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Abstract

For an edge-colored graji the minimum color degree @& means the minimum number of colors on edges
which are adjacent to each vertex@f We prove that ifG is an edge-colored graph with minimum color degree
at least 5 theW(G) can be partitioned into two parts such that each part irmlacibgraph with minimum color
degree at least 2. We show this theorem by proving a muchggtrdarm. Moreover, we point out an important
relationship between our theorem and Bermond-Thomassenjscture in digraphs.

Keywords: Bermond-Thomassen'’s conjecture; edge-colored graptexpartition

1 Introduction

When we try to solve a problem in dense graphs, decomposingpdn gnto two dense parts sometimes plays an
important role in the proof argument. This is because onapaty an induction hypothesis to one of the parts so
as to obtain a partial configuration, and then use the othétgabtain a desired configuration. Motivated by this
natural strategy, many work has been done along this lircehai we have a variety of results in this partition
problem. To name a few, Stiebitz [8] showed a nice theorenigindtates that every graph with minimum degree
atleasta + b+ 1 can be decomposed into two paftandB such thatA has minimum degree at leastndB has
minimum degree at leabt We see that the bourad+ b + 1 is best possible by considering the complete graph of
ordera+ b+ 1. By the same example, Thomassen [12, 13] conjecturedybat & + b+ 1)-connected graph can
be decomposed into two palsandB in such a way thaA is a-connected an® is b-connected. It was shown
by Thomassen himself [10] thatlif < 2, then the conjecture is true. However, rather surprigjrelen for the
caseb = 3 this conjecture is widely open until now. Likewise, there some other partition problems to find the
partition V(G) = A U B so that bothA and B have a certain property, respectively. The digraph versicthis
problem was proposed at the Prague Midsummer CombinatWaedshop in 1995: For a digragh, lets*(D) be

the minimum out degree @. For integers andt, does there exists a smallest vals, t) such that each digraph

D with §%(D) > f(s t) admits a vertex partition{;, D) satisfyingé*(D1) > sandé*(Dy) > t? In [1,12] Alon
posed the problem: Is there a constastich thatf (1, 2) < c?We only know thaf (1, 1) = 3 holds by a result of
Thomasseri [11]. No much progress has been made for thisgpnolitecently Stiebitz [9] propose this problem
again when he deals with the coloring number of graphs. Asmvksl from the above known results, it seems that
these partition problems are venyittult even if we restrict our consideration to a very specifise
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In this paper, we would like to consider a similar problem dtge-colored graphs. To state our results, we
introduce some notation and definitions. Throughout thizepaall graphs are finite and simple. L@&tbe an
edge-colored graph. For an edgle E(G), we usecolg(€) to denote the color af For a vertex € V(G), letdg(v)
be the color degree ofin G, that is, the number of colors on edges which are adjacanttbe minimum color
degree ofG is denoted by*(G)(:= min{dg(v) : v € V(G)}). For a subgraphl of G with E(H) # 0, letcolg(H) be
the set of colors appearedtfH). Also, for a pair of vertex-disjoint subgraphg N in G, letcolg(M, N) be the set
of colors on edges betwedwh andN in G. For a vertex of G, let N§(v) = cols(v, Ns(v)). By definition, note that
dg(v) = INg(v)l. When there is no ambiguity, we often writel(€) for colg(€), col(H) for colg(H), col(M, N) for
cols(M, N) andd(v) for d3(v). A graph is called @roperly coloredgraph (brieflyPC graph) if no two adjacent
edges have the same color. lzeindb be integers witta > b > 1. A pair (A, B) is called(a,b)-feasibléf A and
B are disjoint, non-empty subsets\é(G) such that®(G[A]) > a ands®(G[B]) > b; in particular, ifG contains an
(a, b)-feasible pair A, B) with V(G) = AU B then we say thab has an(a, b)-feasible partition

Again, motivated by the same complete graph having mutuhdiiinct colored edges (that is, the rainbow
Kaibs1), We propose the following conjecture.

Conjecture 1.1. Let a b be integers with & b > 2, and G be an edge-colored graph widi(G) > a+ b + 1.
Then G has affa, b)-feasible partition.

The main purpose of our paper is to give the solution of thigexture for the case= b = 2.

Theorem 1.1. Conjecturd Tl is true for & b = 2.

To consider our problem, utilizing the structure of minirmabgraph$i with 6°(H) > 2 will be very important.
An edge-colored grapt is 2-coloredif 6°(G) > 2. Specifically, we say a gragh is minimally 2-colored if
6(G) > 2 holds but any proper subgraphof G has minimum color degree less than ZHn By definition, note
that, every PC cycle is a minimally 2-colored graph. An edglred graph obtained from two disjoint cycles by
joining a path isa generalized bowtiémore briefly, call itg-bowtig. We allow the case where the path joining two
cycles is empty. In that case, the g-bowtie becomes a gragalinebl from two disjoint cycles by identifying one
vertex in each cycle. Note also th&t + 2K (that is, a graph obtained from two disjoint triangles bynitfiging
one vertex of each triangle) is a g-bowtie with minimum order

We have the following characterization of minimally 2-c@d graphs, which will be used to prove our main
result.

Theorem 1.2. If an edge-colored graph G is minimalBrcolored, then G is either a PC cycle or a 2-colored
g-bowtie without containing PC cycles.

