
ar
X

iv
:1

70
1.

03
36

6v
2 

 [
m

at
h.

C
O

] 
 7

 F
eb

 2
01

8

ADDITIVE BASES AND FLOWS IN GRAPHS

LOUIS ESPERET, RÉMI DE JOANNIS DE VERCLOS, TIEN-NAM LE,
AND STÉPHAN THOMASSÉ

Abstract. It was conjectured by Jaeger, Linial, Payan, and Tarsi
in 1992 that for any prime number p, there is a constant c such
that for any n, the union (with repetition) of the vectors of any
family of c linear bases of Zn

p
forms an additive basis of Zn

p
(i.e.

any element of Zn

p
can be expressed as the sum of a subset of these

vectors). In this note, we prove this conjecture when each vector
contains at most two non-zero entries. As an application, we prove
several results on flows in highly edge-connected graphs, extending
known results. For instance, assume that p > 3 is a prime number

and ~G is a directed, highly edge-connected graph in which each arc

is given a list of two distinct values in Zp. Then ~G has a Zp-flow
in which each arc is assigned a value of its own list.

1. Introduction

Graphs considered in this paper may have multiple edges but no
loops. An additive basis B of a vector space F is a multiset of elements
from F such that for all β ∈ F , there is a subset of B which sums to
β. Let Z

n
p be the n-dimensional linear space over the prime field Zp.

The following result is a simple consequence of the Cauchy-Davenport
Theorem [5] (see also [2]).

Theorem 1 ([5]). For any prime p, any multiset of p − 1 non-zero
elements of Zp forms an additive basis of Zp.

This result can be rephrased as: for n = 1, any family of p − 1
linear bases of Zn

p forms an additive basis of Zn
p . A natural question

is whether this can be extended to all integers n. Given a collection
of sets X1, ..., Xk, we denote by

⊎k

i=1Xi the union with repetitions
of X1, ..., Xk. Jaeger, Linial, Payan and Tarsi [12] conjectured the
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following, a generalization of important results regarding nowhere-zero
flows in graphs.

Conjecture 2 ([12]). For every prime number p, there is a constant
c(p) such that for any t > c(p) linear bases B1, ..., Bt of Z

n
p , the union

⊎t

s=1Bs forms an additive basis of Zn
p .

Alon, Linial and Meshulam [1] proved a weaker version of Conjec-
ture 2, that the union of any p⌈log n⌉ linear bases of Zn

p contains an
additive basis of Zn

p (note that their bound depends on n). The support
of a vector x = (x1, . . . , xn) ∈ Z

n
p is the set of indices i such that xi 6= 0.

The shadow of a vector x is the (unordered) multiset of non-zero entries
of x. Note that sizes of the support and of the shadow of a vector are
equal. In this note, we prove that Conjecture 2 holds if the support of
each vector has size at most two.

Theorem 3. Let p > 3 be a prime number. For some integer ℓ > 1,
consider t > 8ℓ(3p− 4) + p− 2 linear bases B1, ..., Bt of Z

n
p , such that

the support of each vector has size at most 2, and at most ℓ different
shadows of size 2 appear among the vectors of B =

⊎t

s=1Bs. Then B
forms an additive basis of Zn

p .

Theorem 3 will be proved in Section 3 using a result of Lovász,
Thomassen, Wu and Zhang [15] (Theorem 6 below) on flows in highly
edge-connected graphs. It was mentioned to us by one of the referees
that Lai and Li [14] established the equivalence between Theorem 6
and Theorem 3 in the special case where all the shadows are equal to
{−1,+1} (mod p).

The number of possibilities for an (unordered) multiset of Zp \ {0}
of size 2 is

(

p−1
2

)

+ p− 1 =
(

p

2

)

. As a consequence, Theorem 3 has the
following immediate corollary.

Corollary 4. Let p > 3 be a prime number. For any t > 8
(

p

2

)

(3p −
4) + p − 2 linear bases B1, ..., Bt of Zn

p such that the support of each

vector has size at most 2,
⊎t

s=1Bs forms an additive basis of Zn
p .

