ADDITIVE BASES AND FLOWS IN GRAPHS

LOUIS ESPERET, RÉMI DE JOANNIS DE VERCLOS, TIEN-NAM LE, AND STÉPHAN THOMASSÉ

Abstract

It was conjectured by Jaeger, Linial, Payan, and Tarsi in 1992 that for any prime number p, there is a constant c such that for any n, the union (with repetition) of the vectors of any family of c linear bases of \mathbb{Z}_{p}^{n} forms an additive basis of \mathbb{Z}_{p}^{n} (i.e. any element of \mathbb{Z}_{p}^{n} can be expressed as the sum of a subset of these vectors). In this note, we prove this conjecture when each vector contains at most two non-zero entries. As an application, we prove several results on flows in highly edge-connected graphs, extending known results. For instance, assume that $p \geqslant 3$ is a prime number and \vec{G} is a directed, highly edge-connected graph in which each arc is given a list of two distinct values in \mathbb{Z}_{p}. Then \vec{G} has a \mathbb{Z}_{p}-flow in which each arc is assigned a value of its own list.

1. Introduction

Graphs considered in this paper may have multiple edges but no loops. An additive basis B of a vector space F is a multiset of elements from F such that for all $\beta \in F$, there is a subset of B which sums to β. Let \mathbb{Z}_{p}^{n} be the n-dimensional linear space over the prime field \mathbb{Z}_{p}. The following result is a simple consequence of the Cauchy-Davenport Theorem [5] (see also [2]).

Theorem 1 ([5]). For any prime p, any multiset of $p-1$ non-zero elements of \mathbb{Z}_{p} forms an additive basis of \mathbb{Z}_{p}.

This result can be rephrased as: for $n=1$, any family of $p-1$ linear bases of \mathbb{Z}_{p}^{n} forms an additive basis of \mathbb{Z}_{p}^{n}. A natural question is whether this can be extended to all integers n. Given a collection of sets X_{1}, \ldots, X_{k}, we denote by $\biguplus_{i=1}^{k} X_{i}$ the union with repetitions of X_{1}, \ldots, X_{k}. Jaeger, Linial, Payan and Tarsi [12] conjectured the

[^0]following, a generalization of important results regarding nowhere-zero flows in graphs.

Conjecture 2 ([12]). For every prime number p, there is a constant $c(p)$ such that for any $t \geqslant c(p)$ linear bases B_{1}, \ldots, B_{t} of \mathbb{Z}_{p}^{n}, the union $\biguplus_{s=1}^{t} B_{s}$ forms an additive basis of \mathbb{Z}_{p}^{n}.

Alon, Linial and Meshulam [1] proved a weaker version of Conjecture 2 , that the union of any $p\lceil\log n\rceil$ linear bases of \mathbb{Z}_{p}^{n} contains an additive basis of \mathbb{Z}_{p}^{n} (note that their bound depends on n). The support of a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{p}^{n}$ is the set of indices i such that $x_{i} \neq 0$. The shadow of a vector x is the (unordered) multiset of non-zero entries of x. Note that sizes of the support and of the shadow of a vector are equal. In this note, we prove that Conjecture 2 holds if the support of each vector has size at most two.

Theorem 3. Let $p \geqslant 3$ be a prime number. For some integer $\ell \geqslant 1$, consider $t \geqslant 8 \ell(3 p-4)+p-2$ linear bases B_{1}, \ldots, B_{t} of \mathbb{Z}_{p}^{n}, such that the support of each vector has size at most 2 , and at most ℓ different shadows of size 2 appear among the vectors of $\mathcal{B}=\biguplus_{s=1}^{t} B_{s}$. Then \mathcal{B} forms an additive basis of \mathbb{Z}_{p}^{n}.

Theorem 3 will be proved in Section 3 using a result of Lovász, Thomassen, Wu and Zhang [15] (Theorem 6 below) on flows in highly edge-connected graphs. It was mentioned to us by one of the referees that Lai and Li [14] established the equivalence between Theorem 6 and Theorem 3 in the special case where all the shadows are equal to $\{-1,+1\}(\bmod p)$.

The number of possibilities for an (unordered) multiset of $\mathbb{Z}_{p} \backslash\{0\}$ of size 2 is $\binom{p-1}{2}+p-1=\binom{p}{2}$. As a consequence, Theorem 3 has the following immediate corollary.

Corollary 4. Let $p \geqslant 3$ be a prime number. For any $t \geqslant 8\binom{p}{2}(3 p-$ $4)+p-2$ linear bases B_{1}, \ldots, B_{t} of \mathbb{Z}_{p}^{n} such that the support of each vector has size at most $\mathcal{Z}, \biguplus_{s=1}^{t} B_{s}$ forms an additive basis of \mathbb{Z}_{p}^{n}.

Another interesting consequence of Theorem 3 concerns the linear subspace $\left(\mathbb{Z}_{p}^{n}\right)_{0}$ of vectors of \mathbb{Z}_{p}^{n} whose entries sum to $0(\bmod p)$.

Corollary 5. Let $p \geqslant 3$ be a prime number. For any $t \geqslant 4(p-1)(3 p-$ $4)+p-2$ linear bases B_{1}, \ldots, B_{t} of $\left(\mathbb{Z}_{p}^{n}\right)_{0}$ such that the support of each vector has size at most 2, $\biguplus_{s=1}^{t} B_{s}$ forms an additive basis of $\left(\mathbb{Z}_{p}^{n}\right)_{0}$.

