ADDITIVE BASES AND FLOWS IN GRAPHS

LOUIS ESPERET, RÉMI DE JOANNIS DE VERCLOS, TIEN-NAM LE, AND STÉPHAN THOMASSÉ

ABSTRACT. It was conjectured by Jaeger, Linial, Payan, and Tarsi in 1992 that for any prime number p, there is a constant c such that for any n, the union (with repetition) of the vectors of any family of c linear bases of \mathbb{Z}_p^n forms an additive basis of \mathbb{Z}_p^n (i.e. any element of \mathbb{Z}_p^n can be expressed as the sum of a subset of these vectors). In this note, we prove this conjecture when each vector contains at most two non-zero entries. As an application, we prove several results on flows in highly edge-connected graphs, extending known results. For instance, assume that $p \ge 3$ is a prime number and \vec{G} is a directed, highly edge-connected graph in which each arc is given a list of two distinct values in \mathbb{Z}_p . Then \vec{G} has a \mathbb{Z}_p -flow in which each arc is assigned a value of its own list.

1. INTRODUCTION

Graphs considered in this paper may have multiple edges but no loops. An *additive basis* B of a vector space F is a multiset of elements from F such that for all $\beta \in F$, there is a subset of B which sums to β . Let \mathbb{Z}_p^n be the *n*-dimensional linear space over the prime field \mathbb{Z}_p . The following result is a simple consequence of the Cauchy-Davenport Theorem [5] (see also [2]).

Theorem 1 ([5]). For any prime p, any multiset of p-1 non-zero elements of \mathbb{Z}_p forms an additive basis of \mathbb{Z}_p .

This result can be rephrased as: for n = 1, any family of p - 1linear bases of \mathbb{Z}_p^n forms an additive basis of \mathbb{Z}_p^n . A natural question is whether this can be extended to all integers n. Given a collection of sets $X_1, ..., X_k$, we denote by $\biguplus_{i=1}^k X_i$ the union with repetitions of $X_1, ..., X_k$. Jaeger, Linial, Payan and Tarsi [12] conjectured the

The authors are partially supported by ANR Project STINT (ANR-13-BS02-0007) and GATO (ANR-16-CE40-0009-01), and LabEx PERSYVAL-Lab (ANR-11-LABX-0025). An extended abstract of this work appeared in the proceedings of Eurocomb 2017.

following, a generalization of important results regarding nowhere-zero flows in graphs.

Conjecture 2 ([12]). For every prime number p, there is a constant c(p) such that for any $t \ge c(p)$ linear bases $B_1, ..., B_t$ of \mathbb{Z}_p^n , the union $\bigcup_{s=1}^t B_s$ forms an additive basis of \mathbb{Z}_p^n .

Alon, Linial and Meshulam [1] proved a weaker version of Conjecture 2, that the union of any $p\lceil \log n \rceil$ linear bases of \mathbb{Z}_p^n contains an additive basis of \mathbb{Z}_p^n (note that their bound depends on n). The *support* of a vector $x = (x_1, \ldots, x_n) \in \mathbb{Z}_p^n$ is the set of indices i such that $x_i \neq 0$. The *shadow* of a vector x is the (unordered) multiset of non-zero entries of x. Note that sizes of the support and of the shadow of a vector are equal. In this note, we prove that Conjecture 2 holds if the support of each vector has size at most two.

Theorem 3. Let $p \ge 3$ be a prime number. For some integer $\ell \ge 1$, consider $t \ge 8\ell(3p-4) + p - 2$ linear bases $B_1, ..., B_t$ of \mathbb{Z}_p^n , such that the support of each vector has size at most 2, and at most ℓ different shadows of size 2 appear among the vectors of $\mathcal{B} = \biguplus_{s=1}^t B_s$. Then \mathcal{B} forms an additive basis of \mathbb{Z}_p^n .

Theorem 3 will be proved in Section 3 using a result of Lovász, Thomassen, Wu and Zhang [15] (Theorem 6 below) on flows in highly edge-connected graphs. It was mentioned to us by one of the referees that Lai and Li [14] established the equivalence between Theorem 6 and Theorem 3 in the special case where all the shadows are equal to $\{-1,+1\} \pmod{p}$.

The number of possibilities for an (unordered) multiset of $\mathbb{Z}_p \setminus \{0\}$ of size 2 is $\binom{p-1}{2} + p - 1 = \binom{p}{2}$. As a consequence, Theorem 3 has the following immediate corollary.

Corollary 4. Let $p \ge 3$ be a prime number. For any $t \ge 8\binom{p}{2}(3p-4) + p - 2$ linear bases $B_1, ..., B_t$ of \mathbb{Z}_p^n such that the support of each vector has size at most 2, $\biguplus_{s=1}^t B_s$ forms an additive basis of \mathbb{Z}_p^n .

Another interesting consequence of Theorem 3 concerns the linear subspace $(\mathbb{Z}_p^n)_0$ of vectors of \mathbb{Z}_p^n whose entries sum to 0 (mod p).

Corollary 5. Let $p \ge 3$ be a prime number. For any $t \ge 4(p-1)(3p-4) + p - 2$ linear bases $B_1, ..., B_t$ of $(\mathbb{Z}_p^n)_0$ such that the support of each vector has size at most 2, $\biguplus_{s=1}^t B_s$ forms an additive basis of $(\mathbb{Z}_p^n)_0$.