Another interesting consequence of Theorem 3 concerns the linear
subspace (Zn

p )0 of vectors of Zn
p whose entries sum to 0 (mod p).

Corollary 5. Let p > 3 be a prime number. For any t > 4(p−1)(3p−
4) + p− 2 linear bases B1, ..., Bt of (Z

n
p )0 such that the support of each

vector has size at most 2,
⊎t

s=1Bs forms an additive basis of (Zn
p )0.
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Proof. Note that for any 1 6 s 6 t, the linear basis Bs consists of n−1
vectors, each of which has a support of size 2, and the two elements
of the shadow sum to 0 (mod p). In particular, at most p−1

2
different

shadows appear among the vectors of the linear bases B1, ..., Bt. It is
convenient to view each Bs as a matrix in which the elements of the
basis are column vectors. For each 1 6 s 6 t, let B′

s be obtained from
Bs by deleting the last row. It is easy to see that B′

s is a linear basis of
Z
n−1
p . Moreover, at most p−1

2
different shadows of size 2 appear among

the vectors of the linear bases B′

1, ..., B
′

t (note that the removal of the
last row may have created vectors with shadows of size 1). In particular,
it follows from Theorem 3 that for any vector β = (β1, . . . , βn) ∈ (Zn

p )0,

the vector (β1, . . . , βn−1) ∈ Z
n−1
p can be written as a sum of a subset of

elements of
⊎t

s=1B
′

s. Clearly, the corresponding subset of elements of
⊎t

s=1Bs sums to β. This concludes the proof of Corollary 5. �

In the next section, we explore some consequences of Corollary 5.

2. Orientations and flows in graphs

Let G = (V,E) be a non-oriented graph. An orientation ~G = (V, ~E)
of G is obtained by giving each edge of E a direction. For each edge
e ∈ E, we denote the corresponding arc of ~E by ~e, and vice versa. For
a vertex v ∈ V , we denote by δ+~G(v) the set of arcs of ~E leaving v, and

by δ−~G(v) the set of arcs of ~E entering v.

For an integer k > 2, a mapping β : V → Zk is said to be a Zk-
boundary of G if

∑

v∈V β(v) ≡ 0 (mod k). Given a Zk-boundary β of

G, an orientation ~G of G is a β-orientation if d+~G(v) − d−~G(v) ≡ β(v)

(mod k) for every v ∈ V , where d+~G(v) and d−~G(v) stand for the out-

degree and the in-degree of v in ~G.

The following major result was obtained by Lovász, Thomassen, Wu
and Zhang [15]:

Theorem 6. [15] For any k > 1, any 6k-edge-connected graph G, and
any Z2k+1-boundary β of G, the graph G has a β-orientation.

A natural question is whether a weighted counterpart of Theorem 6
exists. Given a graph G = (V,E), a Zk-boundary β of G and a mapping

f : E → Zk, an orientation ~G of G is called an f -weighted β-orientation
if ∂f(v) ≡ β(v) (mod k) for every v, where ∂f(v) =

∑

~e∈δ+
~G
(v) f(e) −
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∑

~e∈δ−
~G
(v) f(e). Note that if f(e) ≡ 1 (mod k) for every edge e, an

f -weighted β-orientation is precisely a β-orientation.

An immediate observation is that if we wish to have a general result
of the form of Theorem 6 for weighted orientations, it is necessary to
assume that 2k+ 1 is a prime number. For instance, take G to consist
of two vertices u, v with an arbitrary number of edges between u and v,
consider a non-trivial divisor p of 2k+1, and ask for a p-weighted Z2k+1-

orientation ~G of G (here, p denotes the function that maps each edge to
p (mod 2k+1)). Note that for any orientation, ∂p(v) is in the subgroup
of Z2k+1 generated by p, and this subgroup does not contain 1,−1
(mod 2k + 1). In particular, there is no p-weighted Z2k+1-orientation
of G with boundary β satisfying β(u) ≡ −β(v) ≡ 1 (mod 2k + 1).

