5. In order to maintain the correct number of edges overall,
we also insert additional edges u1u2, u2u3, . . . , uau1 and u1vi2 , u2vi3 , . . . , uavi1 . See
Figures 4 and 5.
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Figure 4. Using a triangulated appearance of K4 to find an
appropriate vertex uj.

�
�
�
�
�
�❅

❅
❅
❅
❅
❅r

r
r

r
r
r

r
r
rvi1 vi2

vi3

v
✲

�
�
�

❍❍❍

r
r
r

r
r
r

r
r

rvi1 vi2

vi3

v

r rr❅
❅
❅

✁
✁
✁

❆
❆
❆

u1

u2

u3
❇
❇
❇
❇❇

✁
✁
✁❅❅
✟✟✟

✟✟✟ ✁
✁
✁

Figure 5. Using former degree 3 vertices u1, u2 and u3.

The calculations are then similar to before. The only difference is that when
determining the original neighbours of u2, u3, . . . , ua, we now have at most

(

7
3n
)a
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possibilities instead of na, since we need to look for what will be triangulated ap-
pearances of K3 (note there are at most n

3 vertex-disjoint triangulated appearances
of K3, and each can have a vertex in common with at most 6 others, since there are
only 6 other triangles touching any triangulated appearance). Hence, we obtain

|Gn|

|Sg(n,m)|
≤

(

7
3

)a
n

3a

=
n
(

9
7

)a

= n1−
αC ln( 9

7 )
6

+o(1)

→ 0 as n → ∞ for C >
6

α ln
(

9
7

) . �

We now also provide the corresponding lower bound for the case when lim inf m
n >

1:

Theorem 5.3. Let g ≥ 0 be a constant, and let m = m(n) satisfy lim inf m
n > 1.

Then whp
∆(Sg(n,m)) = Ω(lnn).

Proof. Let α > 0 be as given by Lemma 2.11, let c ∈

(

0, 1

ln( 14
3α )

)

, and let Gn denote

the set of graphs in Sg(n,m) with at least αn totally edge-disjoint triangulated ap-
pearances of K4 and with maximum degree less than h = ⌈c lnn⌉. By Lemma 2.11,

it will suffice to show |Gn|
|Sg(n,m)| → 0 as n → ∞. Consequently, throughout the

remainder of this proof, we may assume that n is sufficiently large that h > 6.
Take a graph in Gn. Choose h + 1 ordered totally edge-disjoint triangulated

appearances of K4 (at least
(

αn
2

)h+1
choices for large n), and denote the degree

3 vertices from each of these (in order) as u1, u2, . . . , uh+1. Let us then delete all
edges incident to these vertices, and let us denote the original neighbours of u1 as
v1, v2 and v3.

Now form a wheel with u1 as the central vertex and with the vertices u2, u3, . . . ,
uh+1 arranged in clockwise order around it. Then also join each of u2, u3, . . . , uh+1

to v1, join u2 to v2 and v3, and join u3 to v3 (observe that we now have m edges
again in total, and the genus cannot have increased). Thus, we find that we can

construct at least |Gn|
(

αn
2

)h+1
(not necessarily distinct) graphs in Sg(n,m). See

Figure 6.
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Figure 6. Using a triangulated appearance of K4 to construct
our new graph.
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Now let us consider the amount of double-counting. Note that deg(u1) = h,
deg(u2) = 6, deg(u3) = 5, deg(ui) = 4 for all i ≥ 4, deg(v1) = h+ 4, deg(v2) = 5,
and deg(v3) = 6, and recall that all other vertices have degree less than h. Hence,
we can identify u1 (the only vertex with degree exactly h), after which we can then
determine u2 (the only neighbour of u1 with degree 6) and u3 (the only neighbour
of u1 with degree 5), and then u4, u5, . . . , uh+1 (using the clockwise ordering). We
then just need to also determine the original neighbours of u2, u3, . . . , uh+1 (at most
(

7
3n
)h

possibilities, as in the previous proof, since we again need to look for what
are now triangulated appearances of K3). Thus, we find that we have built each

graph at most
(

7
3n
)h

times.
Hence, the number of distinct graphs (in Sg(n,m)) that we have constructed

must be at least
|Gn|(αn

2 )h+1

( 7
3
n)

h = |Gn|
α
2

(

3α
14

)h
n, and so

|Gn|

|Sg(n,m)|
≤

2

α

(

14

3α

)h
1

n

= n−1+c ln( 14
3α )+o(1)

→ 0 as n → ∞ since c <
1

ln
(

14
3α

) . �

6. Largest face size: proof of Theorem 1.4

In this section, we shall now look at F (Sg(n,m)), the size of the largest face
of Sg(n,m) (maximised over all possible embeddings with genus at most g). In
particular, we shall see (as stated already in Theorem 1.4) that F (Sg(n,m)) = Θ(n)
whp for 0 < lim inf m

n ≤ lim sup m
n < 1, and that F (Sg(n,m)) = Θ(lnn) whp for

1 < lim inf m
n ≤ lim sup m

n < 3. A summary of results, including the cases when
m
n → 1 and m

n → 3, is given in Table 4.

Table 4. A summary of the size of the largest face of Sg(n,m).

Range of m F (Sg(n,m))

0 < lim inf m
n ≤ lim sup m

n < 1 Θ(n) whp (Thm. 6.1)

0 < n−m = Ω(n3/5) Ω(n−m) whp (Thm. 6.2)

|m− n| = O(n3/5) Ω(n3/5) whp (Thm. 6.2)

m
n → 1 0 < m− n =







Ω(n3/5)

o
(

n
(logn)2/3

) Ω

(

(

n
m−n

)3/2
)

whp (Thm. 6.2)

m− n = Ω
(

n
(log n)2/3

)

unknown

1 < lim inf m
n ≤ lim sup m

n < 3 Θ(lnn) whp (Thm. 6.3 & 6.4)

m
n → 3 O(lnn) whp (Thm. 6.4)

We start with the region 0 < lim inf m
n ≤ lim sup m

n < 1. Here, we know from
Theorem 3.2 that whp there are linearly many components isomorphic to any given
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tree, and so (since these can all be placed in the same face, and since no face can
ever exceed linear size) we obtain our result immediately:

Theorem 6.1. Let g ≥ 0 be a constant, and let m = m(n) satisfy 0 < lim inf m
n ≤

lim sup m
n < 1. Then whp

F (Sg(n,m)) = Θ(n).