Proof. Note that for any $1 \leqslant s \leqslant t$, the linear basis B_{s} consists of $n-1$ vectors, each of which has a support of size 2 , and the two elements of the shadow sum to $0(\bmod p)$. In particular, at most $\frac{p-1}{2}$ different shadows appear among the vectors of the linear bases B_{1}, \ldots, B_{t}. It is convenient to view each B_{s} as a matrix in which the elements of the basis are column vectors. For each $1 \leqslant s \leqslant t$, let B_{s}^{\prime} be obtained from B_{s} by deleting the last row. It is easy to see that B_{s}^{\prime} is a linear basis of \mathbb{Z}_{p}^{n-1}. Moreover, at most $\frac{p-1}{2}$ different shadows of size 2 appear among the vectors of the linear bases $B_{1}^{\prime}, \ldots, B_{t}^{\prime}$ (note that the removal of the last row may have created vectors with shadows of size 1). In particular, it follows from Theorem 3 that for any vector $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in\left(\mathbb{Z}_{p}^{n}\right)_{0}$, the vector $\left(\beta_{1}, \ldots, \beta_{n-1}\right) \in \mathbb{Z}_{p}^{n-1}$ can be written as a sum of a subset of elements of $\biguplus_{s=1}^{t} B_{s}^{\prime}$. Clearly, the corresponding subset of elements of $\biguplus_{s=1}^{t} B_{s}$ sums to β. This concludes the proof of Corollary 5 .

In the next section, we explore some consequences of Corollary 5.

2. Orientations and flows in graphs

Let $G=(V, E)$ be a non-oriented graph. An orientation $\vec{G}=(V, \vec{E})$ of G is obtained by giving each edge of E a direction. For each edge $e \in E$, we denote the corresponding arc of \vec{E} by \vec{e}, and vice versa. For a vertex $v \in V$, we denote by $\delta_{\vec{G}}^{+}(v)$ the set of arcs of \vec{E} leaving v, and by $\delta_{\vec{G}}^{-}(v)$ the set of arcs of \vec{E} entering v.

For an integer $k \geqslant 2$, a mapping $\beta: V \rightarrow \mathbb{Z}_{k}$ is said to be a $\mathbb{Z}_{k}{ }^{-}$ boundary of G if $\sum_{v \in V} \beta(v) \equiv 0(\bmod k)$. Given a \mathbb{Z}_{k}-boundary β of G, an orientation \vec{G} of G is a β-orientation if $d_{\vec{G}}^{+}(v)-d_{\vec{G}}^{-}(v) \equiv \beta(v)$ $(\bmod k)$ for every $v \in V$, where $d_{\vec{G}}^{+}(v)$ and $d_{\vec{G}}^{-}(v)$ stand for the outdegree and the in-degree of v in \vec{G}.

The following major result was obtained by Lovász, Thomassen, Wu and Zhang [15]:

Theorem 6. [15] For any $k \geqslant 1$, any $6 k$-edge-connected graph G, and any $\mathbb{Z}_{2 k+1}$-boundary β of G, the graph G has a β-orientation.

A natural question is whether a weighted counterpart of Theorem 6 exists. Given a graph $G=(V, E)$, a \mathbb{Z}_{k}-boundary β of G and a mapping $f: E \rightarrow \mathbb{Z}_{k}$, an orientation \vec{G} of G is called an f-weighted β-orientation if $\partial f(v) \equiv \beta(v)(\bmod k)$ for every v, where $\partial f(v)=\sum_{\vec{e} \in \delta_{\vec{G}}^{+}(v)} f(e)-$
$\sum_{\vec{e} \in \delta_{\vec{G}}^{-}(v)} f(e)$. Note that if $f(e) \equiv 1(\bmod k)$ for every edge e, an f-weighted β-orientation is precisely a β-orientation.

An immediate observation is that if we wish to have a general result of the form of Theorem 6 for weighted orientations, it is necessary to assume that $2 k+1$ is a prime number. For instance, take G to consist of two vertices u, v with an arbitrary number of edges between u and v, consider a non-trivial divisor p of $2 k+1$, and ask for a \mathbf{p}-weighted $\mathbb{Z}_{2 k+1^{-}}$ orientation \vec{G} of G (here, \mathbf{p} denotes the function that maps each edge to $p(\bmod 2 k+1))$. Note that for any orientation, $\partial \mathbf{p}(v)$ is in the subgroup of $\mathbb{Z}_{2 k+1}$ generated by p, and this subgroup does not contain $1,-1$ $(\bmod 2 k+1)$. In particular, there is no \mathbf{p}-weighted $\mathbb{Z}_{2 k+1}$-orientation of G with boundary β satisfying $\beta(u) \equiv-\beta(v) \equiv 1(\bmod 2 k+1)$.

In Section 4, we will prove that Corollary 5 easily implies a weighted counterpart of Theorem 6 as in the following theorem, but with a stronger requirement on the edge-connectivity. Theorem 7 itself will be deduced directly from Theorem 6.

Theorem 7. Let $p \geqslant 3$ be a prime number and let $G=(V, E)$ be a $(6 p-8)(p-1)$-edge-connected graph. For any mapping $f: E \rightarrow \mathbb{Z}_{p} \backslash\{0\}$ and any \mathbb{Z}_{p}-boundary β, G has an f-weighted β-orientation.

Theorem 7 turns out to be equivalent to the following seemingly more general result. Assume that we are given a directed graph $\vec{G}=(V, \vec{E})$ and a \mathbb{Z}_{p}-boundary β. A \mathbb{Z}_{p}-flow with boundary β in \vec{G} is a mapping $f: \vec{E} \rightarrow \mathbb{Z}_{p}$ such that $\partial f(v) \equiv \beta(v)(\bmod p)$ for every v. In other words, f is a \mathbb{Z}_{p}-flow with boundary β in $\vec{G}=(V, \vec{E})$ if and only if \vec{G} is an f-weighted β-orientation of its underlying non-oriented graph $G=(V, E)$, where f is extended from \vec{E} to E in the natural way (i.e. for each $e \in E, f(e):=f(\vec{e}))$.