In Section 4, we will prove that Corollary 5 easily implies a weighted
counterpart of Theorem 6 as in the following theorem, but with a
stronger requirement on the edge-connectivity. Theorem 7 itself will
be deduced directly from Theorem 6.

Theorem 7. Let p > 3 be a prime number and let G = (V,E) be a
(6p−8)(p−1)-edge-connected graph. For any mapping f : E → Zp\{0}
and any Zp-boundary β, G has an f -weighted β-orientation.

Theorem 7 turns out to be equivalent to the following seemingly more
general result. Assume that we are given a directed graph ~G = (V, ~E)

and a Zp-boundary β. A Zp-flow with boundary β in ~G is a mapping

f : ~E → Zp such that ∂f(v) ≡ β(v) (mod p) for every v. In other

words, f is a Zp-flow with boundary β in ~G = (V, ~E) if and only if
~G is an f -weighted β-orientation of its underlying non-oriented graph
G = (V,E), where f is extended from ~E to E in the natural way (i.e.
for each e ∈ E, f(e) := f(~e)).

In the remainder of the paper we will say that a directed graph ~G is
t-edge-connected if its underlying non-oriented graph, denoted by G, is
t-edge-connected.

Theorem 8. Let p > 3 be a prime number and let ~G = (V, ~E) be a

directed (6p − 8)(p − 1)-edge-connected graph. For any arc ~e ∈ ~E, let
L(~e) be a pair of distinct elements of Zp. Then for every Zp-boundary

β, ~G has a Zp-flow f with boundary β such that for any ~e ∈ ~E, f(~e) ∈
L(~e).
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This result can been seen as a choosability version of Theorem 6
(the reader is referred to [6] for choosability versions of some classical
results on flows). To see that Theorem 8 implies Theorem 7, simply
fix an arbitrary orientation of G and set L(~e) = {f(e),−f(e)} for each
arc ~e. We now prove that Theorem 7 implies Theorem 8. We actually
prove a slightly stronger statement (holding in Z2k+1 for any integer
k > 1).

Lemma 9. Let k > 1 be an integer, and let ~G = (V, ~E) be a directed
graph such that the underlying non-oriented graph G has an f -weighted
β-orientation for any mapping f : E → Z2k+1 \ {0} and any Z2k+1-

boundary β. For every arc ~e ∈ ~E, let L(~e) be a pair of distinct elements

of Z2k+1. Then for every Z2k+1-boundary β, ~G has a Z2k+1-flow g with
boundary β such that g(~e) ∈ L(~e) for every ~e.

Proof. Let β be a Z2k+1-boundary of ~G. Consider a single arc ~e = (u, v)

of ~G. Choosing one of the two values of L(~e), say a or b, will either add
a to ∂g(u) and subtract a from ∂g(v), or add b to ∂g(u) and subtract
b from ∂g(v). Note that 2 and 2k + 1 are relatively prime, so the
element 2−1 is well-defined in Z2k+1. If we now add 2−1(a+ b) to β(v)
and subtract 2−1(a + b) from β(u), the earlier choice is equivalent to
choosing between the two following options: adding 2−1(a−b) to ∂g(u)
and subtracting 2−1(a − b) from ∂g(v), or adding 2−1(b − a) to ∂g(u)
and subtracting 2−1(b − a) from ∂g(v). This is equivalent to choosing
an orientation for an edge of weight 2−1(a− b). It follows that finding

a Z2k+1-flow g with boundary β such that for any ~e ∈ ~E, g(~e) ∈ L(~e)
is equivalent to finding an f -weighted β ′-orientation for some other
Z2k+1-boundary β ′ of G, where the weight f(e) of each edge e is 2−1

times the difference between the two elements of L(~e). �

We now consider the case where L(~e) = {0, 1} for every arc ~e ∈ ~E.