�

Similarly, we may use Lemma 2.12 on the number of edges in trees and unicyclic
components to obtain lower bounds for the largest face size when m

n → 1:

Theorem 6.2. Let g ≥ 0 be a constant, and let m = m(n) satisfy m
n → 1. Then

whp

F (Sg(n,m)) =































Ω(n−m) for 0 < n−m = Ω(n3/5)

Ω(n3/5) for |m− n| = O(n3/5)

Ω

(

(

n
m−n

)3/2
)

for 0 < m− n =







Ω(n3/5)

o
(

n
(logn)2/3

)

.

�

For the random graph Sg(n), it is shown in [27] that whp the largest face size is
Θ(lnn). We shall now see that this also holds for our graph Sg(n,m) for the region
when 1 < lim inf m

n ≤ lim sup m
n < 3. We start with the lower bound:

Theorem 6.3. Let g ≥ 0 be a constant, and let m = m(n) satisfy 1 < lim inf m
n ≤

lim sup m
n < 3. Then whp

F (Sg(n,m)) = Ω(lnn).

Proof. We follow the method of proof of Theorem 3.1 of [27], noting that it suffices
to show that whp Sg(n,m) contains a pendant copy of a path with Ω(lnn) vertices.

Let α be as given by Lemma 2.13, let c ∈

(

0, 1

ln( 2
α )

)

, let h = ⌈c lnn⌉, and let Gn

denote the set of graphs in Sg(n,m) with (i) at least αn pendant edges and (ii) no
pendant copy of Ph (where Ph denotes a path with h vertices). By Lemma 2.13, it

will suffice to show |Gn|
|Sg(n,m)| → 0 as n → ∞.

Take a graph in Gn. Let us choose h ordered pendant edges (at least
(

αn
2

)h

choices for large n), and let us denote the ordered chosen pendant vertices as
v1, v2, . . . , vh. Delete all h− 1 (pendant) edges incident to v2, v3, . . . , vh, and insert
edges v1v2, v2v3, . . . , vh−1vh to create a pendant copy of Ph. Thus, we find that we

can construct at least |Gn|
(

αn
2

)h
(not necessarily distinct) graphs in Sg(n,m).

Now let us consider the amount of double-counting. Firstly, note that if a new
pendant copy of a graph H is produced by deleting an edge uv, then either u or v
(or both) must belong to this pendant copy. Thus, if v was originally a pendant
vertex, then it must be that u belongs to this new pendant copy. Secondly, let us
call a pendant copy of the path Ph ‘straight’ if it is joined to the rest of the graph
at an end-point of the path, and let us note that any vertex can only ever be in
at most two straight pendant copies of Ph (at most one in each direction, possibly
both ways if an entire component is a path). Hence, each time we deleted a pendant
edge, we can have only increased the number of straight pendant copies of Ph by at
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most two. Similarly, when we inserted the path v1v2 . . . vh, we can also have only
increased the number of straight pendant copies of Ph by at most two (since any
new pendant copy of Ph would contain v1).

Thus, given one of our constructed graphs, there will be at most 2h straight
pendant copies of Ph. Hence, there are at most 2h possibilities for vh, after which
we can then determine the ordered vertices vh−1, vh−2, . . . , v1. We then also need
to determine the original neighbours of v2, v3, . . . , vh (at most nh−1 possibilities).
Thus, we find that we have built each graph at most 2hnh−1 times.

Hence, the number of distinct graphs (in Sg(n,m)) that we have constructed

must be at least
|Gn|(αn

2 )
h

2hnh−1 = |Gn|
1
2h

(

α
2

)h
n, and so

|Gn|

|Sg(n,m)|
≤ 2h

(

2

α

)h
1

n

= n−1+c ln( 2
α )+o(1)

→ 0 as n → ∞ since c <
1

ln
(

2
α

) . �

We also now provide a corresponding upper bound:

Theorem 6.4. Let g ≥ 0 be a constant, and let m = m(n) satisfy lim inf m
n > 1.

Then whp
F (Sg(n,m)) = O(lnn).

Proof. First, note that the size of a face with k vertices and l edges is at most 2l,
and hence at most 2(3k−6+6g). Thus, it will suffice for us to show that the largest
number of vertices in any face of Sg(n,m) is O(lnn) with high probability.

Let α > 0 be as given by Lemma 2.11, let C > 6

α ln( 9
7 )
, and let Gn denote the set of

graphs in Sg(n,m) with at least αn totally edge-disjoint triangulated appearances
of K4 and with a face (in some embedding with genus at most g) containing at least

C lnn vertices. By Lemma 2.11, it will suffice to show |Gn|
|Sg(n,m)| → 0 as n → ∞.

Before we continue, for each graph in Gn let us fix a particular embedding from
among those which maximise the number of vertices in a single face (over all embed-
dings with genus at most g), let us fix a particular face from among those with the
largest number of vertices in this embedding, and let us fix a particular ‘clockwise’
ordering of the vertices in this face (this should be done by placing an imaginary
vertex at some point inside the face, inserting exactly one edge from here to ev-
ery vertex in the face in such a way that no crossing edges are introduced, and
then taking a particular clockwise ordering in terms of how these edges leave the
imaginary vertex).

Now let us take one of our graphs, and recall that the number of vertices in our
chosen face is d ≥ C lnn. Let us denote these vertices, using our given ordering, as
v1, v2, . . . , vd.