In the remainder of the paper we will say that a directed graph \vec{G} is t-edge-connected if its underlying non-oriented graph, denoted by G, is t-edge-connected.

Theorem 8. Let $p \geqslant 3$ be a prime number and let $\vec{G}=(V, \vec{E})$ be a directed $(6 p-8)(p-1)$-edge-connected graph. For any arc $\vec{e} \in \vec{E}$, let $L(\vec{e})$ be a pair of distinct elements of \mathbb{Z}_{p}. Then for every \mathbb{Z}_{p}-boundary β, \vec{G} has a \mathbb{Z}_{p}-flow f with boundary β such that for any $\vec{e} \in \vec{E}, f(\vec{e}) \in$ $L(\vec{e})$.

This result can been seen as a choosability version of Theorem 6 (the reader is referred to [6] for choosability versions of some classical results on flows). To see that Theorem 8 implies Theorem 7, simply fix an arbitrary orientation of G and set $L(\vec{e})=\{f(e),-f(e)\}$ for each $\operatorname{arc} \vec{e}$. We now prove that Theorem 7 implies Theorem 8 . We actually prove a slightly stronger statement (holding in $\mathbb{Z}_{2 k+1}$ for any integer $k \geqslant 1$).

Lemma 9. Let $k \geqslant 1$ be an integer, and let $\vec{G}=(V, \vec{E})$ be a directed graph such that the underlying non-oriented graph G has an f-weighted β-orientation for any mapping $f: E \rightarrow \mathbb{Z}_{2 k+1} \backslash\{0\}$ and any $\mathbb{Z}_{2 k+1}$ boundary β. For every arc $\vec{e} \in \vec{E}$, let $L(\vec{e})$ be a pair of distinct elements of $\mathbb{Z}_{2 k+1}$. Then for every $\mathbb{Z}_{2 k+1}$-boundary β, \vec{G} has a $\mathbb{Z}_{2 k+1}$-flow g with boundary β such that $g(\vec{e}) \in L(\vec{e})$ for every \vec{e}.

Proof. Let β be a $\mathbb{Z}_{2 k+1}$-boundary of \vec{G}. Consider a single $\operatorname{arc} \vec{e}=(u, v)$ of \vec{G}. Choosing one of the two values of $L(\vec{e})$, say a or b, will either add a to $\partial g(u)$ and subtract a from $\partial g(v)$, or add b to $\partial g(u)$ and subtract b from $\partial g(v)$. Note that 2 and $2 k+1$ are relatively prime, so the element 2^{-1} is well-defined in $\mathbb{Z}_{2 k+1}$. If we now add $2^{-1}(a+b)$ to $\beta(v)$ and subtract $2^{-1}(a+b)$ from $\beta(u)$, the earlier choice is equivalent to choosing between the two following options: adding $2^{-1}(a-b)$ to $\partial g(u)$ and subtracting $2^{-1}(a-b)$ from $\partial g(v)$, or adding $2^{-1}(b-a)$ to $\partial g(u)$ and subtracting $2^{-1}(b-a)$ from $\partial g(v)$. This is equivalent to choosing an orientation for an edge of weight $2^{-1}(a-b)$. It follows that finding a $\mathbb{Z}_{2 k+1}$-flow g with boundary β such that for any $\vec{e} \in \vec{E}, g(\vec{e}) \in L(\vec{e})$ is equivalent to finding an f-weighted β^{\prime}-orientation for some other $\mathbb{Z}_{2 k+1}$-boundary β^{\prime} of G, where the weight $f(e)$ of each edge e is 2^{-1} times the difference between the two elements of $L(\vec{e})$.

We now consider the case where $L(\vec{e})=\{0,1\}$ for every arc $\vec{e} \in \vec{E}$. Let $f_{2^{-1}}: \vec{E} \rightarrow \mathbb{Z}_{2 k+1}$ denote the function that maps each arc \vec{e} to 2^{-1} $(\bmod 2 k+1)$. The same argument as in the proof of Lemma 9 implies that if G has an $f_{2^{-1}}$-weighted β-orientation for every $\mathbb{Z}_{2 k+1}$-boundary β, then for every $\mathbb{Z}_{2 k+1}$-boundary β, the digraph \vec{G} has a $\mathbb{Z}_{2 k+1}$-flow f with boundary β such that $f(\vec{e}) \in L(\vec{e})$ for every \vec{e}.

The following is a simple corollary of Theorem 6.
Corollary 10. Let $\ell \geqslant 1$ be an odd integer and let $k \geqslant 1$ be relatively prime with ℓ. Let $G=(V, E)$ be a $(3 \ell-3)$-edge-connected graph, and let $\mathbf{k}: E \rightarrow \mathbb{Z}_{\ell}$ be the mapping that assigns $k(\bmod \ell)$ to each edge $e \in E$. Then for any \mathbb{Z}_{ℓ}-boundary β, G has a \mathbf{k}-weighted β-orientation.

Proof. Observe that $\beta^{\prime}=k^{-1} \cdot \beta$ is a $\mathbb{Z}_{\ell^{-}}$-boundary $\left(k^{-1}\right.$ is well defined in $\left.\mathbb{Z}_{\ell}\right)$. It follows from Theorem 6 that G has a β^{\prime}-orientation. Note that this corresponds to a \mathbf{k}-weighted β-orientation of G, as desired.