Proof. Note that for any $1 \leq s \leq t$, the linear basis B_s consists of n-1 vectors, each of which has a support of size 2, and the two elements of the shadow sum to 0 (mod p). In particular, at most $\frac{p-1}{2}$ different shadows appear among the vectors of the linear bases B_1, \ldots, B_t . It is convenient to view each B_s as a matrix in which the elements of the basis are column vectors. For each $1 \leq s \leq t$, let B'_s be obtained from B_s by deleting the last row. It is easy to see that B'_s is a linear basis of \mathbb{Z}_p^{n-1} . Moreover, at most $\frac{p-1}{2}$ different shadows of size 2 appear among the vectors of the linear bases B'_1, \ldots, B'_t (note that the removal of the last row may have created vectors with shadows of size 1). In particular, it follows from Theorem 3 that for any vector $\beta = (\beta_1, \ldots, \beta_n) \in (\mathbb{Z}_p^n)_0$, the vector $(\beta_1, \ldots, \beta_{n-1}) \in \mathbb{Z}_p^{n-1}$ can be written as a sum of a subset of elements of $\biguplus^t_{s=1} B_s$ sums to β . This concludes the proof of Corollary 5.

In the next section, we explore some consequences of Corollary 5.

2. Orientations and flows in graphs

Let G = (V, E) be a non-oriented graph. An orientation $\vec{G} = (V, \vec{E})$ of G is obtained by giving each edge of E a direction. For each edge $e \in E$, we denote the corresponding arc of \vec{E} by \vec{e} , and vice versa. For a vertex $v \in V$, we denote by $\delta^+_{\vec{G}}(v)$ the set of arcs of \vec{E} leaving v, and by $\delta^-_{\vec{C}}(v)$ the set of arcs of \vec{E} entering v.

For an integer $k \ge 2$, a mapping $\beta : V \to \mathbb{Z}_k$ is said to be a \mathbb{Z}_k boundary of G if $\sum_{v \in V} \beta(v) \equiv 0 \pmod{k}$. Given a \mathbb{Z}_k -boundary β of G, an orientation \vec{G} of G is a β -orientation if $d^+_{\vec{G}}(v) - d^-_{\vec{G}}(v) \equiv \beta(v)$ (mod k) for every $v \in V$, where $d^+_{\vec{G}}(v)$ and $d^-_{\vec{G}}(v)$ stand for the outdegree and the in-degree of v in \vec{G} .

The following major result was obtained by Lovász, Thomassen, Wu and Zhang [15]:

Theorem 6. [15] For any $k \ge 1$, any 6k-edge-connected graph G, and any \mathbb{Z}_{2k+1} -boundary β of G, the graph G has a β -orientation.

A natural question is whether a weighted counterpart of Theorem 6 exists. Given a graph G = (V, E), a \mathbb{Z}_k -boundary β of G and a mapping $f : E \to \mathbb{Z}_k$, an orientation \vec{G} of G is called an *f*-weighted β -orientation if $\partial f(v) \equiv \beta(v) \pmod{k}$ for every v, where $\partial f(v) = \sum_{\vec{e} \in \delta^+_{\sigma}(v)} f(e) -$ $\sum_{\vec{e} \in \delta_{\vec{G}}(v)} f(e)$. Note that if $f(e) \equiv 1 \pmod{k}$ for every edge e, an f-weighted β -orientation is precisely a β -orientation.

An immediate observation is that if we wish to have a general result of the form of Theorem 6 for weighted orientations, it is necessary to assume that 2k + 1 is a prime number. For instance, take G to consist of two vertices u, v with an arbitrary number of edges between u and v, consider a non-trivial divisor p of 2k+1, and ask for a **p**-weighted \mathbb{Z}_{2k+1} orientation \vec{G} of G (here, **p** denotes the function that maps each edge to $p \pmod{2k+1}$). Note that for any orientation, $\partial \mathbf{p}(v)$ is in the subgroup of \mathbb{Z}_{2k+1} generated by p, and this subgroup does not contain 1, -1(mod 2k + 1). In particular, there is no **p**-weighted \mathbb{Z}_{2k+1} -orientation of G with boundary β satisfying $\beta(u) \equiv -\beta(v) \equiv 1 \pmod{2k+1}$.

In Section 4, we will prove that Corollary 5 easily implies a weighted counterpart of Theorem 6 as in the following theorem, but with a stronger requirement on the edge-connectivity. Theorem 7 itself will be deduced directly from Theorem 6.

Theorem 7. Let $p \ge 3$ be a prime number and let G = (V, E) be a (6p-8)(p-1)-edge-connected graph. For any mapping $f : E \to \mathbb{Z}_p \setminus \{0\}$ and any \mathbb{Z}_p -boundary β , G has an f-weighted β -orientation.