Let f2−1 : ~E → Z2k+1 denote the function that maps each arc ~e to 2−1

(mod 2k+1). The same argument as in the proof of Lemma 9 implies
that if G has an f2−1-weighted β-orientation for every Z2k+1-boundary

β, then for every Z2k+1-boundary β, the digraph ~G has a Z2k+1-flow f
with boundary β such that f(~e) ∈ L(~e) for every ~e.

The following is a simple corollary of Theorem 6.

Corollary 10. Let ℓ > 1 be an odd integer and let k > 1 be relatively
prime with ℓ. Let G = (V,E) be a (3ℓ−3)-edge-connected graph, and let
k : E → Zℓ be the mapping that assigns k (mod ℓ) to each edge e ∈ E.
Then for any Zℓ-boundary β, G has a k-weighted β-orientation.
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Proof. Observe that β ′ = k−1 ·β is a Zℓ-boundary (k−1 is well defined in
Zℓ). It follows from Theorem 6 that G has a β ′-orientation. Note that
this corresponds to a k-weighted β-orientation of G, as desired. �

As a consequence, the following is an equivalent version of Theorem 6
(see also [12, 14]).

Theorem 11. Let k > 1 be an integer and let ~G = (V, ~E) be a directed

6k-edge-connected graph. Then for every Z2k+1-boundary β, ~G has a

Z2k+1-flow f with boundary β such that f( ~E) ∈ {0, 1} (mod 2k + 1).

This version of Theorem 6 will allow us to derive interesting results on
antisymmetric flows in directed highly edge-connected graphs. Given
an abelian group (B,+), a B-flow in ~G is a mapping f : ~E → B such
that ∂f(v) = 0 for every vertex v, where all operations are performed

in B. A B-flow f in ~G = (V, ~E) is a nowhere-zero B-flow (or a B-nzf)

if 0 6∈ f( ~E), i.e. each arc of ~G is assigned a non-zero element of B. If
no two arcs receive inverse elements of B, then f is an antisymmetric
B-flow (or a B-asf).

Since 0 = −0, a B-asf is also a B-nzf. It was conjectured by
Tutte that every directed 2-edge-connected graph has a Z5-nzf [21],
and that every directed 4-edge-connected graph has a Z3-nzf (see [18]
and [3]). Antisymmetric flows were introduced by Nešetřil and Raspaud
in [16]. A natural obstruction for the existence of an antisymmetric

flow in a directed graph ~G is the presence of directed 2-edge-cut in
~G. Nešetřil and Raspaud asked whether any directed graph without
directed 2-edge-cut has a B-asf, for some B. This was proved by
DeVos, Johnson, and Seymour in [7], who showed that any directed
graph without directed 2-edge-cut has a Z

8
2 × Z

17
3 -asf. It was later

proved by DeVos, Nešetřil, and Raspaud [8], that the group could be
replaced by Z

6
2 × Z

9
3. The best known result is due to Dvořák, Kaiser,

Král’, and Sereni [10], who showed that any directed graph without
directed 2-edge-cut has a Z3

2×Z
9
3-asf (this group has 157464 elements).

Adding a stronger condition on the edge-connectivity allows to prove
stronger results on the size of the group B. It was proved by DeVos,
Nešetřil, and Raspaud [8], that every directed 4-edge-connected graph
has a Z

2
2 × Z

4
3-asf, that every directed 5-edge-connected graph has a

Z
5
3-asf, and that every directed 6-edge-connected graph has a Z2×Z

2
3-

asf.
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In [11], Jaeger conjectured the following weaker version of Tutte’s
3-flow conjecture: there is a constant k such that every k-edge-
connected graph has a Z3-nzf. This conjecture was recently solved by
Thomassen [19], who proved that every 8-edge-connected graph has a
Z3-nzf, and was improved by Lovász, Thomassen, Wu and Zhang [15],
that every 6-edge-connected graph has a Z3-nzf (this is a simple con-
sequence of Theorem 6).

The natural antisymmetric variant of Jaeger’s weak 3-flow conjecture
would be the following: there is a constant k such that every directed
k-edge-connected graph has a Z5-asf.