Let a = ⌊αC lnn
6 ⌋, and let us choose a of these vertices (at least

(

d
a

)

≥
(

d
a

)a
≥

(

6
α

)a
choices). Let us denote the chosen vertices in clockwise order as vi1 , vi2 , . . . ,

via , where vi1 is such that vd ∈ {vi1 , vi1+1, . . . , vi2−1}.
Let us also choose a + 1 ordered totally edge-disjoint triangulated appearances

of K4 that do not contain any of these chosen vertices as part of the K4 (at least
(

αn
2

)a+1
choices for large n). For these chosen triangulated appearances, let us

denote (in order) the a degree 3 vertices as u0, u1, u2, . . . , ua.
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Now delete all 3(a+1) edges incident to u0, u1, u2, . . . , ua, and form a wheel with
u0 as the central vertex and with the vertices u1, u2, . . . , ua arranged in clockwise
order around it. For all j ∈ {1, 2, . . . , a}, join uj to vij , and let us then also join u1

to vi2 , u2 to vi3 , and u3 to vi4 (observe that we now have m edges again in total,
and the genus cannot have increased). Thus, we find that we can construct at least

|Gn|
(

6
α

)a (αn
2

)a+1
= |Gn|(3n)a+1 α

6 (not necessarily distinct) graphs in Sg(n,m).
See Figure 7.
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Figure 7. Using a large face to construct our new graph.

Now let us consider the amount of double-counting. We need to first identify
u0 (at most n possibilities), after which we can then determine the unordered set
{u1, u2, . . . , ua} as being the neighbours of u0. We then also need to determine

the original neighbours of u0, u1, u2, . . . , ua (at most
(

7
3n
)a+1

possibilities, as in the
proof of Theorem 5.2, since we need to look for triangulated appearances of K3).
After this, we then know the original graph, and hence the original embedding, our
chosen face, and the order of v1, v2, . . . , vd. Hence, we can then determine the order

of u1, u2, . . . , ua. Thus, we find that we have built each graph at most
(

7
3n
)a+1

n
times.

Hence, the number of distinct graphs (in Sg(n,m)) that we have constructed

must be at least
|Gn|(3n)

a+1 α
6

( 7
3
n)a+1

n
= |Gn|

α
6n

(

9
7

)a+1
, and so

|Gn|

|Sg(n,m)|
≤

6

α

n
(

9
7

)a+1

= n1−
αC ln( 9

7 )
6

+o(1)

→ 0 as n → ∞ since C >
6

α ln
(

9
7

) . �

7. Appearances: proof of Lemma 2.10

In this section, we shall investigate the number of appearances in Sg(n,m) of
given subgraphs (see Definition 2.6). The main feature here will be a proof of
Lemma 2.10, but we will also derive (in Theorem 7.4) a new result on the uniform
convergence of |Sg(n,m)| to the relevant growth constant.

We start with a lemma that defines the growth constant function γ(q):

Lemma 7.1 ([7], Theorem 1.1). There exists a continuous function γ(q) such that,
given any constants g ≥ 0 and q ∈ (1, 3), we have

(

|Sg(n, ⌊qn⌋)|

n!

)1/n

→ γ(q) as n → ∞.



THE EVOLUTION OF RANDOM GRAPHS ON SURFACES 23

For all q ∈ (1, 3), we have e < γ(q) ≤ γl ≈ 27.23, where γl is the labelled planar
graph growth constant.

For planar graphs, the following useful uniform convergence result is known:

Lemma 7.2 ([19], Lemma 2.9). Let a ∈ (1, 3) and η > 0 be constants. Then there
exists n0 such that, for all n ≥ n0 and all m ∈ [an, 3n− 6], we have

∣

∣

∣

∣

∣

(

|S0(n,m)|

n!

)1/n

− γ
(m

n

)

∣

∣

∣

∣

∣

< η.

As mentioned, we shall later (in Theorem 7.4) generalise Lemma 7.2 to non-
zero genus. However, we first come to the main work of this section, where we
provide a proof of Lemma 2.10, showing that whp Sg(n,m) will have linearly many
appearances of any given planar graph. As the full proof is quite long, we also give
a sketch of the proof:

Sketch of Proof of Lemma 2.10. Recall that
(

|Sg(n,⌊qn⌋)|
n!

)1/n

→ γ(q) for q ∈ (1, 3).

Although we have not yet shown that this convergence is uniform, we can still
certainly choose any large but finite number of values q∗1 , q

∗
2 , . . . , q

∗
T and then find

an N such that

(1− ǫ)nn!(γ(q∗i ))
n ≤ |Sg(n, ⌊q∗i n⌋)| ≤ (1 + ǫ)nn!(γ(q∗i ))

n

for all these q∗i for all n ≥ N (for a given ǫ > 0). The upper bound here will be of
particular importance to us.

We then suppose (aiming for a contradiction) that the statement of the the-

orem is false for some n = k, and we find a value q∗j close to m(k)
k . Using

|Sg(k,m(k))| ≥ |S0(k,m(k))|, Lemma 7.2, and the continuity of γ(q), we may
then obtain |Sg(k,m(k))| ≥ (1− ǫ)kk!(γ(q∗j ))

k.
We then take graphs in |Sg(k,m(k))| without αk vertex-disjoint appearances of

H , and to each of these we attach many appearances of carefully selected graphs
H1 and H2, which both contain appearances of H . By choosing H1 and H2 to have
the appropriate ratio of edges to vertices, we may consequently construct many
graphs in Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋) for some δ > 0.

The fact that the original graphs were assumed to contain few appearances of H
is then used to bound the amount of double-counting, and so we find that we obtain
a contradiction to our earlier upper bound on |Sg(n, ⌊q∗jn⌋)| when n = (1 + δ)k.

Full Proof of Lemma 2.10. Let b > 1 denote lim inf m
n , let B < 3 denote lim sup m

n ,
and let h denote |H |. Let l ≥ 3 then be an integer chosen to satisfy both

(1)
e(H) + l + 1

h+ l
< b

and

(2)
e(H) + 3l − 4

h+ l
> B,

let

(3) β = e2(γl)
h+l2(2h+ l + 1)(h+ l)!,
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and let α be a fixed constant in
(

0, 1
β

)

. Since αβ < 1, we may then also choose a

value ǫ ∈
(

0, 1
3

)

such that

(4) (αβ)α = 1− 3ǫ.