Theorem 7 turns out to be equivalent to the following seemingly more general result. Assume that we are given a directed graph $\vec{G} = (V, \vec{E})$ and a \mathbb{Z}_p -boundary β . A \mathbb{Z}_p -flow with boundary β in \vec{G} is a mapping $f : \vec{E} \to \mathbb{Z}_p$ such that $\partial f(v) \equiv \beta(v) \pmod{p}$ for every v. In other words, f is a \mathbb{Z}_p -flow with boundary β in $\vec{G} = (V, \vec{E})$ if and only if \vec{G} is an f-weighted β -orientation of its underlying non-oriented graph G = (V, E), where f is extended from \vec{E} to E in the natural way (i.e. for each $e \in E$, $f(e) := f(\vec{e})$).

In the remainder of the paper we will say that a directed graph \vec{G} is *t-edge-connected* if its underlying non-oriented graph, denoted by G, is *t*-edge-connected.

Theorem 8. Let $p \ge 3$ be a prime number and let $\vec{G} = (V, \vec{E})$ be a directed (6p - 8)(p - 1)-edge-connected graph. For any arc $\vec{e} \in \vec{E}$, let $L(\vec{e})$ be a pair of distinct elements of \mathbb{Z}_p . Then for every \mathbb{Z}_p -boundary β , \vec{G} has a \mathbb{Z}_p -flow f with boundary β such that for any $\vec{e} \in \vec{E}$, $f(\vec{e}) \in L(\vec{e})$.

This result can been seen as a choosability version of Theorem 6 (the reader is referred to [6] for choosability versions of some classical results on flows). To see that Theorem 8 implies Theorem 7, simply fix an arbitrary orientation of G and set $L(\vec{e}) = \{f(e), -f(e)\}$ for each arc \vec{e} . We now prove that Theorem 7 implies Theorem 8. We actually prove a slightly stronger statement (holding in \mathbb{Z}_{2k+1} for any integer $k \ge 1$).

Lemma 9. Let $k \ge 1$ be an integer, and let $\vec{G} = (V, \vec{E})$ be a directed graph such that the underlying non-oriented graph G has an f-weighted β -orientation for any mapping $f : E \to \mathbb{Z}_{2k+1} \setminus \{0\}$ and any \mathbb{Z}_{2k+1} boundary β . For every arc $\vec{e} \in \vec{E}$, let $L(\vec{e})$ be a pair of distinct elements of \mathbb{Z}_{2k+1} . Then for every \mathbb{Z}_{2k+1} -boundary β , \vec{G} has a \mathbb{Z}_{2k+1} -flow g with boundary β such that $g(\vec{e}) \in L(\vec{e})$ for every \vec{e} .

Proof. Let β be a \mathbb{Z}_{2k+1} -boundary of \vec{G} . Consider a single arc $\vec{e} = (u, v)$ of \vec{G} . Choosing one of the two values of $L(\vec{e})$, say a or b, will either add a to $\partial g(u)$ and subtract a from $\partial g(v)$, or add b to $\partial g(u)$ and subtract b from $\partial g(v)$. Note that 2 and 2k + 1 are relatively prime, so the element 2^{-1} is well-defined in \mathbb{Z}_{2k+1} . If we now add $2^{-1}(a+b)$ to $\beta(v)$ and subtract $2^{-1}(a+b)$ from $\beta(u)$, the earlier choice is equivalent to choosing between the two following options: adding $2^{-1}(a-b)$ to $\partial g(u)$ and subtracting $2^{-1}(a-b)$ from $\partial g(v)$, or adding $2^{-1}(b-a)$ to $\partial g(u)$ and subtracting $2^{-1}(b-a)$ from $\partial g(v)$. This is equivalent to choosing an orientation for an edge of weight $2^{-1}(a-b)$. It follows that finding a \mathbb{Z}_{2k+1} -flow g with boundary β such that for any $\vec{e} \in \vec{E}$, $g(\vec{e}) \in L(\vec{e})$ is equivalent to finding an f-weighted β' -orientation for some other \mathbb{Z}_{2k+1} -boundary β' of G, where the weight f(e) of each edge e is 2^{-1} times the difference between the two elements of $L(\vec{e})$.

We now consider the case where $L(\vec{e}) = \{0, 1\}$ for every arc $\vec{e} \in \vec{E}$. Let $f_{2^{-1}} : \vec{E} \to \mathbb{Z}_{2k+1}$ denote the function that maps each arc \vec{e} to 2^{-1} (mod 2k + 1). The same argument as in the proof of Lemma 9 implies that if G has an $f_{2^{-1}}$ -weighted β -orientation for every \mathbb{Z}_{2k+1} -boundary β , then for every \mathbb{Z}_{2k+1} -boundary β , the digraph \vec{G} has a \mathbb{Z}_{2k+1} -flow f with boundary β such that $f(\vec{e}) \in L(\vec{e})$ for every \vec{e} .

The following is a simple corollary of Theorem 6.

Corollary 10. Let $\ell \ge 1$ be an odd integer and let $k \ge 1$ be relatively prime with ℓ . Let G = (V, E) be a $(3\ell-3)$ -edge-connected graph, and let $\mathbf{k} : E \to \mathbb{Z}_{\ell}$ be the mapping that assigns $k \pmod{\ell}$ to each edge $e \in E$. Then for any \mathbb{Z}_{ℓ} -boundary β , G has a \mathbf{k} -weighted β -orientation. *Proof.* Observe that $\beta' = k^{-1} \cdot \beta$ is a \mathbb{Z}_{ℓ} -boundary $(k^{-1}$ is well defined in \mathbb{Z}_{ℓ}). It follows from Theorem 6 that G has a β' -orientation. Note that this corresponds to a **k**-weighted β -orientation of G, as desired. \Box

As a consequence, the following is an equivalent version of Theorem 6 (see also [12, 14]).