Note that the size of the group would be best possible, since in Z2

and Z2 × Z2 every element is its own inverse, while a Z3-asf or a Z4-
asf has to assign the same value to all the arcs (and this is impossible
in the digraph on two vertices u, v with exactly k arcs directed from u
to v, for any integer k ≡ 1 (mod 12)).

Our final result is the following.

Theorem 12. For any k > 2, every directed ⌈ 6k
k−1

⌉-edge-connected
graph has a Z2k+1-asf.

Proof. Let k > 2, and let ~G be a directed ⌈ 6k
k−1

⌉-edge-connected graph.

Let ~H be the directed graph obtained from ~G by replacing every arc
~e by k − 1 arcs with the same tail and head as ~e, and let H be the
non-oriented graph underlying ~H . Let β(v) = d−~G(v)− d+~G(v) for every

v. Since ~G is ⌈ 6k
k−1

⌉-edge-connected, H is 6k-edge-connected and by

Theorem 11, ~H has a Z2k+1-flow f with boundary β with flow values

in the set {0, 1} (mod 2k+1). For any arc ~e of ~G, let g(~e) be the sum

of the values of the flow f on the t arcs corresponding to ~e in ~H . Then
g is a Z2k+1-flow with boundary β in ~G, with flow values in the set
{0, 1, . . . , k − 1} (mod 2k + 1). Now, set g′(~e) = g(~e) + 1 for every arc
~e. Hence every ~e is assigned a value in {1, . . . , k} (mod 2k + 1), and
∂g′(v) ≡ ∂g(v)+d+~G(v)−d−~G(v) ≡ β ′(v)+d+~G(v)−d−~G(v) ≡ 0 (mod 2k+1)

for every v. Thus g′ is a Z2k+1-flow of ~G with flow values in the set

{1, . . . , k} (mod 2k + 1), and thus a Z2k+1-asf in ~G, as desired. This
concludes the proof of Theorem 12. �

As a corollary, we directly obtain:

Corollary 13.

(i) Every directed 7-edge-connected graph has a Z15-asf.



8 L. ESPERET, R. DE JOANNIS DE VERCLOS, T.-N. LE, AND S. THOMASSÉ

(ii) Every directed 8-edge-connected graph has a Z9-asf.
(iii) Every directed 9-edge-connected graph has a Z7-asf.
(iv) Every directed 12-edge-connected graph has a Z5-asf.

By duality, using the results of Nešetřil and Raspaud [16], Corol-
lary 13 (which, again, can be seen as an antisymmetric analogue of
the statement of Jaeger’s conjecture) directly implies that every orien-
tation of a planar graph of girth (length of a shortest cycle) at least
12 has a homomorphism to an oriented graph on at most 5 vertices.
This was proved by Borodin, Ivanova and Kostochka in 2007 [4], and
it is not known whether the same holds for planar graphs of girth at
least 11. On the other hand, it was proved by Nešetřil, Raspaud and
Sopena [17] that there are orientations of some planar graphs of girth
at least 7 that have no homomorphism to an oriented graph of at most
5 vertices. By duality again, this implies that there are directed 7-
edge-connected graphs with no Z5-asf. We conjecture the following:

Conjecture 14. Every directed 8-edge-connected graph has a Z5-asf.

It was conjectured by Lai [13] that for every k > 1, every (4k + 1)-
edge-connected graph G has a β-orientation for every Z2k+1-boundary
β of G. If true, this conjecture would directly imply (using the same
proof as that of Theorem 12) that for any k > 2, every directed ⌈4k+1

k−1
⌉-

edge-connected graph has a Z2k+1-asf. In particular, this would show
that directed 5-edge-connected graph have a Z13-asf, directed 6-edge-
connected graph have a Z9-asf, directed 7-edge-connected graph have
a Z7-asf, and directed 9-edge-connected graph have a Z5-asf. The
bound on directed 5-edge-connected graph would also directly imply,
using the proof of the main result of [10], that directed graphs with no
directed 2-edge-cut have a Z

2
2 × Z

4
3 × Z13-asf.