By continuity of γ(q), it is possible to find d > 0 such that |γ(q1) − γ(q2)| <
ǫ
2

whenever q1, q2 ∈ [b, B] and |q1 − q2| ≤ d. We may assume that d is small enough
that is also satisfies both

(5)
α(e(H) + l + 1) + d

α(h+ l)
≤ b

and

(6)
α(e(H) + 3l− 4)− d

α(h+ l)
≥ B.

Let us then split [b, B] into a finite number of intervals of length at most d, and for
each interval i let us select a value q∗i in that interval.

Let N then be chosen so that |Sg(n, ⌊q∗i n⌋)| ≤ (1 + ǫ)nn!(γ(q∗i ))
n for all i for

all n ≥ N , and let us suppose that the statement of the theorem doesn’t hold for
some k ≥ N (throughout the remainder of this proof, we will assume that N is
large enough that various inequalities involving l, β, α, ǫ and k are satisfied). Let
M denote m(k), and let Gk denote the set of graphs in Sg(k,M) which contain at
most αk appearances of H (so |Gk| ≥ e−αk|Sg(k,M)|).

Without loss of generality, suppose M
k is in interval j of our subdivision of [b, B].

Thus, we have

|Sg(k,M)| ≥ |S0(k,M)|

≥
(

1−
ǫ

2

)k
(

γ

(

M

k

))k

k! by Lemma 7.2 (for large k)

≥
(

1−
ǫ

2

)k (

γ(q∗j )−
ǫ

2

)k

k!

≥ (1− ǫ)k(γ(q∗j ))
kk! (since γ(q) > 1 for all q),

and so |Gk| ≥ e−αk(1− ǫ)k(γ(q∗j ))
kk!.

Recall
α(e(H) + l + 1) + d

α(h+ l)

(5)

≤ b ≤ q∗j

and
α(e(H) + 3l− 4)− d

α(h+ l)

(6)

≥ B ≥ q∗j .

Hence,

q∗j + α(e(H) + l+ 1) + d

1 + α(h+ l)
≤ q∗j ≤

q∗j + α(e(H) + 3l − 4)− d

1 + α(h+ l)
,

so
(q∗j + d)k + αk(e(H) + l + 1)

k + αk(h+ l)
≤ q∗j ≤

(q∗j − d)k + αk(e(H) + 3l − 4)

k + αk(h+ l)
,

and so

(q∗j + d)k + ⌈αk⌉(e(H) + l + 1)

k + ⌈αk⌉(h+ l)

(1)

≤ q∗j
(2)

≤
(q∗j − d)k + ⌈αk⌉(e(H) + 3l − 4)

k + ⌈αk⌉(h+ l)
.
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Thus, since q∗j − d ≤ M
k ≤ q∗j + d, we have

M + ⌈αk⌉(e(H) + l + 1)

k + ⌈αk⌉(h+ l)
≤ q∗j ≤

M + ⌈αk⌉(e(H) + 3l − 4)

k + ⌈αk⌉(h+ l)
.

Hence, we can find integers r− and r+ in {l−1, l, . . . , 3l−6} satisfying r+ = r−+1
and

M + ⌈αk⌉(e(H) + 2 + r−)

k + ⌈αk⌉(h+ l)
≤ q∗j ≤

M + ⌈αk⌉(e(H) + 2 + r+)

k + ⌈αk⌉(h+ l)
.

Since r−, r+ ∈ {l − 1, l, . . . , 3l− 6}, we can thus find connected planar graphs H−

and H+ on {1, 2, . . . , l} with e(H−) = r− and e(H+) = r+ = r− + 1.
Now let H ′ be an order-preserving copy of H on {l+ 1, l + 2, . . . , l + h}, let H1

be formed from H− and H ′ by adding an edge between vertex l and vertex l + 1,
and let H2 be the analogous graph formed from H+ and H ′. Note that H1 and H2

(and indeed any appearances of H1 and H2) both contain appearances of H . Also,
note that we have

M + ⌈αk⌉(e(H1) + 1)

k + ⌈αk⌉(h+ l)
≤ q∗j ≤

M + ⌈αk⌉(e(H2) + 1)

k + ⌈αk⌉(h+ l)
,

and hence

M + ⌈αk⌉(e(H1) + 1) ≤ ⌊q∗j (k + ⌈αk⌉(h+ l))⌋ ≤ M + ⌈αk⌉(e(H2) + 1)

(using the integrality of M + ⌈αk⌉(e(H1) + 1) to obtain the left-hand inequality).
Now let

(7) δ =
⌈αk⌉(h+ l)

k
.

Starting with graphs in Gk, we shall construct graphs in Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋)
by attaching k1 appearances of H1 and k2 = ⌈αk⌉ − k1 appearances of H2.

Note that we shall need to achieve the correct balance of k1 and k2 so that our
constructed graphs will indeed have ⌊q∗j (1+δ)k⌋) = ⌊q∗j (k+⌈αk⌉)(h+l)⌋ edges. But
observe that (since e(H2) = e(H1)+1) k1 and k2 can be chosen so that the number
of edges in our constructed graph is any desired integer from M + ⌈αk⌉(e(H1) + 1)
to M + ⌈αk⌉(e(H2) + 1), and so this is okay.

Having obtained the appropriate values of k1 and k2, let us now construct our
graphs in Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋):

Choose δk special vertices (we have
(

(1+δ)k
δk

)

choices for these), and partition

them into ⌈αk⌉ unordered blocks of size h + l (we have
(

δk
h+l,...,h+l

)

1
⌈αk⌉! choices

for this). Divide the blocks into two sets of size k1 and k2. On each of the first k1
blocks, we put a copy of H1 such that the increasing bijection from V (H1) to the
block is an isomorphism between H1 and this copy. We do the same for the set of
k2 blocks, except with H2 instead of H1.

