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ADDITIVE BASES AND FLOWS IN GRAPHS

LOUIS ESPERET, REMI DE JOANNIS DE VERCLOS, TIEN-NAM LE,
AND STEPHAN THOMASSE

ABSTRACT. It was conjectured by Jaeger, Linial, Payan, and Tarsi
in 1992 that for any prime number p, there is a constant ¢ such
that for any n, the union (with repetition) of the vectors of any
family of ¢ linear bases of Z} forms an additive basis of Zj (i.e.
any element of Z; can be expressed as the sum of a subset of these
vectors). In this note, we prove this conjecture when each vector
contains at most two non-zero entries. As an application, we prove
several results on flows in highly edge-connected graphs, extending
known results. For instance, assume that p > 3 is a prime number
and G is a directed, highly edge-connected graph in which each arc
is given a list of two distinct values in Z,. Then G has a Z,-flow
in which each arc is assigned a value of its own list.

1. INTRODUCTION

Graphs considered in this paper may have multiple edges but no
loops. An additive basis B of a vector space I’ is a multiset of elements
from F such that for all § € F', there is a subset of B which sums to
B. Let Z; be the n-dimensional linear space over the prime field Z,.
The following result is a simple consequence of the Cauchy-Davenport
Theorem [5] (see also [2]).

Theorem 1 ([5]). For any prime p, any multiset of p — 1 non-zero
elements of Z,, forms an additive basis of Z,.

This result can be rephrased as: for n = 1, any family of p — 1
linear bases of Z; forms an additive basis of Z;. A natural question
is whether this can be extended to all integers n. Given a collection
of sets X1, ..., X}, we denote by ijzl X; the union with repetitions
of Xq,...,X,. Jaeger, Linial, Payan and Tarsi [12] conjectured the
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following, a generalization of important results regarding nowhere-zero
flows in graphs.

Conjecture 2 ([12]). For every prime number p, there is a constant
c(p) such that for anyt > c(p) linear bases By, ..., By of Z;, the union

W_, By forms an additive basis of Zy.

Alon, Linial and Meshulam [1] proved a weaker version of Conjec-
ture 2, that the union of any p[logn]| linear bases of Z; contains an
additive basis of Z; (note that their bound depends on n). The support
of a vector x = (z1,...,7,) € Zj is the set of indices i such that z; # 0.
The shadow of a vector x is the (unordered) multiset of non-zero entries
of x. Note that sizes of the support and of the shadow of a vector are
equal. In this note, we prove that Conjecture 2 holds if the support of
each vector has size at most two.

Theorem 3. Let p > 3 be a prime number. For some integer { > 1,
consider t > 8((3p — 4) + p — 2 linear bases By, ..., By of Z, such that
the support of each vector has size at most 2, and at most € different
shadows of size 2 appear among the vectors of B = b—)ﬁ,:l B,. Then B
forms an additive basis of Zy, .

Theorem 3 will be proved in Section 3 using a result of Lovész,
Thomassen, Wu and Zhang [15] (Theorem 6 below) on flows in highly
edge-connected graphs. It was mentioned to us by one of the referees
that Lai and Li [14] established the equivalence between Theorem 6
and Theorem 3 in the special case where all the shadows are equal to
{—=1,+1} (mod p).

The number of possibilities for an (unordered) multiset of Z, \ {0}
of size 2 is (pgl) +p—1= (g) As a consequence, Theorem 3 has the
following immediate corollary.

Corollary 4. Let p > 3 be a prime number. For anyt > 8(’2)) (3p —
4) 4+ p — 2 linear bases By, ..., By of Zy such that the support of each

vector has size at most 2, &Jizl Bs forms an additive basis of Z.

Another interesting consequence of Theorem 3 concerns the linear
subspace (Zj)o of vectors of Zj whose entries sum to 0 (mod p).