As a consequence, the following is an equivalent version of Theorem 6 (see also [12, 14]).

Theorem 11. Let $k \geqslant 1$ be an integer and let $\vec{G}=(V, \vec{E})$ be a directed $6 k$-edge-connected graph. Then for every $\mathbb{Z}_{2 k+1}$-boundary β, \vec{G} has a $\mathbb{Z}_{2 k+1}$-flow f with boundary β such that $f(\vec{E}) \in\{0,1\}(\bmod 2 k+1)$.

This version of Theorem 6 will allow us to derive interesting results on antisymmetric flows in directed highly edge-connected graphs. Given an abelian group $(B,+)$, a B-flow in \vec{G} is a mapping $f: \vec{E} \rightarrow B$ such that $\partial f(v)=0$ for every vertex v, where all operations are performed in B. A B-flow f in $\vec{G}=(V, \vec{E})$ is a nowhere-zero B-flow (or a B-NZF) if $0 \notin f(\vec{E})$, i.e. each arc of \vec{G} is assigned a non-zero element of B. If no two arcs receive inverse elements of B, then f is an antisymmetric B-flow (or a B-ASF).

Since $0=-0$, a B-ASF is also a B-NZF. It was conjectured by Tutte that every directed 2-edge-connected graph has a \mathbb{Z}_{5}-NZF [21], and that every directed 4 -edge-connected graph has a \mathbb{Z}_{3}-NZF (see [18] and [3]). Antisymmetric flows were introduced by Nešetřil and Raspaud in [16]. A natural obstruction for the existence of an antisymmetric flow in a directed graph \vec{G} is the presence of directed 2-edge-cut in \vec{G}. Nešetřil and Raspaud asked whether any directed graph without directed 2-edge-cut has a B-ASF, for some B. This was proved by DeVos, Johnson, and Seymour in [7], who showed that any directed graph without directed 2-edge-cut has a $\mathbb{Z}_{2}^{8} \times \mathbb{Z}_{3}^{17}$-ASF. It was later proved by DeVos, Nešetřil, and Raspaud [8], that the group could be replaced by $\mathbb{Z}_{2}^{6} \times \mathbb{Z}_{3}^{9}$. The best known result is due to Dvorrák, Kaiser, Král', and Sereni [10], who showed that any directed graph without directed 2-edge-cut has a $\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{3}^{9}$-ASF (this group has 157464 elements).

Adding a stronger condition on the edge-connectivity allows to prove stronger results on the size of the group B. It was proved by DeVos, Nešetřil, and Raspaud [8], that every directed 4-edge-connected graph has a $\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{3}^{4}$-ASF, that every directed 5-edge-connected graph has a \mathbb{Z}_{3}^{5}-ASF, and that every directed 6 -edge-connected graph has a $\mathbb{Z}_{2} \times \mathbb{Z}_{3}^{2}$ ASF.

In [11], Jaeger conjectured the following weaker version of Tutte's 3 -flow conjecture: there is a constant k such that every k-edgeconnected graph has a \mathbb{Z}_{3}-NZF. This conjecture was recently solved by Thomassen [19], who proved that every 8-edge-connected graph has a \mathbb{Z}_{3}-NZF, and was improved by Lovász, Thomassen, Wu and Zhang [15], that every 6-edge-connected graph has a \mathbb{Z}_{3}-NZF (this is a simple consequence of Theorem 6).

The natural antisymmetric variant of Jaeger's weak 3-flow conjecture would be the following: there is a constant k such that every directed k-edge-connected graph has a \mathbb{Z}_{5}-ASF.

Note that the size of the group would be best possible, since in \mathbb{Z}_{2} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ every element is its own inverse, while a \mathbb{Z}_{3}-ASF or a $\mathbb{Z}_{4^{-}}$ ASF has to assign the same value to all the arcs (and this is impossible in the digraph on two vertices u, v with exactly k arcs directed from u to v, for any integer $k \equiv 1(\bmod 12))$.

Our final result is the following.
Theorem 12. For any $k \geqslant 2$, every directed $\left\lceil\frac{6 k}{k-1}\right\rceil$-edge-connected graph has a $\mathbb{Z}_{2 k+1}$-ASF.

Proof. Let $k \geqslant 2$, and let \vec{G} be a directed $\left\lceil\frac{6 k}{k-1}\right\rceil$-edge-connected graph. Let \vec{H} be the directed graph obtained from \vec{G} by replacing every arc \vec{e} by $k-1$ arcs with the same tail and head as \vec{e}, and let H be the non-oriented graph underlying \vec{H}. Let $\beta(v)=d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)$ for every v. Since \vec{G} is $\left\lceil\frac{6 k}{k-1}\right\rceil$-edge-connected, H is $6 k$-edge-connected and by Theorem $11, \vec{H}$ has a $\mathbb{Z}_{2 k+1}$-flow f with boundary β with flow values in the set $\{0,1\}(\bmod 2 k+1)$. For any $\operatorname{arc} \vec{e}$ of \vec{G}, let $g(\vec{e})$ be the sum of the values of the flow f on the t arcs corresponding to \vec{e} in \vec{H}. Then g is a $\mathbb{Z}_{2 k+1}$-flow with boundary β in \vec{G}, with flow values in the set $\{0,1, \ldots, k-1\}(\bmod 2 k+1)$. Now, set $g^{\prime}(\vec{e})=g(\vec{e})+1$ for every arc \vec{e}. Hence every \vec{e} is assigned a value in $\{1, \ldots, k\}(\bmod 2 k+1)$, and $\partial g^{\prime}(v) \equiv \partial g(v)+d_{\vec{G}}^{+}(v)-d_{\vec{G}}^{-}(v) \equiv \beta^{\prime}(v)+d_{\vec{G}}^{+}(v)-d_{\vec{G}}^{-}(v) \equiv 0(\bmod 2 k+1)$ for every v. Thus g^{\prime} is a $\mathbb{Z}_{2 k+1}$ flow of \vec{G} with flow values in the set $\{1, \ldots, k\}(\bmod 2 k+1)$, and thus a $\mathbb{Z}_{2 k+1}$-ASF in \vec{G}, as desired. This concludes the proof of Theorem 12.