Theorem 11. Let $k \ge 1$ be an integer and let $\vec{G} = (V, \vec{E})$ be a directed 6k-edge-connected graph. Then for every \mathbb{Z}_{2k+1} -boundary β , \vec{G} has a \mathbb{Z}_{2k+1} -flow f with boundary β such that $f(\vec{E}) \in \{0,1\} \pmod{2k+1}$.

This version of Theorem 6 will allow us to derive interesting results on antisymmetric flows in directed highly edge-connected graphs. Given an abelian group (B, +), a *B*-flow in \vec{G} is a mapping $f: \vec{E} \to B$ such that $\partial f(v) = 0$ for every vertex v, where all operations are performed in *B*. A *B*-flow f in $\vec{G} = (V, \vec{E})$ is a nowhere-zero *B*-flow (or a *B*-NZF) if $0 \notin f(\vec{E})$, i.e. each arc of \vec{G} is assigned a non-zero element of *B*. If no two arcs receive inverse elements of *B*, then *f* is an antisymmetric *B*-flow (or a *B*-ASF).

Since 0 = -0, a *B*-ASF is also a *B*-NZF. It was conjectured by Tutte that every directed 2-edge-connected graph has a Z₃-NZF [21], and that every directed 4-edge-connected graph has a Z₃-NZF (see [18] and [3]). Antisymmetric flows were introduced by Nešetřil and Raspaud in [16]. A natural obstruction for the existence of an antisymmetric flow in a directed graph \vec{G} is the presence of directed 2-edge-cut in \vec{G} . Nešetřil and Raspaud asked whether any directed graph without directed 2-edge-cut has a *B*-ASF, for some *B*. This was proved by DeVos, Johnson, and Seymour in [7], who showed that any directed graph without directed 2-edge-cut has a $\mathbb{Z}_2^8 \times \mathbb{Z}_3^{17}$ -ASF. It was later proved by DeVos, Nešetřil, and Raspaud [8], that the group could be replaced by $\mathbb{Z}_2^6 \times \mathbb{Z}_3^9$. The best known result is due to Dvořák, Kaiser, Král', and Sereni [10], who showed that any directed graph without directed 2-edge-cut has a \mathbb{Z}_2^9 -ASF (this group has 157464 elements).

Adding a stronger condition on the edge-connectivity allows to prove stronger results on the size of the group *B*. It was proved by DeVos, Nešetřil, and Raspaud [8], that every directed 4-edge-connected graph has a $\mathbb{Z}_2^2 \times \mathbb{Z}_3^4$ -ASF, that every directed 5-edge-connected graph has a \mathbb{Z}_3^5 -ASF, and that every directed 6-edge-connected graph has a $\mathbb{Z}_2 \times \mathbb{Z}_3^2$ -ASF. In [11], Jaeger conjectured the following weaker version of Tutte's 3-flow conjecture: there is a constant k such that every k-edgeconnected graph has a \mathbb{Z}_3 -NZF. This conjecture was recently solved by Thomassen [19], who proved that every 8-edge-connected graph has a \mathbb{Z}_3 -NZF, and was improved by Lovász, Thomassen, Wu and Zhang [15], that every 6-edge-connected graph has a \mathbb{Z}_3 -NZF (this is a simple consequence of Theorem 6).

The natural antisymmetric variant of Jaeger's weak 3-flow conjecture would be the following: there is a constant k such that every directed k-edge-connected graph has a \mathbb{Z}_5 -ASF.

Note that the size of the group would be best possible, since in \mathbb{Z}_2 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ every element is its own inverse, while a \mathbb{Z}_3 -ASF or a \mathbb{Z}_4 -ASF has to assign the same value to all the arcs (and this is impossible in the digraph on two vertices u, v with exactly k arcs directed from uto v, for any integer $k \equiv 1 \pmod{12}$.

Our final result is the following.

Theorem 12. For any $k \ge 2$, every directed $\lceil \frac{6k}{k-1} \rceil$ -edge-connected graph has a \mathbb{Z}_{2k+1} -ASF.