3. Proof of Theorem 3

We first recall the following (weak form of a) classical result by Mader
(see [9], Theorem 1.4.3):

Lemma 15. Given an integer k > 1, if G = (V,E) is a graph with
average degree at least 4k, then there is a subset X of V such that
|X| > 1 and G[X ] is (k + 1)-edge-connected.

We will also need the following result of Thomassen [20], which is a
simple consequence of Theorem 6.
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Theorem 16 ([20]). Let k > 3 be an odd integer, G = (V1, V2, E)
be a bipartite graph, and f : V1 ∪ V2 → Zk be a mapping satisfying
∑

v∈V1
f(v) ≡

∑

v∈V2
f(v) (mod k). If G is (3k − 3)-edge-connected,

then G has a spanning subgraph H such that for any v ∈ V , dH(v) ≡
f(v) (mod k).

Let G be a graph, and let X and Y be two disjoint subsets of vertices
of G. The set of edges of G with one endpoint in X and the other in
Y is denoted by E(X, Y ).

We are now ready to prove Theorem 3.

Proof of Theorem 3. We proceed by induction on n. For n = 1, this is
a direct consequence of Theorem 1, so suppose that n > 2. Each basis
Bs can be considered as an n×n matrix where each column is a vector
with support of size at most 2. Let B =

⊎t

i=1Bi.

For 1 6 i 6 n, a vector is called an i-vector if its support is the
singleton {i} (in other words, the i-th entry is non-zero and all the
other entries are zero). Suppose that for some 1 6 i 6 n, B contains
at least p − 1 i-vectors. Let C be the set of i-vectors of B. Clearly,
each basis contains at most one i-vector. For every Bs, let B′

s be
the matrix obtained from Bs by removing its i-vector (if any) and
the ith row. Clearly B′

s is or contains a basis of Zn−1
p . By induction

hypothesis,
⊎t

s=1B
′

s forms an additive basis of Zn−1
p . In other words,

for any vector β = (β1, ..., βi, ..., βn) ∈ Z
n
p , there is a subset Y1 of

B \ C which sums to (β1, ..., β̂i, .., βn) for some β̂i. Since |C| > p− 1, it
follows from Theorem 1 that there is a subset Y2 of C which sums to
(0, ..., βi − β̂i, .., 0). Hence Y1 ∪ Y2 sums to β.

Thus we can suppose that there are at most p− 2 i-vectors for every
i. Then there are at least 8ℓ(3p−4)n vectors with a support of size 2 in
B. Since there are at most ℓ distinct shadows of size 2 in B, there are
at least 8(3p − 4)n vectors with the same (unordered) shadow of size
2, say {a1, a2} (recall that shadows are multisets, so a1 and a2 might
coincide).

Let G be the graph (recall that graphs in this paper are allowed
to have multiple edges) with vertex set V = {v1, ..., vn} and edge set
E, where edges vivj are in one-to-one correspondence with vectors of
B with support {i, j} and shadow {a1, a2}. Then G contains at least
8(3p− 4)n edges.

We now consider a random partition of V into 2 sets V1, V2 (by
assigning each vertex of V uniformly at random to one of the sets Vk,



10 L. ESPERET, R. DE JOANNIS DE VERCLOS, T.-N. LE, AND S. THOMASSÉ

k = 1, 2). Let e = vivj be some edge of G. Recall that e corresponds
to some vector with only two non-zero entries, say without loss of
generality a1 at i

th index and a2 at j
th index. The probability that vi is

assigned to V1 and vj is assigned to V2 is at least
1
4
. As a consequence,

there is a partition of V into 2 sets V1, V2 and a subset E ′ ⊆ E(V1, V2)
of at least 8(3p− 4)n/4 = 2(3p− 4)n edges such that for every e ∈ E ′,
the vector of B corresponding with e has entry a1 (resp. a2) at the
index associated to the endpoint of e in V1 (resp. V2).