As a corollary, we directly obtain:

Corollary 13.

(i) Every directed 7-edge-connected graph has a \mathbb{Z}_{15}-ASF.
(ii) Every directed 8-edge-connected graph has a \mathbb{Z}_{9}-ASF.
(iii) Every directed 9-edge-connected graph has a \mathbb{Z}_{7}-ASF.
(iv) Every directed 12-edge-connected graph has a \mathbb{Z}_{5}-ASF.

By duality, using the results of Nešetřil and Raspaud [16], Corollary 13 (which, again, can be seen as an antisymmetric analogue of the statement of Jaeger's conjecture) directly implies that every orientation of a planar graph of girth (length of a shortest cycle) at least 12 has a homomorphism to an oriented graph on at most 5 vertices. This was proved by Borodin, Ivanova and Kostochka in 2007 [4], and it is not known whether the same holds for planar graphs of girth at least 11. On the other hand, it was proved by Nešetřil, Raspaud and Sopena [17] that there are orientations of some planar graphs of girth at least 7 that have no homomorphism to an oriented graph of at most 5 vertices. By duality again, this implies that there are directed 7-edge-connected graphs with no \mathbb{Z}_{5}-ASF. We conjecture the following:

Conjecture 14. Every directed 8-edge-connected graph has a \mathbb{Z}_{5}-ASF.
It was conjectured by Lai [13] that for every $k \geqslant 1$, every $(4 k+1)$ -edge-connected graph G has a β-orientation for every $\mathbb{Z}_{2 k+1}$-boundary β of G. If true, this conjecture would directly imply (using the same proof as that of Theorem 12) that for any $k \geqslant 2$, every directed $\left\lceil\frac{4 k+1}{k-1}\right\rceil-$ edge-connected graph has a $\mathbb{Z}_{2 k+1}$-ASF. In particular, this would show that directed 5-edge-connected graph have a \mathbb{Z}_{13}-ASF, directed 6 -edgeconnected graph have a \mathbb{Z}_{9}-ASF, directed 7 -edge-connected graph have a \mathbb{Z}_{7}-ASF, and directed 9-edge-connected graph have a \mathbb{Z}_{5}-ASF. The bound on directed 5 -edge-connected graph would also directly imply, using the proof of the main result of [10], that directed graphs with no directed 2-edge-cut have a $\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{3}^{4} \times \mathbb{Z}_{13}$-ASF.

3. Proof of Theorem 3

We first recall the following (weak form of a) classical result by Mader (see [9], Theorem 1.4.3):

Lemma 15. Given an integer $k \geqslant 1$, if $G=(V, E)$ is a graph with average degree at least $4 k$, then there is a subset X of V such that $|X|>1$ and $G[X]$ is $(k+1)$-edge-connected.

We will also need the following result of Thomassen [20], which is a simple consequence of Theorem 6 .

Theorem 16 ([20]). Let $k \geqslant 3$ be an odd integer, $G=\left(V_{1}, V_{2}, E\right)$ be a bipartite graph, and $f: V_{1} \cup V_{2} \rightarrow \mathbb{Z}_{k}$ be a mapping satisfying $\sum_{v \in V_{1}} f(v) \equiv \sum_{v \in V_{2}} f(v)(\bmod k)$. If G is $(3 k-3)$-edge-connected, then G has a spanning subgraph H such that for any $v \in V, d_{H}(v) \equiv$ $f(v)(\bmod k)$.

Let G be a graph, and let X and Y be two disjoint subsets of vertices of G. The set of edges of G with one endpoint in X and the other in Y is denoted by $E(X, Y)$.

We are now ready to prove Theorem 3.
Proof of Theorem 3. We proceed by induction on n. For $n=1$, this is a direct consequence of Theorem 1, so suppose that $n \geqslant 2$. Each basis B_{s} can be considered as an $n \times n$ matrix where each column is a vector with support of size at most 2 . Let $\mathcal{B}=\biguplus_{i=1}^{t} B_{i}$.

For $1 \leqslant i \leqslant n$, a vector is called an i-vector if its support is the singleton $\{i\}$ (in other words, the i-th entry is non-zero and all the other entries are zero). Suppose that for some $1 \leqslant i \leqslant n, \mathcal{B}$ contains at least $p-1 i$-vectors. Let \mathcal{C} be the set of i-vectors of \mathcal{B}. Clearly, each basis contains at most one i-vector. For every B_{s}, let B_{s}^{\prime} be the matrix obtained from B_{s} by removing its i-vector (if any) and the $i^{\text {th }}$ row. Clearly B_{s}^{\prime} is or contains a basis of \mathbb{Z}_{p}^{n-1}. By induction hypothesis, $\biguplus_{s=1}^{t} B_{s}^{\prime}$ forms an additive basis of \mathbb{Z}_{p}^{n-1}. In other words, for any vector $\beta=\left(\beta_{1}, \ldots, \beta_{i}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{p}^{n}$, there is a subset Y_{1} of $\mathcal{B} \backslash \mathcal{C}$ which sums to $\left(\beta_{1}, \ldots, \hat{\beta}_{i}, . ., \beta_{n}\right)$ for some $\hat{\beta}_{i}$. Since $|\mathcal{C}| \geqslant p-1$, it follows from Theorem 1 that there is a subset Y_{2} of \mathcal{C} which sums to $\left(0, \ldots, \beta_{i}-\hat{\beta}_{i}, . ., 0\right)$. Hence $Y_{1} \cup Y_{2}$ sums to β.