Proof. Let $k \ge 2$, and let \vec{G} be a directed $\lceil \frac{6k}{k-1} \rceil$ -edge-connected graph. Let \vec{H} be the directed graph obtained from \vec{G} by replacing every arc \vec{e} by k-1 arcs with the same tail and head as \vec{e} , and let H be the non-oriented graph underlying \vec{H} . Let $\beta(v) = d_{\vec{G}}(v) - d_{\vec{G}}^+(v)$ for every v. Since \vec{G} is $\lceil \frac{6k}{k-1} \rceil$ -edge-connected, H is 6k-edge-connected and by Theorem 11, \vec{H} has a \mathbb{Z}_{2k+1} -flow f with boundary β with flow values in the set $\{0,1\} \pmod{2k+1}$. For any arc \vec{e} of \vec{G} , let $q(\vec{e})$ be the sum of the values of the flow f on the t arcs corresponding to \vec{e} in \vec{H} . Then g is a \mathbb{Z}_{2k+1} -flow with boundary β in \vec{G} , with flow values in the set $\{0, 1, \dots, k-1\} \pmod{2k+1}$. Now, set $q'(\vec{e}) = q(\vec{e}) + 1$ for every arc \vec{e} . Hence every \vec{e} is assigned a value in $\{1, \ldots, k\} \pmod{2k+1}$, and $\partial g'(v) \equiv \partial g(v) + d^+_{\vec{G}}(v) - \vec{d}^-_{\vec{G}}(v) \equiv \beta'(v) + d^+_{\vec{G}}(v) - d^-_{\vec{G}}(v) \equiv 0 \pmod{2k+1}$ for every v. Thus g' is a \mathbb{Z}_{2k+1} -flow of \vec{G} with flow values in the set $\{1, \ldots, k\} \pmod{2k+1}$, and thus a \mathbb{Z}_{2k+1} -ASF in \vec{G} , as desired. This concludes the proof of Theorem 12.

As a corollary, we directly obtain:

Corollary 13.

(i) Every directed 7-edge-connected graph has a \mathbb{Z}_{15} -ASF.

- 8 L. ESPERET, R. DE JOANNIS DE VERCLOS, T.-N. LE, AND S. THOMASSÉ
- (ii) Every directed 8-edge-connected graph has a \mathbb{Z}_9 -ASF.
- (iii) Every directed 9-edge-connected graph has a \mathbb{Z}_7 -ASF.
- (iv) Every directed 12-edge-connected graph has a \mathbb{Z}_5 -ASF.

By duality, using the results of Nešetřil and Raspaud [16], Corollary 13 (which, again, can be seen as an antisymmetric analogue of the statement of Jaeger's conjecture) directly implies that every orientation of a planar graph of girth (length of a shortest cycle) at least 12 has a homomorphism to an oriented graph on at most 5 vertices. This was proved by Borodin, Ivanova and Kostochka in 2007 [4], and it is not known whether the same holds for planar graphs of girth at least 11. On the other hand, it was proved by Nešetřil, Raspaud and Sopena [17] that there are orientations of some planar graphs of girth at least 7 that have no homomorphism to an oriented graph of at most 5 vertices. By duality again, this implies that there are directed 7edge-connected graphs with no \mathbb{Z}_5 -ASF. We conjecture the following:

Conjecture 14. Every directed 8-edge-connected graph has a \mathbb{Z}_5 -ASF.

It was conjectured by Lai [13] that for every $k \ge 1$, every (4k + 1)edge-connected graph G has a β -orientation for every \mathbb{Z}_{2k+1} -boundary β of G. If true, this conjecture would directly imply (using the same proof as that of Theorem 12) that for any $k \ge 2$, every directed $\lceil \frac{4k+1}{k-1} \rceil$ edge-connected graph has a \mathbb{Z}_{2k+1} -ASF. In particular, this would show that directed 5-edge-connected graph have a \mathbb{Z}_{13} -ASF, directed 6-edgeconnected graph have a \mathbb{Z}_9 -ASF, directed 7-edge-connected graph have a \mathbb{Z}_7 -ASF, and directed 9-edge-connected graph have a \mathbb{Z}_5 -ASF. The bound on directed 5-edge-connected graph would also directly imply, using the proof of the main result of [10], that directed graphs with no directed 2-edge-cut have a $\mathbb{Z}_2^2 \times \mathbb{Z}_3^4 \times \mathbb{Z}_{13}$ -ASF.

3. Proof of Theorem 3

We first recall the following (weak form of a) classical result by Mader (see [9], Theorem 1.4.3):

Lemma 15. Given an integer $k \ge 1$, if G = (V, E) is a graph with average degree at least 4k, then there is a subset X of V such that |X| > 1 and G[X] is (k + 1)-edge-connected.

We will also need the following result of Thomassen [20], which is a simple consequence of Theorem 6.

Theorem 16 ([20]). Let $k \ge 3$ be an odd integer, $G = (V_1, V_2, E)$ be a bipartite graph, and $f : V_1 \cup V_2 \to \mathbb{Z}_k$ be a mapping satisfying $\sum_{v \in V_1} f(v) \equiv \sum_{v \in V_2} f(v) \pmod{k}$. If G is (3k - 3)-edge-connected, then G has a spanning subgraph H such that for any $v \in V$, $d_H(v) \equiv f(v) \pmod{k}$.

Let G be a graph, and let X and Y be two disjoint subsets of vertices of G. The set of edges of G with one endpoint in X and the other in Y is denoted by E(X, Y).

We are now ready to prove Theorem 3.

Proof of Theorem 3. We proceed by induction on n. For n = 1, this is a direct consequence of Theorem 1, so suppose that $n \ge 2$. Each basis B_s can be considered as an $n \times n$ matrix where each column is a vector with support of size at most 2. Let $\mathcal{B} = \biguplus_{i=1}^t B_i$.