Corollary 5. Let p > 3 be a prime number. For anyt > 4(p—1)(3p—
4) +p — 2 linear bases By, ..., B; of (Zy)o such that the support of each

vector has size at most 2, \{'_, B, forms an additive basis of (Z7)o-
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Proof. Note that for any 1 < s < ¢, the linear basis B, consists of n —1
vectors, each of which has a support of size 2, and the two elements
of the shadow sum to 0 (mod p). In particular, at most p—gl different
shadows appear among the vectors of the linear bases By, ..., B;. It is
convenient to view each B, as a matrix in which the elements of the
basis are column vectors. For each 1 < s < t, let B, be obtained from
By by deleting the last row. It is easy to see that B is a linear basis of
Z;‘_l. Moreover, at most p—gl different shadows of size 2 appear among
the vectors of the linear bases B, ..., B; (note that the removal of the
last row may have created vectors with shadows of size 1). In particular,
it follows from Theorem 3 that for any vector 8 = (81, .., 8n) € (Zy)o,
the vector (f1,...,0n-1) € Z;‘_l can be written as a sum of a subset of
elements of b—)ﬁ,:l B!. Clearly, the corresponding subset of elements of
Hf;:l B; sums to . This concludes the proof of Corollary 5. U

In the next section, we explore some consequences of Corollary 5.

2. ORIENTATIONS AND FLOWS IN GRAPHS

Let G = (V, E) be a non-oriented graph. An orientation G = (V, E)
of GG is obtained by giving each edge of F a direction. For each edge
e € E, we denote the corresponding arc of E by €, and vice versa. For
a vertex v € V, we denote by 5;5 (v) the set of arcs of E leaving v, and

by 65 (v) the set of arcs of E entering v.

For an integer k > 2, a mapping 3 : V — Z; is said to be a Z;-
boundary of G if Y _, f(v) =0 (mod k). Given a Zj-boundary 3 of
G, an orientation G of G is a S-orientation if dg(v) — dé(v) = [(v)
(mod k) for every v € V., where dg(v) and d(v) stand for the out-
degree and the in-degree of v in G.

The following major result was obtained by Lovasz, Thomassen, Wu
and Zhang [15]:

Theorem 6. [15] For any k > 1, any 6k-edge-connected graph G, and
any Zog+1-boundary 8 of G, the graph G has a (-orientation.

A natural question is whether a weighted counterpart of Theorem 6
exists. Given a graph G = (V| E), a Zg-boundary ( of G and a mapping

f: E — Zj, an orientation G of G is called an f-weighted B-orientation
if 9f(v) = B(v) (mod k) for every v, where 9f(v) = > o5t f(€) —
G
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> ces—( f(€). Note that if f(e) = 1 (mod k) for every edge e, an
G
f-weighted [-orientation is precisely a [-orientation.

An immediate observation is that if we wish to have a general result
of the form of Theorem 6 for weighted orientations, it is necessary to
assume that 2k + 1 is a prime number. For instance, take G to consist
of two vertices u, v with an arbitrary number of edges between u and v,
consider a non-trivial divisor p of 2k+1, and ask for a p-weighted Zoj 1 1-
orientation G of G (here, p denotes the function that maps each edge to
p (mod 2k+1)). Note that for any orientation, dp(v) is in the subgroup
of Zoyy1 generated by p, and this subgroup does not contain 1,—1

(mod 2k + 1). In particular, there is no p-weighted Zoy . 1-orientation
of G with boundary 3 satisfying f(u) = —5(v) =1 (mod 2k + 1).

In Section 4, we will prove that Corollary 5 easily implies a weighted
counterpart of Theorem 6 as in the following theorem, but with a
stronger requirement on the edge-connectivity. Theorem 7 itself will
be deduced directly from Theorem 6.

Theorem 7. Let p > 3 be a prime number and let G = (V, E) be a
(6p—8)(p—1)-edge-connected graph. For any mapping f : E — Z,\{0}
and any Zy,-boundary 3, G has an f-weighted 3-orientation.

Theorem 7 turns out to be equivalent to the following seemingly more
general result. Assume that we are given a directed graph G = (V, E)
and a Z,-boundary 8. A Z,-flow with boundary / in Gisa mapping
fiE— Z, such that 0f(v) = B(v) (mod p) for every v. In other
words, f is a Z,-flow with boundary £ in G = (V, E) if and only if
G is an f-weighted [-orientation of its underlying non-oriented graph
G = (V, E), where f is extended from E to E in the natural way (i.e.
for each e € E, f(e) := f(€)).