Thus we can suppose that there are at most $p-2 i$-vectors for every i. Then there are at least $8 \ell(3 p-4) n$ vectors with a support of size 2 in \mathcal{B}. Since there are at most ℓ distinct shadows of size 2 in \mathcal{B}, there are at least $8(3 p-4) n$ vectors with the same (unordered) shadow of size 2 , say $\left\{a_{1}, a_{2}\right\}$ (recall that shadows are multisets, so a_{1} and a_{2} might coincide).

Let G be the graph (recall that graphs in this paper are allowed to have multiple edges) with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set E, where edges $v_{i} v_{j}$ are in one-to-one correspondence with vectors of \mathcal{B} with support $\{i, j\}$ and shadow $\left\{a_{1}, a_{2}\right\}$. Then G contains at least $8(3 p-4) n$ edges.

We now consider a random partition of V into 2 sets V_{1}, V_{2} (by assigning each vertex of V uniformly at random to one of the sets V_{k},
$k=1,2)$. Let $e=v_{i} v_{j}$ be some edge of G. Recall that e corresponds to some vector with only two non-zero entries, say without loss of generality a_{1} at $i^{\text {th }}$ index and a_{2} at $j^{\text {th }}$ index. The probability that v_{i} is assigned to V_{1} and v_{j} is assigned to V_{2} is at least $\frac{1}{4}$. As a consequence, there is a partition of V into 2 sets V_{1}, V_{2} and a subset $E^{\prime} \subseteq E\left(V_{1}, V_{2}\right)$ of at least $8(3 p-4) n / 4=2(3 p-4) n$ edges such that for every $e \in E^{\prime}$, the vector of \mathcal{B} corresponding with e has entry a_{1} (resp. a_{2}) at the index associated to the endpoint of e in V_{1} (resp. V_{2}).

Since the graph $G^{\prime}=\left(V, E^{\prime}\right)$ has average degree at least $4(3 p-4)$, it follows from Lemma 15 that there is a set $X \subseteq V$ of at least 2 vertices, such that $G^{\prime}[X]$ is $(3 p-3)$-edge-connected. Set $H=G^{\prime}[X]$ and F the edge set of H. Note that H is bipartite with bipartition $X_{1}=X \cap V_{1}$ and $X_{2}=X \cap V_{2}$.

For each integer $1 \leqslant s \leqslant t$, let B_{s}^{*} be the matrix obtained from B_{s} by doing the following: for each vertex v_{i} in X_{1} (resp. X_{2}), we multiply all the elements of the $i^{\text {th }}$ row of B_{s} by a_{1}^{-1} (resp. $-a_{2}^{-1}$), noting that all the operations are performed in \mathbb{Z}_{p}. Let $\mathcal{B}^{*}=\biguplus_{s=1}^{t} B_{s}^{*}$. Note that each vector of \mathcal{B}^{*} corresponding to some edge $e \in F$ has shadow $\{1,-1\}$ (1 is the entry indexed by the endpoint of e in X_{1} and -1 is the entry indexed by the endpoint of e in X_{2}). It is easy to verify the following.

- Each B_{s}^{*} is a linear basis of \mathbb{Z}_{p}^{n}.
- \mathcal{B} is an additive basis if and only if \mathcal{B}^{*} is an additive basis.

Hence it suffices to prove that \mathcal{B}^{*} is an additive basis.
Without loss of generality, suppose that $X=\left\{v_{m}, \ldots, v_{n}\right\}$ for some $m \leqslant n-1$. By contracting k rows of a matrix, we mean deleting these k rows and adding a new row consisting of the sum of the k rows. For each $1 \leqslant s \leqslant t$, let B_{s}^{\prime} be the matrix of m rows obtained from B_{s}^{*} by contracting all $m^{\text {th }},(m+1)^{t h}, \ldots, n^{\text {th }}$ rows. Note that the operation of contracting k rows decreases the rank of the matrix by at most $k-1$ (since it is the same as replacing one of the rows by the sum of the k rows, which preserves the rank, and then deleting the $k-1$ other rows). Let $\mathcal{B}^{\prime}=\biguplus_{s=1}^{t} B_{s}^{\prime}$. Since each B_{s}^{*} is a linear basis of \mathbb{Z}_{p}^{n}, each B_{s}^{\prime} has rank at least m and therefore contains a basis of \mathbb{Z}_{p}^{m}. Hence, by induction hypothesis, $\mathcal{B}^{\prime} \backslash \mathcal{B}_{0}^{\prime}$ is an additive basis of \mathbb{Z}_{p}^{m}, where \mathcal{B}_{0}^{\prime} is the set of all columns with empty support in \mathcal{B}^{\prime}. For every $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{p}^{n}$, let $\beta^{\prime}=\left(\beta_{1}, \ldots, \beta_{m-1}, \sum_{i=m}^{n} \beta_{i}\right) \in \mathbb{Z}_{p}^{m}$. Then there is a subset Y^{\prime} of $\mathcal{B}^{\prime} \backslash \mathcal{B}_{0}^{\prime}$ which sums to β^{\prime}. Let Y^{*} and \mathcal{B}_{0}^{*} be the subsets of \mathcal{B}^{*} corresponding to Y^{\prime} and \mathcal{B}_{0}^{\prime}, respectively. Then Y^{*}
sums to some $\hat{\beta}=\left(\beta_{1}, \ldots, \beta_{m-1}, \hat{\beta}_{m}, \ldots, \hat{\beta}_{n}\right)$, where $\sum_{i=m}^{n} \hat{\beta}_{i} \equiv \sum_{i=m}^{n} \beta_{i}$ $(\bmod p)$.