For $1 \leq i \leq n$, a vector is called an *i-vector* if its support is the singleton $\{i\}$ (in other words, the *i*-th entry is non-zero and all the other entries are zero). Suppose that for some $1 \leq i \leq n$, \mathcal{B} contains at least p-1 *i*-vectors. Let \mathcal{C} be the set of *i*-vectors of \mathcal{B} . Clearly, each basis contains at most one *i*-vector. For every B_s , let B'_s be the matrix obtained from B_s by removing its *i*-vector (if any) and the *i*th row. Clearly B'_s is or contains a basis of \mathbb{Z}_p^{n-1} . By induction hypothesis, $\biguplus_{s=1}^t B'_s$ forms an additive basis of \mathbb{Z}_p^{n-1} . In other words, for any vector $\beta = (\beta_1, ..., \beta_i, ..., \beta_n) \in \mathbb{Z}_p^n$, there is a subset Y_1 of $\mathcal{B} \setminus \mathcal{C}$ which sums to $(\beta_1, ..., \hat{\beta}_i, ..., \beta_n)$ for some $\hat{\beta}_i$. Since $|\mathcal{C}| \geq p-1$, it follows from Theorem 1 that there is a subset Y_2 of \mathcal{C} which sums to $(0, ..., \beta_i - \hat{\beta}_i, ..., 0)$. Hence $Y_1 \cup Y_2$ sums to β .

Thus we can suppose that there are at most p-2 *i*-vectors for every *i*. Then there are at least $8\ell(3p-4)n$ vectors with a support of size 2 in \mathcal{B} . Since there are at most ℓ distinct shadows of size 2 in \mathcal{B} , there are at least 8(3p-4)n vectors with the same (unordered) shadow of size 2, say $\{a_1, a_2\}$ (recall that shadows are multisets, so a_1 and a_2 might coincide).

Let G be the graph (recall that graphs in this paper are allowed to have multiple edges) with vertex set $V = \{v_1, ..., v_n\}$ and edge set E, where edges $v_i v_j$ are in one-to-one correspondence with vectors of \mathcal{B} with support $\{i, j\}$ and shadow $\{a_1, a_2\}$. Then G contains at least 8(3p-4)n edges.

We now consider a random partition of V into 2 sets V_1, V_2 (by assigning each vertex of V uniformly at random to one of the sets V_k , k = 1, 2). Let $e = v_i v_j$ be some edge of G. Recall that e corresponds to some vector with only two non-zero entries, say without loss of generality a_1 at i^{th} index and a_2 at j^{th} index. The probability that v_i is assigned to V_1 and v_j is assigned to V_2 is at least $\frac{1}{4}$. As a consequence, there is a partition of V into 2 sets V_1, V_2 and a subset $E' \subseteq E(V_1, V_2)$ of at least 8(3p-4)n/4 = 2(3p-4)n edges such that for every $e \in E'$, the vector of \mathcal{B} corresponding with e has entry a_1 (resp. a_2) at the index associated to the endpoint of e in V_1 (resp. V_2).

Since the graph G' = (V, E') has average degree at least 4(3p-4), it follows from Lemma 15 that there is a set $X \subseteq V$ of at least 2 vertices, such that G'[X] is (3p-3)-edge-connected. Set H = G'[X] and F the edge set of H. Note that H is bipartite with bipartition $X_1 = X \cap V_1$ and $X_2 = X \cap V_2$.

For each integer $1 \leq s \leq t$, let B_s^* be the matrix obtained from B_s by doing the following: for each vertex v_i in X_1 (resp. X_2), we multiply all the elements of the i^{th} row of B_s by a_1^{-1} (resp. $-a_2^{-1}$), noting that all the operations are performed in \mathbb{Z}_p . Let $\mathcal{B}^* = \biguplus_{s=1}^t B_s^*$. Note that each vector of \mathcal{B}^* corresponding to some edge $e \in F$ has shadow $\{1, -1\}$ (1 is the entry indexed by the endpoint of e in X_1 and -1 is the entry indexed by the endpoint of e in X_2). It is easy to verify the following.

- Each B_s^* is a linear basis of \mathbb{Z}_p^n .
- \mathcal{B} is an additive basis if and only if \mathcal{B}^* is an additive basis.

Hence it suffices to prove that \mathcal{B}^* is an additive basis.

Without loss of generality, suppose that $X = \{v_m, ..., v_n\}$ for some $m \leq n-1$. By contracting k rows of a matrix, we mean deleting these k rows and adding a new row consisting of the sum of the k rows. For each $1 \leq s \leq t$, let B'_s be the matrix of m rows obtained from B^*_s by contracting all $m^{th}, (m+1)^{th}, ..., n^{th}$ rows. Note that the operation of contracting k rows decreases the rank of the matrix by at most k-1 (since it is the same as replacing one of the rows by the sum of the k rows, which preserves the rank, and then deleting the k-1 other rows). Let $\mathcal{B}' = \biguplus_{s=1}^t B'_s$. Since each B^*_s is a linear basis of \mathbb{Z}_p^n , each B'_s has rank at least m and therefore contains a basis of \mathbb{Z}_p^m . Hence, by induction hypothesis, $\mathcal{B}' \setminus \mathcal{B}'_0$ is an additive basis of \mathbb{Z}_p^m , where \mathcal{B}'_0 is the set of all columns with empty support in \mathcal{B}' . For every $\beta = (\beta_1, ..., \beta_n) \in \mathbb{Z}_p^n$, let $\beta' = (\beta_1, ..., \beta_{m-1}, \sum_{i=m}^n \beta_i) \in \mathbb{Z}_p^m$. Then there is a subset Y' of $\mathcal{B}' \setminus \mathcal{B}'_0$ which sums to β' . Let Y^* and \mathcal{B}^*_0 be the subsets of \mathcal{B}^* corresponding to Y' and \mathcal{B}'_0 , respectively. Then Y^*

sums to some $\hat{\beta} = (\beta_1, ..., \beta_{m-1}, \hat{\beta}_m, ..., \hat{\beta}_n)$, where $\sum_{i=m}^n \hat{\beta}_i \equiv \sum_{i=m}^n \beta_i \pmod{p}$.