In the remainder of the paper we will say that a directed graph G is
t-edge-connected if its underlying non-oriented graph, denoted by G, is
t-edge-connected.

Theorem 8. Let p > 3 be a prime number and let G = (V, E) be a
directed (6p — 8)(p — 1)-edge-connected graph. For any arc € € E, let
L(€) be a pair of distinct elements of Z,. Then for every Z,-boundary

B, G has a Zy-flow f with boundary B such that for any é € E, f(&) €
L(é).
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This result can been seen as a choosability version of Theorem 6
(the reader is referred to [6] for choosability versions of some classical
results on flows). To see that Theorem 8 implies Theorem 7, simply
fix an arbitrary orientation of G and set L(€) = {f(e), —f(e)} for each
arc €. We now prove that Theorem 7 implies Theorem 8. We actually
prove a slightly stronger statement (holding in Zgg,; for any integer
k>1).

Lemma 9. Let k > 1 be an integer, and let G = (V, E) be a directed
graph such that the underlying non-oriented graph G has an f-weighted
B-orientation for any mapping f : E — Zogy1 \ {0} and any Zojy1-
boundary 8. For every arc € € E, let L(€) be a pair of distinct elements
of Zoky1. Then for every Zogi1-boundary 3, G has a Liogy1-flow g with
boundary [ such that g(€) € L(€) for every €.

Proof. Let 3 be a Zoy1-boundary of G. Consider a single arc & = (u,v)
of G. Choosing one of the two values of L(€), say a or b, will either add
a to dg(u) and subtract a from dg(v), or add b to dg(u) and subtract
b from Odg(v). Note that 2 and 2k + 1 are relatively prime, so the
element 27! is well-defined in Zoy, . If we now add 271(a +b) to B(v)
and subtract 27'(a + b) from B(u), the earlier choice is equivalent to
choosing between the two following options: adding 27 (a—b) to dg(u)
and subtracting 271 (a — b) from dg(v), or adding 27(b — a) to dg(u)
and subtracting 27(b — a) from dg(v). This is equivalent to choosing
an orientation for an edge of weight 271(a — ). It follows that finding
a Zgj1-flow g with boundary S such that for any € € E, g(€) € L(é)
is equivalent to finding an f-weighted [’-orientation for some other
Zoy41-boundary ' of G, where the weight f(e) of each edge e is 27!
times the difference between the two elements of L(¢€). O

We now consider the case where L(¢) = {0,1} for every arc & € E.
Let fo-1: E — Zoj+1 denote the function that maps each arc € to 271
(mod 2k +1). The same argument as in the proof of Lemma 9 implies
that if G has an fy-1-weighted [-orientation for every Zsy,i-boundary
B, then for every Zsi1-boundary S, the digraph G has a Logs1-How f
with boundary g such that f(€) € L(€) for every é.

The following is a simple corollary of Theorem 6.

Corollary 10. Let £ > 1 be an odd integer and let k > 1 be relatively
prime with (. Let G = (V, E) be a (3(—3)-edge-connected graph, and let
k : E— Z; be the mapping that assigns k (mod ¢) to each edge e € E.
Then for any Z¢-boundary 3, G has a k-weighted [-orientation.
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Proof. Observe that 3’ = k=!- 3 is a Z,-boundary (k! is well defined in
Zy). 1t follows from Theorem 6 that G has a f’-orientation. Note that
this corresponds to a k-weighted [-orientation of G, as desired. U

As a consequence, the following is an equivalent version of Theorem 6
(see also [12, 14]).

Theorem 11. Let k > 1 be an integer and let G = (V, E) be a directed
6k-edge-connected graph. Then for every Zoyyi-boundary 5, G has a
Zopi1-flow f with boundary B such that f(E) € {0,1} (mod 2k + 1).

This version of Theorem 6 will allow us to derive interesting results on
antisymmetric flows in directed highly edge-connected graphs. Given
an abelian group (B,+), a B-flow in Gis a mapping f : E — B such
that 0f(v) = 0 for every vertex v, where all operations are performed
in B. A B-flow f in G = (V, E) is a nowhere-zero B-flow (or a B-NZF)
if0& f (E), i.e. each arc of G is assigned a non-zero element of B. If

no two arcs receive inverse elements of B, then f is an antisymmetric
B-flow (or a B-ASF).