On the remaining (i.e. non-special) vertices, choose a graph G ∈ Gk. We may
then attach our copies of H1 and H2 to any vertices in V (G) (k⌈αk⌉ choices) to
create appearances of H1 and H2.
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Thus, for each choice of special vertices and each choice of G, the number of
graphs in Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋) that we may construct is at least

(

δk
h+l,...,h+l

) 1

⌈αk⌉!
k⌈αk⌉ =

(δk)!k⌈αk⌉

((h+ l)!)⌈αk⌉⌈αk⌉!

≥
(δk)!

((h+ l)!α)⌈αk⌉

(for k large enough that ⌈αk⌉! ≤ (αk)⌈αk⌉).
Hence, we may construct at least

(

(1+δ)k
δk

)

e−αk(1− ǫ)k(γ(q∗j ))
kk!

(δk)!

((h+ l)!α)⌈αk⌉

(not necessarily distinct) graphs in Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋) in total.

We shall now consider the amount of double-counting:
Recall that G did not contain αk vertex-disjoint appearances of H , and so con-

tained fewer than hαk appearances of H in total (by Observation 2.5). Recall also
that each appearance of H1 contains an appearance of H , and so G contained fewer
than hαk appearances of H1. When we deliberately attach an appearance of H1 or
H2, the number of ‘accidental’ appearances of H1 that we create in the graph will
be at most h + l (considering the number of cut-edges). Thus, our created graph
will have at most (2h+ l+1)⌈αk⌉ appearances of H1. Similarly, our created graph
will have at most (2h+ l + 1)⌈αk⌉ appearances of H2.

Let x = 2(2h + l + 1). Then, given one of our constructed graphs, we have at

most
(

x⌈αk⌉
⌈αk⌉

)

≤ (xe)⌈αk⌉ choices for which were the special vertices. Once we have

identified these, we then know what G was. Thus, each graph is constructed at
most (xe)⌈αk⌉ times.

Therefore, we find that the number of distinct graphs that we have created in
Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋) is at least

(

(1+δ)k
δk

)

e−αk(1− ǫ)k(γ(q∗j ))
kk!

(δk)!

((h+ l)!α)⌈αk⌉
(xe)−⌈αk⌉

(7)

≥ ((1 + δ)k)!(γ(q∗j ))
(1+δ)k(1− ǫ)k

(

e2(γ(q∗j ))
(h+l)x(h+ l)!α

)−⌈αk⌉

(3)

≥ ((1 + δ)k)!(γ(q∗j ))
(1+δ)k(1− ǫ)k(αβ)−⌈αk⌉

(4)

≥ |Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋)|(1 + ǫ)−(1+δ)k(1− ǫ)k(1− 3ǫ)−k

≥ |Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋)|

(

(1 − ǫ)

(1 − 3ǫ)(1 + ǫ)2

)k

(since we may assume k is large enough that δ < 1)

> |Sg((1 + δ)k, ⌊q∗j (1 + δ)k⌋)|

(since (1− 3ǫ)(1 + ǫ)2 = 1− ǫ− 5ǫ2 − 3ǫ3).

Thus, we have obtained our desired contradiction. �
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We now look to conclude this section by using Lemma 2.10 to obtain a uni-
form convergence result similar to Lemma 7.2 for arbitrary genus. Recall that we
have already utilised Lemma 2.10 to produce Lemma 2.16 on the number of g-
addable graphs. This will be the crucial ingredient in modifying the original proof
of Lemma 7.2, via the following lemma:

Lemma 7.3. Let g ≥ 0, a > 1, A < 3 and η′ > 0 be constants. Then there
exist n1 and δ1 > 0 such that, for all n ≥ n1 and all constants m1,m2 satisfying
an ≤ m1 < m2 ≤ An and m2 −m1 ≤ δ1n+ 1, we have

|Sg(n,m1)| ≤ (1 + η′)n|Sg(n,m2)|.

Proof. By Lemma 2.16, there exists a constant c such that, for all sufficiently large
n, the (vast) majority of graphs in Sg(n,m2 − 1) have at least cn g-addable edges.
Note that we can obtain a graph in Sg(n,m2) by adding such an edge, and that
any such graph will be built at most m2 < 3n times. Thus,

|Sg(n,m2)| ≥
cn 1

2 |S
g(n,m2 − 1)|

3n

=
c

6
|Sg(n,m2 − 1)|.

Proceeding in this manner, we may consequently obtain

|Sg(n,m1)| <

(

6

c

)δ1n+1

|Sg(n,m2)|

=

(

(

6

c

)δ1+
1
n

)n

|Sg(n,m2)|,

from which the result follows. �

We may now obtain our uniform convergence result:

Theorem 7.4. Let g ≥ 0, a > 1, A < 3 and η > 0 be constants. Then there exists
n0 such that, for all n ≥ n0 and all m ∈ [an,An], we have

∣

∣

∣

∣

∣

(

|Sg(n,m)|

n!

)1/n

− γ
(m

n

)

∣

∣

∣

∣

∣

< η.

Proof. The proof follows that of Lemma 2.9 in [19], using Lemma 7.3 at the relevant
point. �

8. Triangulated appearances: proof of Lemma 2.11

In this section, we shall now turn our attention to triangulated appearances (see
Definition 2.7). The main feature here will be the proof of Lemma 2.11.

Throughout this section, we shall often be interested in the region when m
n is

close to 3, and so we start with a lemma that defines the relevant growth constant
γ(3):

Lemma 8.1 ([19], Theorem 2.1). There exists a constant γ(3) > 0 such that

γ(q) → γ(3) as q → 3−,

i.e. γ(q) → γ(3) as q → 3 from below.



28 THE EVOLUTION OF RANDOM GRAPHS ON SURFACES

We next give two useful lemmas on the size of Sg(n,m) when m
n is close to 3.

The first gives a lower bound:

Lemma 8.2. Let g ≥ 0 be a constant, and let m = m(n) satisfy m
n → 3 as n → ∞.

Then, given any ǫ > 0, there exists N1 such that

|Sg(n,m)| ≥ (1 − ǫ)nn!(γ(3))n for all n ≥ N1.