Recall that for each edge $e \in F$, the corresponding vector in \mathcal{B}^{*} has precisely two non-zero entries, $(1,-1)$, each with index in X. Hence the vector corresponding to each $e \in F$ in \mathcal{B}^{\prime} has empty support. Thus the set of vectors in \mathcal{B}^{*} corresponding to the edge set F is a subset of \mathcal{B}_{0}^{*}, which is disjoint from Y.

For each $v_{i} \in X_{1}$, let $\beta_{X}\left(v_{i}\right)=\beta_{i}-\hat{\beta}_{i}$, and for each $v_{i} \in X_{2}$, let $\beta_{X}\left(v_{i}\right)=\hat{\beta}_{i}-\beta_{i}$. Since $\sum_{i=m}^{n} \hat{\beta}_{i} \equiv \sum_{i=m}^{n} \beta_{i}(\bmod p)$, we have $\sum_{v_{i} \in X \cap V_{1}} \beta_{X}\left(v_{i}\right)=\sum_{v_{i} \in X \cap V_{2}} \beta_{X}\left(v_{i}\right)$. Since H is ($3 p-3$)-edgeconnected, it follows from Theorem 16 that there is a subset $F^{\prime} \subseteq F$ such that, in the graph $\left(X, F^{\prime}\right)$, each vertex $v_{i} \in X_{1}$ has degree $\beta_{i}-\hat{\beta}_{i}$ $(\bmod p)$ and each vertex $v_{i} \in X_{2}$ has degree $\hat{\beta}_{i}-\beta_{i}(\bmod p)$. Therefore, F^{\prime} corresponds to a subset Z^{*} of vectors of \mathcal{B}_{0}^{*}, summing to $\left(0, \ldots, 0, \beta_{m}-\hat{\beta}_{m}, \ldots, \beta_{n}-\hat{\beta}_{n}\right)$. Then $Y^{*} \cup Z^{*}$ sums to β. It follows that \mathcal{B}^{*} is an additive basis of \mathbb{Z}_{p}^{n}, and so is \mathcal{B}. This completes the proof.

4. Two proofs of (versions of) Theorem 7

We now give two proofs of (versions of) Theorem 7. The first one is a direct application of Corollary 5, but requires a stronger assumption on the edge-connectivity of $G\left(24 p^{2}-54 p+28\right.$ instead of $6 p^{2}-14 p+8$ for the second proof).

First proof of Theorem 7. We fix some arbitrary orientation $\vec{G}=(V, \vec{E})$ of G and denote the vertices of G by v_{1}, \ldots, v_{n}. The number of edges of G is denoted by m. For each arc $\vec{e}=\left(v_{i}, v_{j}\right)$ of \vec{G}, we associate \vec{e} to a vector $x_{e} \in\left(\mathbb{Z}_{p}^{n}\right)_{0}$ in which the $i^{t h}$-entry is equal to $f(e)(\bmod p)$, the $j^{\text {th }}$-entry is equal to $-f(e)(\bmod p)$ and all the remaining entries are equal to $0(\bmod p)$.

Let us consider the following statements.
(a) For each \mathbb{Z}_{p}-boundary β, there is an f-weighted β-orientation of G.
(b) For each \mathbb{Z}_{p}-boundary β there is a vector $\left(a_{e}\right)_{e \in E} \in\{-1,1\}^{m}$, such that $\sum_{e \in E} a_{e} x_{e} \equiv \beta(\bmod p)$.
(c) For each \mathbb{Z}_{p}-boundary β there is a vector $\left(a_{e}\right)_{e \in E} \in\{0,1\}^{m}$ such that $\sum_{e \in E} 2 a_{e} x_{e} \equiv \beta(\bmod p)$.

Clearly, a is equivalent to b . We now claim that b is equivalent to c. To see this, simply do the following for each $\operatorname{arc} \vec{e}=\left(v_{i}, v_{j}\right)$ of
\vec{G} : add $f(e)$ to the $j^{\text {th }}$-entry of x_{e} and to $\beta\left(v_{j}\right)$, and subtract $f(e)$ from the $i^{t h}$-entry of x_{e} and from $\beta\left(v_{i}\right)$. To deduce c from Corollary 5 , what is left is to show that $\left\{a_{e}: e \in E\right\}$ can be decomposed into sufficiently many linear bases of $\left(\mathbb{Z}_{p}^{n}\right)_{0}$. This follows from the fact that G is $(8(p-1)(3 p-4)+2 p-4)$-edge-connected (and therefore contains $4(p-1)(3 p-4)+p-2$ edge-disjoint spanning trees) and that the set of vectors a_{e} corresponding to the edges of a spanning tree of G forms a linear basis of $\left(\mathbb{Z}_{p}^{n}\right)_{0}$ (see [12]).

A second proof consists in mimicking the proof of Theorem 3 (it turns out to give a better bound for the edge-connectivity of G).

Second proof of Theorem 7. As before, all values and operations are considered modulo p. We can assume without loss of generality that $f(E) \in\left\{1,2, \ldots, \frac{p-1}{2}\right\}$, since otherwise we can replace the value $f(e)$ of an edge e by $-f(e)$, without changing the problem.