Since 0 = —0, a B-ASF is also a B-NzZF. It was conjectured by
Tutte that every directed 2-edge-connected graph has a Zj;-NzF [21],
and that every directed 4-edge-connected graph has a Zs-NZF (see [18]
and [3]). Antisymmetric flows were introduced by Nesetfil and Raspaud
in [16]. A natural obstruction for the existence of an antisymmetric
flow in a directed graph G is the presence of directed 2-edge-cut in
G. Nesgetfil and Raspaud asked whether any directed graph without
directed 2-edge-cut has a B-ASF, for some B. This was proved by
DeVos, Johnson, and Seymour in [7], who showed that any directed
graph without directed 2-edge-cut has a Z§ x Zi"-AsF. It was later
proved by DeVos, Nesettil, and Raspaud [8], that the group could be
replaced by Z§ x Z3. The best known result is due to Dvoidk, Kaiser,
Kral’, and Sereni [10], who showed that any directed graph without
directed 2-edge-cut has a Z3 x Z3-ASF (this group has 157464 elements).

Adding a stronger condition on the edge-connectivity allows to prove
stronger results on the size of the group B. It was proved by DeVos,
Nesetfil, and Raspaud [8], that every directed 4-edge-connected graph
has a Z3 x Z3-ASF, that every directed 5-edge-connected graph has a
Z5-ASF, and that every directed 6-edge-connected graph has a Zy x Z32-
ASF.
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In [11], Jaeger conjectured the following weaker version of Tutte’s
3-flow conjecture: there is a constant k such that every k-edge-
connected graph has a Z3-NZF. This conjecture was recently solved by
Thomassen [19], who proved that every 8-edge-connected graph has a
Z3-NzF, and was improved by Lovész, Thomassen, Wu and Zhang [15],
that every 6-edge-connected graph has a Z3-NzF (this is a simple con-
sequence of Theorem 6).

The natural antisymmetric variant of Jaeger’s weak 3-flow conjecture
would be the following: there is a constant k such that every directed
k-edge-connected graph has a Zs-ASF.

Note that the size of the group would be best possible, since in Zs
and Zgy X Zg every element is its own inverse, while a Zs-ASF or a Zy4-
ASF has to assign the same value to all the arcs (and this is impossible
in the digraph on two vertices u, v with exactly k arcs directed from u
to v, for any integer k =1 (mod 12)).

Our final result is the following.

Theorem 12. For any k > 2, every directed [25]-edge-connected
graph has a Zoj1-ASF.

Proof. Let k > 2, and let G be a directed (%W-edge-connected graph.
Let H be the directed graph obtained from € by replacing every arc
€ by k — 1 arcs with the same tail and head as €, and let H be the
non-oriented graph underlying H. Let 5(v) = d(v) — dg(v) for every
v. Since G is [kﬁ—fl}—edge—connected, H is 6k-edge-connected and by

Theorem 11, H has a Zog+1-flow f with boundary § with flow values
in the set {0,1} (mod 2k +1). For any arc & of G, let g(€) be the sum
of the values of the flow f on the ¢ arcs corresponding to € in H. Then
g is a Zgp1-flow with boundary £ in G, with flow values in the set
{0,1,...,k —1} (mod 2k + 1). Now, set ¢'(€) = g(€) + 1 for every arc
€. Hence every € is assigned a value in {1,...,k} (mod 2k + 1), and

9¢'(v) = 0g(v)+df(v)—d(v) = B'(v)+d5(v)—dz(v) = 0 (mod 2k+1)

for every v. Thus ¢’ is a Zgp1-flow of G with flow values in the set
{1,...,k} (mod 2k + 1), and thus a Zg,11-ASF in G, as desired. This
concludes the proof of Theorem 12. O

As a corollary, we directly obtain:
Corollary 13.
(i) Every directed 7-edge-connected graph has a Zi5-ASF.
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(i) Every directed 8-edge-connected graph has a Zg-ASF.
(11i) Every directed 9-edge-connected graph has a Z7-ASF.
(iv) Every directed 12-edge-connected graph has a Zs-ASF.