Proof. The proof is by induction on g.
Base case (g = 0): This follows from Lemma 7.2 and the continuity of γ(q) as

q → 3−.
Inductive step: Now suppose the result is true for all g < k and consider g = k.

It suffices to deal with the cases when (a) m ≤ 3n− 6+ 6(k− 1) for all large n and
(b) m > 3n− 6 + 6(k − 1) for all large n.

Case (a): We have |Sk(n,m)| ≥ |Sk−1(n,m)| ≥ (1 − ǫ)nn!(γ(3))n by the induc-
tion hypothesis, and so we are done.

Case (b): We shall construct graphs in Sk(n,m) by using triangulations in
Sk−1(⌈n

2 ⌉, 3⌈
n
2 ⌉ − 6 + 6(k − 1)) and S0(⌊n

2 ⌋, 3⌊
n
2 ⌋ − 6):

Take a graph T1 in Sk−1(⌈n
2 ⌉, 3⌈

n
2 ⌉ − 6 + 6(k − 1)) (we may assume that we

have at least (1− ǫ
2 )

⌈n
2
⌉⌈n

2 ⌉!(γ(3))
⌈n

2
⌉ choices for this, by the induction hypothesis).

Choose ⌈n
2 ⌉ vertices from 1 to n (

(

n
⌈n

2
⌉

)

= n!
⌈n

2
⌉!⌊n

2
⌋! choices), and use these to create

a copy of T1 such that the increasing bijection from {1, 2, . . . , ⌈n
2 ⌉} to these vertices

gives an isomorphism.
Now fix a specific embedding of this graph on a surface of genus k−1, and select

one of the faces to be the ‘outer’ face. Note that it is also certainly possible to
select an ‘inner’ face that has at most one vertex in common with this outer face
(since if two triangular faces share two common vertices, then they must share a
common edge, but an edge can only be in at most two faces and so this rules out
only at most three inner faces) — let us call such a vertex ‘exceptional’.

Similarly, we may take a graph T2 in S0(⌊n
2 ⌋, 3⌊

n
2 ⌋ − 6) (we have at least

(1− ǫ
2 )

⌊n
2
⌋⌊n

2 ⌋!(γ(3))
⌊n

2
⌋ choices), put an isomorphic copy of this on the remaining

vertices, fix a specific embedding of this on the plane, and find an inner face that
has at most one vertex in common with the outer face (again, we shall call such a
vertex ‘exceptional’).

Let us now join the two graphs by adding six edges between the two outer faces,
thus creating a triangulation in Sk−1(n, 3n− 6 + 6(k− 1)) (if the two chosen inner
faces each contain an exceptional vertex, v1 and v2 say, then we should do this in
such a way that v1v2 is not one of the edges added).

We may then also add up to six edges between vertices in the two chosen inner
faces to create a (simple) graph in Sk(n,m). See Figure 8 (where we imagine that
a tunnel/handle joins the ‘holes’ at A and B).

Now let us consider the amount of double-counting. We have at most (m6 ) (
m
6 ) ≤

(4n)12 possibilities for the inserted edges, and then at most 2 possibilities for which
triangulation is T1 and which is T2. Hence, each graph is constructed at most
2 · 412n12 times.

Thus,

|Sk(n,m)| ≥
(1− ǫ

2 )
nn!(γ(3))n

2 · 412n12

≥ (1− ǫ)nn!(γ(3))n for sufficiently large n. �
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Figure 8. Joining two triangulations to create a graph in Sk(n,m).

We now also obtain a useful upper bound:

Lemma 8.3. Let g ≥ 0 be a constant. Then, given any c > 0 and any ǫ > 0, there
exist q ∈ (3− c, 3) and N2 such that

|Sg(n, ⌊qn⌋)| ≤ (1 + ǫ)nn!(γ(3))n for all n ≥ N2.

Proof. This follows from the fact that
(

|Sg(n,⌊qn⌋)|
n!

)1/n

→ γ(q) for q ∈ (1, 3),

together with the continuity of γ(q) as q → 3−. �

Before we proceed with the proof of Lemma 2.11, we shall find it very help-
ful to first establish bounds on the number of possible intersections of different
triangulated appearances:

Lemma 8.4. The total edge set of a triangulated appearance of a connected graph
of order t will intersect (i.e. have an edge in common with) the total edge set of at
most

(

t+3
3

)

other triangulated appearances of connected graphs of order t.

Proof. Suppose we have a triangulated appearance of a connected graph of order t
at W ⊂ V (G), as in Definition 2.7 and Figure 2. Note that the vertices {v1, v2, v3}
form a 3-vertex-cut. Suppose that G also contains another triangulated appearance
of a connected graph of order t, at W2 say, and let {u1, u2, u3} denote the associated
3-vertex-cut in V (G) \W2. See Figure 9.
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Figure 9. Triangulated appearances at W and W2.

Firstly, suppose {u1, u2, u3} ⊂ V (G)\W . Note that all vertices in W will then be
contained within a single component of G\{u1, u2, u3}, together with any vertex vi
not in {u1, u2, u3}. Thus, since W2 will be one of the components of G\{u1, u2, u3},
we must have either W2 ⊃ W , in which case W2 = W (since |W2| = |W | = t), or
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W2 ⊂ V (G) \ (W ∪ {v1, v2, v3}), in which case the total edge set of W2 does not
intersect the total edge set of W .

Alternatively, suppose ui ∈ W for some i. Then we have {u1, u2, u3} ⊂ (W ∪
{v1, v2, v3}), since u1, u2 and u3 are all neighbours of each other, and so there are
then at most

(

t+3
3

)

possibilities for {u1, u2, u3}. For each one of these, let us consider
the number of possibilities for W2, which we recall will be one of the components
of G \ {u1, u2, u3}.