We prove the result by induction on the number of vertices of G. The result is trivial if G contains only one vertex, so assume that G has at least two vertices.

For any $1 \leqslant i \leqslant k$, let E_{i} be the set of edges $e \in E$ with $f(e)=i$, and let $G_{i}=\left(V, E_{i}\right)$. Since G is $(6 p-8)(p-1)$-edge-connected, G has minimum degree at least $(6 p-8)(p-1)$ and then average degree at least $(6 p-8)(p-1)$. As a consequence, there exists i such that G_{i} has average degree at least $12 p-16$. By Lemma 15 , since $\frac{12 p-16}{4}+1=3 p-3$, G_{i} has an induced subgraph $H=(X, F)$ with at least two vertices such that H is $(3 p-3)$-edge-connected. Let G / X be the graph obtained from G by contracting X into a single vertex x (and removing possible loops). Since H contains more than one vertex, G / X has less vertices than G (note that possibly, $X=V$ and in this case G / X consists of the single vertex $x)$. Since G is $(6 p-8)(p-1)$-edge-connected, G / X is also $(6 p-8)(p-1)$-edge-connected. Hence by the induction hypothesis it has an f-weighted β-orientation, where we consider the restriction of f to the edge-set of G / X, and we define $\beta(x)=\beta(X)$. Note that this orientation corresponds to an orientation of all the edges of G with at most one endpoint in X.

We now orient arbitrarily the edges of $G[X]$ not in F (the edge-set of H), and update the values of the \mathbb{Z}_{p}-boundary β accordingly (i.e. for each $v \in X$, we subtract from $\beta(v)$ the contribution of the arcs that were already oriented). It is easy to see that as the original β was a boundary, the new β is indeed a boundary. Finally, since all the edges of H have the same weight, and since H is (3p-3)-edge-connected,
it follows from Corollary 10 that H has an f-weighted β-orientation (with respect to the updated boundary β). The orientations combine into an f-weighted β-orientation of G, as desired.

Acknowledgments

We would like to thank the referees for their suggestions and for mentioning the existence of the unpublished manuscript [14].

References

[1] N. Alon, N. Linial and R. Meshulam Additive bases of vector spaces over prime fields, J. Combin. Theory Ser. A 57 (1991), 203-210.
[2] N. Alon, M. Nathanson, and I. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56(2) (1996), 404-417.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[4] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Oriented 5-coloring of sparse plane graphs, J. Applied and Industrial Math. 1(1) (2007), 9-17.
[5] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.
[6] M. DeVos, Matrix choosability, J. Combin. Theory Ser. A 90 (2000), 197-209.
[7] M. DeVos, T. Johnson, and P. Seymour, Cut coloring and circuit covering, Manuscript.
[8] M. DeVos, J. Nešetřil, and A. Raspaud, Antisymmetric flows and edgeconnectivity, Discrete Math. 276(13) (2004), 161-167.
[9] R. Diestel, Graph Theory, Graduate Texts in Mathematics, Springer (2005).
[10] Z. Dvořák, T. Kaiser, D. Král', and J.-S. Sereni, A note on antisymmetric flows in graphs, European J. Combin. 31 (2010), 320-324.
[11] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979), 205-216.
[12] F. Jaeger, N. Linial, C. Payan, and M. Tarsi, Group connectivity of graphs A non homomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992), 165-182.
[13] H.-J. Lai, Mod $(2 p+1)$-orientations and $K_{1,2 p+1}$-decompositions, SIAM J. Discrete Math. 21 (2007), 844-850.
[14] H.-J. Lai and P. Li, Additive bases and strongly $\mathbb{Z}_{2 s+1}$-connectedness, Manuscript.
[15] L.M. Lovász, C. Thomassen, Y. Wu, and C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Combin. Theory Ser.B 103 (2013), 587-598.
[16] J. Nešetřil and A. Raspaud, Antisymmetric flows and strong colourings of oriented graphs, Ann. Inst. Fourier 49(3) (1999), 1037-1056.
[17] J. Nešetřil, A. Raspaud and E. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165-166 (1997), 519-530.
[18] R. Steinberg, Grötzsch's Theorem dualized, M. Math Thesis, University of Waterloo, 1976.
[19] C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combin. Theory Ser. B 102 (2012), 521-529.
[20] C. Thomassen, Graph factors modulo k, J. Combin. Theory Ser. B 106 (2014), 174-177.
[21] W.T. Tutte, A Contribution on the Theory of Chromatic Polynomial, Canad. J. Math. 6 (1954), 80-91.
[22] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966), 15-50.

Laboratoire G-SCOP (CNRS, Univ. Grenoble-Alpes), Grenoble, France

E-mail address: louis.esperet@grenoble-inp.fr
Laboratoire G-SCOP (CNRS, Univ. Grenoble-Alpes), Grenoble, France

E-mail address: remi.de-joannis-de-verclos@grenoble-inp.fr
Laboratoire D'Informatique du Parallélisme, École Normale Supérieure de Lyon, France

E-mail address: tien-nam.le@ens-lyon.fr
Laboratoire D'Informatique du Parallélisme, École Normale Supérieure de Lyon, France

E-mail address: stephan.thomasse@ens-lyon.fr

[^0]: The authors are partially supported by ANR Project STINT (ANR-13-BS020007) and GATO (ANR-16-CE40-0009-01), and LabEx PERSYVAL-Lab (ANR-11-LABX-0025). An extended abstract of this work appeared in the proceedings of Eurocomb 2017.