By duality, using the results of Nesetfil and Raspaud [16], Corol-
lary 13 (which, again, can be seen as an antisymmetric analogue of
the statement of Jaeger’s conjecture) directly implies that every orien-
tation of a planar graph of girth (length of a shortest cycle) at least
12 has a homomorphism to an oriented graph on at most 5 vertices.
This was proved by Borodin, Ivanova and Kostochka in 2007 [4], and
it is not known whether the same holds for planar graphs of girth at
least 11. On the other hand, it was proved by Nesettil, Raspaud and
Sopena [17] that there are orientations of some planar graphs of girth
at least 7 that have no homomorphism to an oriented graph of at most
5 vertices. By duality again, this implies that there are directed 7-
edge-connected graphs with no Zs-ASF. We conjecture the following:

Conjecture 14. Fvery directed 8-edge-connected graph has a Zs-ASF.

It was conjectured by Lai [13] that for every k > 1, every (4k + 1)-
edge-connected graph G has a [S-orientation for every Zgyi-boundary
p of G. If true, this conjecture would directly imply (using the same
proof as that of Theorem 12) that for any k& > 2, every directed %1-
edge-connected graph has a Zoy1-ASF. In particular, this would show
that directed 5-edge-connected graph have a Zj3-ASF, directed 6-edge-
connected graph have a Zg-ASF, directed 7-edge-connected graph have
a Z7-ASF, and directed 9-edge-connected graph have a Zs-ASF. The
bound on directed 5-edge-connected graph would also directly imply,
using the proof of the main result of [10], that directed graphs with no
directed 2-edge-cut have a Z3 x Zj3 x Z13-ASF.

3. PROOF OF THEOREM 3

We first recall the following (weak form of a) classical result by Mader
(see [9], Theorem 1.4.3):

Lemma 15. Given an integer k > 1, if G = (V, E) is a graph with
average degree at least 4k, then there is a subset X of V such that
| X| > 1 and G[X] is (k + 1)-edge-connected.

We will also need the following result of Thomassen [20], which is a
simple consequence of Theorem 6.
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Theorem 16 ([20]). Let k > 3 be an odd integer, G = (V1, Vs, E)
be a bipartite graph, and f : Vi U Vy — Zi be a mapping satisfying
Y ovev J(0) = 20y, f(v) (mod k). If G is (3k — 3)-edge-connected,
then G has a spanning subgraph H such that for any v € V, dy(v) =
f(v) (mod k).

Let G be a graph, and let X and Y be two disjoint subsets of vertices
of G. The set of edges of G with one endpoint in X and the other in
Y is denoted by E(X,Y).

We are now ready to prove Theorem 3.

Proof of Theorem 3. We proceed by induction on n. For n = 1, this is
a direct consequence of Theorem 1, so suppose that n > 2. Each basis
B can be considered as an n x n matrix where each column is a vector
with support of size at most 2. Let B = &J';Zl B;.

For 1 < ¢ < n, a vector is called an i-vector if its support is the
singleton {i} (in other words, the i-th entry is non-zero and all the
other entries are zero). Suppose that for some 1 < i < n, B contains
at least p — 1 i-vectors. Let C be the set of i-vectors of B. Clearly,
each basis contains at most one i-vector. For every By, let B. be
the matrix obtained from B, by removing its i-vector (if any) and
the i row. Clearly B is or contains a basis of Z!~'. By induction

hypothesis, &Jizl B! forms an additive basis of Z;‘_l. In other words,
for any vector 8 = (B, ..., Bs, ..., Bn) € Zj, there is a subset Y; of
B\ C which sums to (/3, o B, -, 3) for some B:. Since ICl =zp—1,it
follows frorr} Theorem 1 that there is a subset Y5 of C which sums to
0,...,8; — Bi,-..,0). Hence Y; UY; sums to f.

Thus we can suppose that there are at most p — 2 i-vectors for every
i. Then there are at least 8¢(3p—4)n vectors with a support of size 2 in
B. Since there are at most ¢ distinct shadows of size 2 in B, there are
at least 8(3p — 4)n vectors with the same (unordered) shadow of size
2, say {ay,as} (recall that shadows are multisets, so a; and ay might
coincide).