Since ui ∈ W and ui /∈ W2, we know that W2 must contain at least one vertex in
V (G) \W in order that |W2| = t. Note also that we can’t have W2 ⊂ V (G) \ (W ∪
{v1, v2, v3}), since two vertices inW2 must be adjacent to ui (which is inW ). Hence,
W2 must contain at least one vertex from {v1, v2, v3}. But no two vertices from
{v1, v2, v3} can be in different components of G\{u1, u2, u3}, since {v1, v2, v3} forms
a triangle. Hence, W2 is in fact the unique component of G\{u1, u2, u3} containing
vertices from {v1, v2, v3}, and so we find that (given {u1, u2, u3}) we have only one
possibility for W2. �

We are now ready to obtain the main result of this section (Lemma 2.11), showing
that whp Sg

n,m will have linearly many triangulated appearances of any given planar
triangulation. Again, we also provide a sketch of the proof:

Sketch of Proof of Lemma 2.11. Using Lemma 8.3, we find a value q such that
|Sg(n, ⌊qn⌋)| ≤ (1 + ǫ)nn!(γ(3))n for all large n (for a given ǫ > 0). We then
suppose (aiming for a contradiction) that the statement of the theorem is false for
some n = k, and we recall |Sg(k,m(k))| ≥ (1− ǫ)kk!(γ(3))k from Lemma 8.2.

We then take graphs in |Sg(k,m(k))| without αk totally edge-disjoint triangu-
lated appearances of T , and to each of these we attach many triangulated ap-
pearances of carefully selected graphs T1 and T2, which both contain triangulated
appearances of T . By choosing T1 and T2 to have the appropriate ratio of edges to
vertices, we may consequently construct many graphs in Sg((1 + δ)k, ⌊q(1 + δ)k⌋)
for some δ > 0.

The fact that the original graphs were assumed to contain few triangulated
appearances of T is then used to bound the amount of double-counting, and so
we find that we obtain a contradiction to our earlier upper bound on |Sg(n, ⌊qn⌋)|
when n = (1 + δ)k.

Full Proof of Lemma 2.11. Due to Lemma 2.10 (taking H to be any graph contain-
ing a triangulated appearance of T that doesn’t involve vertex 1), it only remains
to deal with the case when m

n → 3.
Let

(8) β = e2(γ(3))|T |+4
(

4
(

|T |+7
3

)

+ 4
)

(|T |+ 4)!,

and let α be a fixed constant in
(

0, 1
β

)

. Then we have αβ < 1, and so there exists

ǫ ∈
(

0, 13
)

such that

(9) (αβ)α = 1− 3ǫ.

Given this ǫ, let q ∈ (3− α
1+α(|T |+4) , 3) be as defined by Lemma 8.3.

Now let us take some large N , and let us suppose that the statement of the
theorem doesn’t hold for some k ≥ N (throughout the remainder of this proof, we
will assume that N is large enough that various inequalities involving β, α, ǫ, q and
k are satisfied). Let M denote m(k), and let Gk denote the set of graphs in Sg(k,M)
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which do not contain at least αk totally edge-disjoint triangulated appearances of
T (so |Gk| ≥ e−αk(1− ǫ)k(γ(3))kk!).

Let T1 be the triangulation produced by taking an order-preserving copy of T
on the vertex set {5, 6, . . . , |T |+ 4} and attaching the vertices 1, 2, 3 and 4 in the
manner shown in Figure 10. Let T2 be the graph formed from T1 by deleting the
edge between 1 and 4 (again, see Figure 10). Note that any rooted triangulated
appearance of T1 or T2 will thus contain a triangulated appearance of T .
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Figure 10. The graphs T1 and T2.

Let us use t to denote |T |+ 4 (so |T1| = |T2| = t), and let

(10) δ =
t⌈αk⌉

k
.

Starting with graphs in Gk, we shall construct graphs in Sg((1 + δ)k, ⌊q(1 + δ)k⌋)
by attaching k1 rooted triangulated appearances of T1 and k2 = ⌈αk⌉ − k1 rooted
triangulated appearances of T2. Note that we shall need to achieve the correct
balance of k1 and k2 so that our constructed graphs will indeed have ⌊q(1+ δ)k⌋) =
⌊q(k + t⌈αk⌉)⌋ edges.

Observe that the total edge set of a triangulated appearance of T1 will have size
3t and the total edge set of a triangulated appearance of T2 will have size 3t − 1.
Thus, k1 can be chosen so that the number of edges in our constructed graphs is
any desired integer from M + (3t− 1)⌈αk⌉ to M + 3t⌈αk⌉.

Now recall that q > 3 − α
1+αt , and hence that we may assume that k is large

enough that q > 3− ⌈αk⌉+6−6g
k+t⌈αk⌉ . Thus,

q(k + t⌈αk⌉) ≥ 3(k + t⌈αk⌉)− (⌈αk⌉+ 6− 6g)

= 3k − 6 + 6g + ⌈αk⌉(3t− 1)

≥ M + (3t− 1)⌈αk⌉,

and hence (since the right-hand-side is an integer) we have ⌊q(k + t⌈αk⌉)⌋ ≥ M +
(3t− 1)⌈αk⌉.

Also, since q < 3 and m
n → 3, we may assume that k is large enough that

⌊q(k+ t⌈αk⌉)⌋ ≤ M +3t⌈αk⌉. Hence, we find that we may indeed select a suitable
k1.

Having obtained the appropriate values of k1 and k2, let us now construct our
graphs in Sg((1 + δ)k, ⌊q(1 + δ)k⌋):



32 THE EVOLUTION OF RANDOM GRAPHS ON SURFACES

Choose δk special vertices (we have
(

(1+δ)k
δk

)

choices for these), and partition

them into ⌈αk⌉ unordered blocks of size t (we have
(

δk
t,...,t

)

1
⌈αk⌉! choices for this).

Divide the blocks into two sets of size k1 and k2. On each of the first k1 blocks, we
put a copy of T1 such that the increasing bijection from V (T1) to the block is an
isomorphism between T1 and this copy. We do the same for the set of k2 blocks,
except with T2 instead of T1.