Since the graph G′ = (V,E ′) has average degree at least 4(3p−4), it
follows from Lemma 15 that there is a set X ⊆ V of at least 2 vertices,
such that G′[X ] is (3p− 3)-edge-connected. Set H = G′[X ] and F the
edge set of H . Note that H is bipartite with bipartition X1 = X ∩ V1

and X2 = X ∩ V2.

For each integer 1 6 s 6 t, let B∗

s be the matrix obtained from Bs by
doing the following: for each vertex vi in X1 (resp. X2), we multiply all
the elements of the ith row of Bs by a−1

1 (resp. −a−1
2 ), noting that all

the operations are performed in Zp. Let B
∗ =

⊎t

s=1B
∗

s . Note that each
vector of B∗ corresponding to some edge e ∈ F has shadow {1,−1} (1
is the entry indexed by the endpoint of e in X1 and −1 is the entry
indexed by the endpoint of e in X2). It is easy to verify the following.

• Each B∗

s is a linear basis of Zn
p .

• B is an additive basis if and only if B∗ is an additive basis.

Hence it suffices to prove that B∗ is an additive basis.

Without loss of generality, suppose that X = {vm, ..., vn} for some
m 6 n − 1. By contracting k rows of a matrix, we mean deleting
these k rows and adding a new row consisting of the sum of the k
rows. For each 1 6 s 6 t, let B′

s be the matrix of m rows obtained
from B∗

s by contracting all mth, (m + 1)th, ..., nth rows. Note that the
operation of contracting k rows decreases the rank of the matrix by at
most k − 1 (since it is the same as replacing one of the rows by the
sum of the k rows, which preserves the rank, and then deleting the
k − 1 other rows). Let B′ =

⊎t

s=1B
′

s . Since each B∗

s is a linear basis
of Zn

p , each B′

s has rank at least m and therefore contains a basis of
Z
m
p . Hence, by induction hypothesis, B′ \B′

0 is an additive basis of Zm
p ,

where B′

0 is the set of all columns with empty support in B′. For every
β = (β1, ..., βn) ∈ Z

n
p , let β ′ = (β1, ..., βm−1,

∑n

i=m βi) ∈ Z
m
p . Then

there is a subset Y ′ of B′ \ B′

0 which sums to β ′. Let Y ∗ and B∗

0 be
the subsets of B∗ corresponding to Y ′ and B′

0, respectively. Then Y ∗
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sums to some β̂ = (β1, ..., βm−1, β̂m, ..., β̂n), where
∑n

i=m β̂i ≡
∑n

i=m βi

(mod p).

Recall that for each edge e ∈ F , the corresponding vector in B∗ has
precisely two non-zero entries, (1,−1), each with index in X . Hence
the vector corresponding to each e ∈ F in B′ has empty support. Thus
the set of vectors in B∗ corresponding to the edge set F is a subset of
B∗

0, which is disjoint from Y .

For each vi ∈ X1, let βX(vi) = βi − β̂i, and for each vi ∈ X2,

let βX(vi) = β̂i − βi. Since
∑n

i=m β̂i ≡
∑n

i=m βi (mod p), we
have

∑

vi∈X∩V1
βX(vi) =

∑

vi∈X∩V2
βX(vi). Since H is (3p − 3)-edge-

connected, it follows from Theorem 16 that there is a subset F ′ ⊆ F
such that, in the graph (X,F ′), each vertex vi ∈ X1 has degree βi − β̂i

(mod p) and each vertex vi ∈ X2 has degree β̂i − βi (mod p). There-
fore, F ′ corresponds to a subset Z∗ of vectors of B∗

0, summing to

(0, . . . , 0, βm − β̂m, . . . , βn − β̂n). Then Y ∗ ∪ Z∗ sums to β. It fol-
lows that B∗ is an additive basis of Zn

p , and so is B. This completes
the proof. �

4. Two proofs of (versions of) Theorem 7

We now give two proofs of (versions of) Theorem 7. The first one is
a direct application of Corollary 5, but requires a stronger assumption
on the edge-connectivity of G (24p2− 54p+28 instead of 6p2− 14p+8
for the second proof).