Let G be the graph (recall that graphs in this paper are allowed
to have multiple edges) with vertex set V' = {vy,...,v,} and edge set
E, where edges v;v; are in one-to-one correspondence with vectors of
B with support {7,j} and shadow {aj,as}. Then G contains at least
8(3p — 4)n edges.

We now consider a random partition of V' into 2 sets Vi, V, (by
assigning each vertex of V uniformly at random to one of the sets V%,
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k =1,2). Let e = v;v; be some edge of G. Recall that e corresponds
to some vector with only two non-zero entries, say without loss of
generality a; at i index and as at j'" index. The probability that v; is
assigned to V; and v; is assigned to V5 is at least i. As a consequence,
there is a partition of V' into 2 sets Vi, V5 and a subset E' C E(Vy, V5)
of at least 8(3p —4)n/4 = 2(3p — 4)n edges such that for every e € £,
the vector of B corresponding with e has entry a; (resp. as) at the
index associated to the endpoint of e in V; (resp. V5).

Since the graph G’ = (V| E’) has average degree at least 4(3p —4), it
follows from Lemma 15 that there is a set X C V of at least 2 vertices,
such that G'[X] is (3p — 3)-edge-connected. Set H = G'[X] and F' the
edge set of H. Note that H is bipartite with bipartition X; = X NV}
and Xo = X N V5.

For each integer 1 < s < t, let B! be the matrix obtained from B by
doing the following: for each vertex v; in X; (resp. Xs), we multiply all
the elements of the i row of B, by a;’ (resp. —a; '), noting that all
the operations are performed in Z,. Let B* = |'_, B*. Note that each
vector of B* corresponding to some edge e € F' has shadow {1, —1} (1
is the entry indexed by the endpoint of e in X; and —1 is the entry
indexed by the endpoint of e in X3). It is easy to verify the following,.

e Each B; is a linear basis of Zj.
e 3 is an additive basis if and only if B* is an additive basis.

Hence it suffices to prove that B* is an additive basis.

Without loss of generality, suppose that X = {v,,,...,v,} for some
m < n — 1. By contracting k rows of a matrix, we mean deleting
these k rows and adding a new row consisting of the sum of the k
rows. For each 1 < s < ¢, let B, be the matrix of m rows obtained
from B by contracting all m™, (m + 1), ..., n'" rows. Note that the
operation of contracting k rows decreases the rank of the matrix by at
most k — 1 (since it is the same as replacing one of the rows by the
sum of the k£ rows, which preserves the rank, and then deleting the
k — 1 other rows). Let B' = |§'_, B . Since each B! is a linear basis
of Z, each B has rank at least m and therefore contains a basis of
Z,'. Hence, by induction hypothesis, B'\ B is an additive basis of Z",
where B} is the set of all columns with empty support in B'. For every
B = (Br,.s Bn) € L7, let B = (B, ., Bty Dy Bi) € Z'. Then
there is a subset Y’ of B’ \ Bj, which sums to . Let Y* and Bj be
the subsets of B* corresponding to Y’ and Bj, respectively. Then Y*
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sums to some B = (b1, ...,5m_1,3m, ...,Bn), where Y " BZ =>" B
(mod p).

Recall that for each edge e € F', the corresponding vector in B* has
precisely two non-zero entries, (1,—1), each with index in X. Hence
the vector corresponding to each e € F'in B’ has empty support. Thus
the set of vectors in B* corresponding to the edge set F' is a subset of

o, which is disjoint from Y.

For each v; € Xy, let Bx(v;) = B — 8., and for each v; € Xo,
let Bx(v;) = B; — B;. Since Yo B = Yor . Bi (mod p), we
have D cxrv Bx(vi) = D2, cxnv, Bx(vi). Since H is (3p — 3)-edge-
connected, it follows from Theorem 16 that there is a subset F' C F
such that, in the graph (X, F”), each vertex v; € X; has degree f3; — B
(mod p) and each vertex v; € X, has degree 3; — §; (mod p). There-
fore, I’ corresponds to a subset Z* of vectors of B, summing to
0,...,0,8mn — By B — Bn) Then Y* U Z* sums to 5. It fol-
lows that B* is an additive basis of Z;, and so is B. This completes

the proof. O

4. TWO PROOFS OF (VERSIONS OF) THEOREM 7

We now give two proofs of (versions of) Theorem 7. The first one is
a direct application of Corollary 5, but requires a stronger assumption
on the edge-connectivity of G (24p? — 54p + 28 instead of 6p? — 14p + 8
for the second proof).