Recall that for each edge $e \in F$, the corresponding vector in \mathcal{B}^* has precisely two non-zero entries, (1, -1), each with index in X. Hence the vector corresponding to each $e \in F$ in \mathcal{B}' has empty support. Thus the set of vectors in \mathcal{B}^* corresponding to the edge set F is a subset of \mathcal{B}_0^* , which is disjoint from Y.

For each $v_i \in X_1$, let $\beta_X(v_i) = \beta_i - \hat{\beta}_i$, and for each $v_i \in X_2$, let $\beta_X(v_i) = \hat{\beta}_i - \beta_i$. Since $\sum_{i=m}^n \hat{\beta}_i \equiv \sum_{i=m}^n \beta_i \pmod{p}$, we have $\sum_{v_i \in X \cap V_1} \beta_X(v_i) = \sum_{v_i \in X \cap V_2} \beta_X(v_i)$. Since H is (3p-3)-edgeconnected, it follows from Theorem 16 that there is a subset $F' \subseteq F$ such that, in the graph (X, F'), each vertex $v_i \in X_1$ has degree $\beta_i - \hat{\beta}_i$ (mod p) and each vertex $v_i \in X_2$ has degree $\hat{\beta}_i - \beta_i \pmod{p}$. Therefore, F' corresponds to a subset Z^* of vectors of \mathcal{B}_0^* , summing to $(0, \ldots, 0, \beta_m - \hat{\beta}_m, \ldots, \beta_n - \hat{\beta}_n)$. Then $Y^* \cup Z^*$ sums to β . It follows that \mathcal{B}^* is an additive basis of \mathbb{Z}_p^n , and so is \mathcal{B} . This completes the proof. \Box

4. Two proofs of (versions of) Theorem 7

We now give two proofs of (versions of) Theorem 7. The first one is a direct application of Corollary 5, but requires a stronger assumption on the edge-connectivity of G ($24p^2 - 54p + 28$ instead of $6p^2 - 14p + 8$ for the second proof).

First proof of Theorem 7. We fix some arbitrary orientation $\vec{G} = (V, \vec{E})$ of G and denote the vertices of G by v_1, \ldots, v_n . The number of edges of G is denoted by m. For each arc $\vec{e} = (v_i, v_j)$ of \vec{G} , we associate \vec{e} to a vector $x_e \in (\mathbb{Z}_p^n)_0$ in which the i^{th} -entry is equal to $f(e) \pmod{p}$, the j^{th} -entry is equal to $-f(e) \pmod{p}$ and all the remaining entries are equal to $0 \pmod{p}$.

Let us consider the following statements.

- (a) For each \mathbb{Z}_p -boundary β , there is an *f*-weighted β -orientation of *G*.
- (b) For each \mathbb{Z}_p -boundary β there is a vector $(a_e)_{e \in E} \in \{-1, 1\}^m$, such that $\sum_{e \in E} a_e x_e \equiv \beta \pmod{p}$.
- (c) For each \mathbb{Z}_p -boundary β there is a vector $(a_e)_{e \in E} \in \{0, 1\}^m$ such that $\sum_{e \in E} 2a_e x_e \equiv \beta \pmod{p}$.

Clearly, a is equivalent to b. We now claim that b is equivalent to c. To see this, simply do the following for each arc $\vec{e} = (v_i, v_j)$ of

12 L. ESPERET, R. DE JOANNIS DE VERCLOS, T.-N. LE, AND S. THOMASSÉ

 \vec{G} : add f(e) to the j^{th} -entry of x_e and to $\beta(v_j)$, and subtract f(e) from the i^{th} -entry of x_e and from $\beta(v_i)$. To deduce c from Corollary 5, what is left is to show that $\{a_e : e \in E\}$ can be decomposed into sufficiently many linear bases of $(\mathbb{Z}_p^n)_0$. This follows from the fact that G is (8(p-1)(3p-4)+2p-4)-edge-connected (and therefore contains 4(p-1)(3p-4)+p-2 edge-disjoint spanning trees) and that the set of vectors a_e corresponding to the edges of a spanning tree of G forms a linear basis of $(\mathbb{Z}_p^n)_0$ (see [12]).

A second proof consists in mimicking the proof of Theorem 3 (it turns out to give a better bound for the edge-connectivity of G).

Second proof of Theorem 7. As before, all values and operations are considered modulo p. We can assume without loss of generality that $f(E) \in \{1, 2, \ldots, \frac{p-1}{2}\}$, since otherwise we can replace the value f(e) of an edge e by -f(e), without changing the problem.

We prove the result by induction on the number of vertices of G. The result is trivial if G contains only one vertex, so assume that G has at least two vertices.