On the remaining (i.e. non-special) vertices, choose a graphG ∈ Gk, and embedG
on a surface of genus g. Note that Gmay be extended to a triangulation by inserting
3k− 6+6g−M ‘phantom’ edges (such a triangulation may now have multi-edges),
and observe that this triangulation will contain 2k− 4+4g triangles that are faces.
Each of our phantom edges is in exactly two faces of this triangulation, so when we
remove these phantom edges we find that our original embedding of G must have
contained at least 2k − 4 + 4g − 2(3k − 6 + 6g −M) = 2M − 4k + 8− 8g triangles
that are faces.

We may attach our copies of T1 and T2 inside ⌈αk⌉ of these triangles in such a
way that we create rooted triangulated appearances of T1 and T2. See Figure 11.

Note that we have at least
(

2M−4k+8−8g
⌈αk⌉

)

choices for these triangles, and that

we then have ⌈αk⌉! choices for which copies of T1 and T2 to attach within which
triangles.
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Figure 11. Creating triangulated appearances of T1 and T2 inside
facial triangles.

Thus, for each choice of special vertices and each choice of G, the number of
graphs in Sg((1 + δ)k, ⌊q(1 + δ)k⌋) that we may construct is at least

(

δk
t,...,t

)

(

2M−4k+8−8g
⌈αk⌉

)

≥
(

δk
t,...,t

)

(

k+⌈αk⌉
⌈αk⌉

)

for large k (since m/n → 3)

≥
(

δk
t,...,t

) k⌈αk⌉

⌈αk⌉!

=
(δk)!k⌈αk⌉

(t!)⌈αk⌉⌈αk⌉!

≥
(δk)!

(t!α)⌈αk⌉

(for k large enough that ⌈αk⌉! ≤ (αk)⌈αk⌉).
Hence, we may construct at least

(

(1+δ)k
δk

)

e−αk(1 − ǫ)k(γ(3))kk!
(δk)!

(t!α)⌈αk⌉
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(not necessarily distinct) graphs in Sg((1 + δ)k, ⌊q(1 + δ)k⌋) in total.

We shall now consider the amount of double-counting:
Recall that G did not contain αk totally edge-disjoint triangulated appearances

of T , and that each rooted triangulated appearance of T1 contains a triangulated
appearance of T . Hence, G did not contain αk totally edge-disjoint rooted triangu-
lated appearances of T1, and so (by Lemma 8.4) contained fewer than

((

t+3
3

)

+ 1
)

αk
rooted triangulated appearances of T1 in total.

When we deliberately attach a triangulated appearance of T1 or T2, the number
of ‘accidental’ rooted triangulated appearances of T1 that we create in the graph will
be at most

(

t+3
3

)

, again using Lemma 8.4, and so the number of rooted triangulated

appearances of T1 will increase by at most
(

t+3
3

)

+ 1 each time. Thus, our created

graph will have at most
((

t+3
3

)

+ 1
)

αk +
((

t+3
3

)

+ 1
)

⌈αk⌉ ≤
(

2
(

t+3
3

)

+ 2
)

⌈αk⌉
rooted triangulated appearances of T1.

Similarly, our created graph will have at most
(

2
(

t+3
3

)

+ 2
)

⌈αk⌉ rooted trian-
gulated appearances of T2.

Let x = 4
(

t+3
3

)

+ 4. Then, given one of our constructed graphs, we have at

most
(

x⌈αk⌉
⌈αk⌉

)

≤ (xe)⌈αk⌉ choices for which were the special vertices. Once we have

identified these, we then know what G was. Thus, each graph is constructed at
most (xe)⌈αk⌉ times.

Therefore, we find that the number of distinct graphs that we have created in
Sg((1 + δ)k, ⌊q(1 + δ)k⌋) is at least

(

(1+δ)k
δk

)

e−αk(1− ǫ)k(γ(3))kk!
(δk)!

(t!α)⌈αk⌉
(xe)−⌈αk⌉

(10)

≥ ((1 + δ)k)!(γ(3))(1+δ)k(1− ǫ)k
(

e2(γ(3))txt!α
)−⌈αk⌉

(8)

≥ ((1 + δ)k)!(γ(3))(1+δ)k(1− ǫ)k(αβ)−⌈αk⌉

≥ |Sg((1 + δ)k, ⌊q(1 + δ)k⌋)|(1 + ǫ)−(1+δ)k(1− ǫ)k(1− 3ǫ)−k

(by Lemma 8.3 and (9))

≥ |Sg((1 + δ)k, ⌊q(1 + δ)k⌋)|

(

(1− ǫ)

(1− 3ǫ)(1 + ǫ)2

)k

(since we may assume k is large enough that δ < 1)

> |Sg((1 + δ)k, ⌊q(1 + δ)k⌋)|

(since (1− 3ǫ)(1 + ǫ)2 = 1− ǫ− 5ǫ2 − 3ǫ3).

Thus, we have obtained our desired contradiction. �

As an interesting corollary (by making appropriate choices for T ), we also obtain
the following new result:

Corollary 8.5. Let g ≥ 0 be a constant, and let m = m(n) satisfy lim inf m
n > 1.

Then, given any constant k ≥ 3, there exist α > 0 and N such that

P[Sg(n,m) will have at least αn vertices of degree k] > 1− e−αn for all n ≥ N.

�
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9. Discussion

In this section, we shall now discuss some of the more interesting unresolved
issues.

Two of the most intriguing questions involve the topic of subgraphs. We see
from Table 2 that we have left open the case when H is a planar multicyclic graph
and m

n → 1. This is in fact an open problem even for g = 0, although some results
are known if m

n converges to 1 slowly (see Theorems 68 and 70 of [10] for the
planar case, the proofs of which actually generalise to any g). The case when H is
non-planar and lim inf m

n ≥ 1 also remains unresolved. Is it always true that the
probability of having such a subgraph converges to 0?

In all of our results, we note that the value of g seems to have little impact. It
would be interesting to know how this would change if we were to allow g to grow
with n, rather than just being a fixed constant. Certainly, we would obtain very
different behaviour if g ≥ m(n), since then our random graph Sg(n,m) would be the
same as the standard Erdős-Rényi random graph G(n,m). It would consequently
be useful to know more about the typical genus of G(n,m).
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