First proof of Theorem 7. We fix some arbitrary orientation ~G = (V, ~E)
of G and denote the vertices of G by v1, . . . , vn. The number of edges
of G is denoted by m. For each arc ~e = (vi, vj) of ~G, we associate ~e
to a vector xe ∈ (Zn

p )0 in which the ith-entry is equal to f(e) (mod p),

the jth-entry is equal to −f(e) (mod p) and all the remaining entries
are equal to 0 (mod p).

Let us consider the following statements.

(a) For each Zp-boundary β, there is an f -weighted β-orientation of G.
(b) For each Zp-boundary β there is a vector (ae)e∈E ∈ {−1, 1}m, such

that
∑

e∈E aexe ≡ β (mod p).
(c) For each Zp-boundary β there is a vector (ae)e∈E ∈ {0, 1}m such

that
∑

e∈E 2aexe ≡ β (mod p).

Clearly, a is equivalent to b. We now claim that b is equivalent to
c. To see this, simply do the following for each arc ~e = (vi, vj) of
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~G: add f(e) to the jth-entry of xe and to β(vj), and subtract f(e)
from the ith-entry of xe and from β(vi). To deduce c from Corollary 5,
what is left is to show that {ae : e ∈ E} can be decomposed into
sufficiently many linear bases of (Zn

p )0. This follows from the fact that
G is (8(p− 1)(3p− 4)+2p− 4)-edge-connected (and therefore contains
4(p− 1)(3p− 4) + p− 2 edge-disjoint spanning trees) and that the set
of vectors ae corresponding to the edges of a spanning tree of G forms
a linear basis of (Zn

p )0 (see [12]). �

A second proof consists in mimicking the proof of Theorem 3 (it
turns out to give a better bound for the edge-connectivity of G).

Second proof of Theorem 7. As before, all values and operations are
considered modulo p. We can assume without loss of generality that
f(E) ∈ {1, 2, . . . , p−1

2
}, since otherwise we can replace the value f(e)

of an edge e by −f(e), without changing the problem.

We prove the result by induction on the number of vertices of G.
The result is trivial if G contains only one vertex, so assume that G
has at least two vertices.

For any 1 6 i 6 k, let Ei be the set of edges e ∈ E with f(e) = i,
and let Gi = (V,Ei). Since G is (6p− 8)(p− 1)-edge-connected, G has
minimum degree at least (6p − 8)(p − 1) and then average degree at
least (6p− 8)(p− 1). As a consequence, there exists i such that Gi has
average degree at least 12p−16. By Lemma 15, since 12p−16

4
+1 = 3p−3,

Gi has an induced subgraph H = (X,F ) with at least two vertices such
that H is (3p − 3)-edge-connected. Let G/X be the graph obtained
from G by contracting X into a single vertex x (and removing possible
loops). Since H contains more than one vertex, G/X has less vertices
than G (note that possibly, X = V and in this case G/X consists of
the single vertex x). Since G is (6p−8)(p−1)-edge-connected, G/X is
also (6p−8)(p−1)-edge-connected. Hence by the induction hypothesis
it has an f -weighted β-orientation, where we consider the restriction of
f to the edge-set of G/X , and we define β(x) = β(X). Note that this
orientation corresponds to an orientation of all the edges of G with at
most one endpoint in X .

We now orient arbitrarily the edges of G[X ] not in F (the edge-set
of H), and update the values of the Zp-boundary β accordingly (i.e.
for each v ∈ X , we subtract from β(v) the contribution of the arcs that
were already oriented). It is easy to see that as the original β was a
boundary, the new β is indeed a boundary. Finally, since all the edges
of H have the same weight, and since H is (3p − 3)-edge-connected,
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it follows from Corollary 10 that H has an f -weighted β-orientation
(with respect to the updated boundary β). The orientations combine
into an f -weighted β-orientation of G, as desired. �
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[17] J. Nešetřil, A. Raspaud and E. Sopena, Colorings and girth of oriented planar

graphs, Discrete Math. 165–166 (1997), 519–530.
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