For any $1 \leq i \leq k$, let E_i be the set of edges $e \in E$ with f(e) = i, and let $G_i = (V, E_i)$. Since G is (6p - 8)(p - 1)-edge-connected, G has minimum degree at least (6p - 8)(p - 1) and then average degree at least (6p-8)(p-1). As a consequence, there exists i such that G_i has average degree at least 12p-16. By Lemma 15, since $\frac{12p-16}{4}+1=3p-3$, G_i has an induced subgraph H = (X, F) with at least two vertices such that H is (3p-3)-edge-connected. Let G/X be the graph obtained from G by contracting X into a single vertex x (and removing possible loops). Since H contains more than one vertex, G/X has less vertices than G (note that possibly, X = V and in this case G/X consists of the single vertex x). Since G is (6p-8)(p-1)-edge-connected, G/X is also (6p-8)(p-1)-edge-connected. Hence by the induction hypothesis it has an f-weighted β -orientation, where we consider the restriction of f to the edge-set of G/X, and we define $\beta(x) = \beta(X)$. Note that this orientation corresponds to an orientation of all the edges of G with at most one endpoint in X.

We now orient arbitrarily the edges of G[X] not in F (the edge-set of H), and update the values of the \mathbb{Z}_p -boundary β accordingly (i.e. for each $v \in X$, we subtract from $\beta(v)$ the contribution of the arcs that were already oriented). It is easy to see that as the original β was a boundary, the new β is indeed a boundary. Finally, since all the edges of H have the same weight, and since H is (3p - 3)-edge-connected, it follows from Corollary 10 that H has an f-weighted β -orientation (with respect to the updated boundary β). The orientations combine into an f-weighted β -orientation of G, as desired.

ACKNOWLEDGMENTS

We would like to thank the referees for their suggestions and for mentioning the existence of the unpublished manuscript [14].

References

- N. Alon, N. Linial and R. Meshulam Additive bases of vector spaces over prime fields, J. Combin. Theory Ser. A 57 (1991), 203–210.
- [2] N. Alon, M. Nathanson, and I. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56(2) (1996), 404–417.
- [3] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York, 1976.
- [4] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Oriented 5-coloring of sparse plane graphs, J. Applied and Industrial Math. 1(1) (2007), 9–17.
- [5] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30–32.
- [6] M. DeVos, *Matrix choosability*, J. Combin. Theory Ser. A **90** (2000), 197–209.
- [7] M. DeVos, T. Johnson, and P. Seymour, Cut coloring and circuit covering, Manuscript.
- [8] M. DeVos, J. Nešetřil, and A. Raspaud, Antisymmetric flows and edgeconnectivity, Discrete Math. 276(13) (2004), 161–167.
- [9] R. Diestel, Graph Theory, Graduate Texts in Mathematics, Springer (2005).
- [10] Z. Dvořák, T. Kaiser, D. Král', and J.-S. Sereni, A note on antisymmetric flows in graphs, European J. Combin. 31 (2010), 320–324.
- [11] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979), 205–216.
- [12] F. Jaeger, N. Linial, C. Payan, and M. Tarsi, Group connectivity of graphs A non homomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992), 165–182.
- [13] H.-J. Lai, Mod (2p + 1)-orientations and $K_{1,2p+1}$ -decompositions, SIAM J. Discrete Math. **21** (2007), 844–850.
- [14] H.-J. Lai and P. Li, Additive bases and strongly \mathbb{Z}_{2s+1} -connectedness, Manuscript.
- [15] L.M. Lovász, C. Thomassen, Y. Wu, and C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Combin. Theory Ser.B 103 (2013), 587–598.
- [16] J. Nešetřil and A. Raspaud, Antisymmetric flows and strong colourings of oriented graphs, Ann. Inst. Fourier 49(3) (1999), 1037–1056.
- [17] J. Nešetřil, A. Raspaud and E. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165–166 (1997), 519–530.
- [18] R. Steinberg, Grötzsch's Theorem dualized, M. Math Thesis, University of Waterloo, 1976.

- 14 L. ESPERET, R. DE JOANNIS DE VERCLOS, T.-N. LE, AND S. THOMASSÉ
- [19] C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combin. Theory Ser. B 102 (2012), 521–529.
- [20] C. Thomassen, Graph factors modulo k, J. Combin. Theory Ser. B 106 (2014), 174–177.
- [21] W.T. Tutte, A Contribution on the Theory of Chromatic Polynomial, Canad. J. Math. 6 (1954), 80–91.
- [22] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966), 15–50.

LABORATOIRE G-SCOP (CNRS, UNIV. GRENOBLE-ALPES), GRENOBLE, FRANCE

E-mail address: louis.esperet@grenoble-inp.fr

Laboratoire G-SCOP (CNRS, Univ. Grenoble-Alpes), Grenoble, France

E-mail address: remi.de-joannis-de-verclos@grenoble-inp.fr

Laboratoire d'Informatique du Parallélisme, École Normale Supérieure de Lyon, France

E-mail address: tien-nam.le@ens-lyon.fr

Laboratoire d'Informatique du Parallélisme, École Normale Supérieure de Lyon, France

E-mail address: stephan.thomasse@ens-lyon.fr