First proof of Theorem 7. We fix some arbitrary orientation G = (V, E)
of G and denote the vertices of G by vy, ...,v,. The number of edges
of G is denoted by m. For each arc € = (v;,v;) of G, we associate €
to a vector z. € (Z7)o in which the ¢""-entry is equal to f(e) (mod p),
the j'-entry is equal to —f(e) (mod p) and all the remaining entries
are equal to 0 (mod p).

Let us consider the following statements.

(a) For each Z,-boundary 3, there is an f-weighted S-orientation of G.

(b) For each Z,-boundary § there is a vector (a.)ecr € {—1,1}™, such
that ) .pacre = 6 (mod p).

(c) For each Z,-boundary [ there is a vector (a.)ecr € {0,1}" such
that Y . 2a.0. = (mod p).

Clearly, a is equivalent to b. We now claim that b is equivalent to
c. To see this, simply do the following for each arc € = (v;,v;) of
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G: add f(e) to the j-entry of z, and to B(v;), and subtract f(e)
from the i*"-entry of z, and from S(v;). To deduce ¢ from Corollary 5,
what is left is to show that {a. : e € E} can be decomposed into
sufficiently many linear bases of (Z7 )o. This follows from the fact that
G is (8(p—1)(3p—4) + 2p — 4)-edge-connected (and therefore contains
4(p—1)(3p — 4) + p — 2 edge-disjoint spanning trees) and that the set
of vectors a. corresponding to the edges of a spanning tree of G forms
a linear basis of (Z7)o (see [12]). O

A second proof consists in mimicking the proof of Theorem 3 (it
turns out to give a better bound for the edge-connectivity of G).

Second proof of Theorem 7. As before, all values and operations are
considered modulo p. We can assume without loss of generality that
f(E) e {1,2,..., p%l}, since otherwise we can replace the value f(e)
of an edge e by —f(e), without changing the problem.

We prove the result by induction on the number of vertices of G.
The result is trivial if G contains only one vertex, so assume that G
has at least two vertices.

For any 1 < i < k, let E; be the set of edges e € E with f(e) = i,
and let G; = (V, E;). Since G is (6p — 8)(p — 1)-edge-connected, G has
minimum degree at least (6p — 8)(p — 1) and then average degree at
least (6p —8)(p—1). As a consequence, there exists i such that G; has
average degree at least 12p—16. By Lemma 15, since %H = 3p—3,
G, has an induced subgraph H = (X, F) with at least two vertices such
that H is (3p — 3)-edge-connected. Let G/X be the graph obtained
from G by contracting X into a single vertex x (and removing possible
loops). Since H contains more than one vertex, G/X has less vertices
than G (note that possibly, X = V' and in this case G/X consists of
the single vertex x). Since G is (6p — 8)(p — 1)-edge-connected, G/ X is
also (6p—8)(p—1)-edge-connected. Hence by the induction hypothesis
it has an f-weighted (-orientation, where we consider the restriction of
f to the edge-set of G/X, and we define 5(z) = 5(X). Note that this
orientation corresponds to an orientation of all the edges of G with at
most one endpoint in X.

We now orient arbitrarily the edges of G[X] not in F' (the edge-set
of H), and update the values of the Z,-boundary / accordingly (i.e.
for each v € X, we subtract from J(v) the contribution of the arcs that
were already oriented). It is easy to see that as the original 8 was a
boundary, the new (3 is indeed a boundary. Finally, since all the edges
of H have the same weight, and since H is (3p — 3)-edge-connected,
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it follows from Corollary 10 that H has an f-weighted (-orientation
(with respect to the updated boundary (). The orientations combine
into an f-weighted [-orientation of G, as desired. U
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