In fact Theoreni_1]1 will be given by proving a much strongesute We generalize the concept @, b)-
feasible partitions as follows. Far> 2 if V(G) can be partitioned inth partsAy, Ay, . . ., A« such that®(G[A]]) =
a holds for each 1< i < kthen we say tha® has an(as, a,, . . ., ax)-feasible partition In this paper, we will
mainly focus on the case whera,(ay, ..., a) = (2,2,...,2). For simplicity, let us call 2feasible partitionin
this special case (thus,,@)-feasible partitions are equivalent té-f2asible partitions). To state our result, we
shall introduce the following theorem, which is on the extigte of vertex-disjoint directed cycles in digraphs.

Theorem 1.3 (Thomasseri[11])For each natural number k there exists a (smallest) numifiersuch that every
digraph D withé*(D) > f (k) contains k vertex-disjoint directed cycles.
Bermond and Thomassen [3] conjectured th#) = 2k — 1 and Alon [1] showed thaft(k) < 64k.

As above, fok > 1 let f (k) be a function such that every directed grépkatisfyingé*(D) > f(k) containsk
disjoint directed cycles. Define a functig(k) as follows.

2, k=
g(K) = {
maxf(k) + 1 gk—1)+3}, k

Our main result is following.



Theorem 1.4. Let G be an edge-colored graph with(G) > g(k). Then G has &“-feasible partition.

We then focus on the cabe= 2 in Conjectur@1]1. We obtained the following partial résul

Theorem 1.5. Let a be an integer with & 2, and let K, be an edge-colored complete graph of order n with
6°(Kn) > a+ 3. Then K has an(a, 2)-feasible partition.

Also, in |4], it is shown that any edge-colored complete HipagraphKy,, with §°(Kmn) > 3 contains a PC
C4. This yields the following.

Theorem 1.6. If an edge-colored complete bipartite graph, Ksatisfiess®(Knn) > a + 2, then K, admits an
(a, 2)-feasible partition.

Regarding Conjectufe_1.1 in the general case, by using tigpilistic method, we get the following result.

Theorem 1.7. Let a b be integers with & b > 1. If G is an edge-colored graph wit(G)| = n ands®(G) >
2lnn + 4(a — 1), then G has aifa, b)-feasible partition.

Although our results might look a bit modest, proving Conjee[1.1 even for the case= 2 seems quite hard.
This is because we could give a big improvement on the Alootgd “64” if it is true.

Theorem 1.8. If Conjecturd_L.1L is true for k= 2, then f(k) < 3k — 1.

In view of Theoreni 18, it tells us that solving Conjectur @ompletely seems a veryfficult problem.

This paper is organized as follows. In SectibhEl2, 3[and 4, iwethe proofs of Theorenis 12, 1.4 dndl1.7,
respectively. In Sectionl 5, we prove Theordmg 1.5[@nd 1.§ahticular, Theorerfi 118 is obtained by a much
stronger result (see Propositidn 4 in Secfibn 5).

2 Proof of Theorem[1.2

In order to prove this theorem, we first introduce a strudtilv@orem characterizing edge-colored graphs without
containing PC cycles.

Theorem 2.1 (Grossman and Haggkist [6], Yeo [14])et G be an edge-colored graph containing no PC cycles.
Then there is a vertexe V(G) such that no component of Gz is joint to z with edges of more than one color.
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Let G be a minimally 2-colored graph. & contains a subgrapH which is a PC cycle or a 2-colored g-
bowtie without containing PC cycles, th& = H (otherwise, by deleting vertices M(G) \ V(H) or edges in
E(G) \ E(H), we obtain a smaller 2-colored graph). Hence, it iisient to prove that is contains no PC cycle,
thenG contains a 2-colored g-bowtie. Apply Theoreml2.130SinceG is minimally 2-colored, we may assume
thatG is connected and there is a vertex V(G) such thats — z consists of two component; andH; with all
the edges betweerandH; has colori fori = 1, 2.

Let zxiXo - - - Xp and zy1y» - - - yq, respectively, be longest PC pathsGhH, and G\H; starting fromz. Set
X = zandyo = z Sincedg,, (x) > 2 anddg,, (y) > 2 for arbitrary verticesx € V(Hi) andy € V(Hy),
we havep, g > 2 and there exist vertices andy; for somei, j with 0 < i < p—2 and 0< j < g - 2 such that
col(xpx;) # col(Xp-1Xp) andcol(yqy;) # col(yq-1yq). SinceG contains no PC cycle, we hagel(xpx;) = col(xiXi+1)
andcol(yqy;) = col(yjyj+1). Together, the patRiXi_1 - - - X1zy1y2 - - - yj and cyclesiXiz1 - - - XpXi andyjyj1- - - ygyj
form a 2-colored g-bowtie.

The proof is complete. O



3  Proof of Theorem[1.4

First we prove the following proposition.
Proposition 1. Let G be an edge-colored graph wish(G) > a+ b — 1. If G contains ar(a, b)-feasible pair, then
there exists affa, b)-feasible partition of G.

Proof. Let (A, B) be an @, b)-feasible pair such tha& U B is maximal. If (A, B) is not an &, b)-feasible partition,
thenAuU B = V(G)\S with S # 0. Since @, B) is maximal, &, BU S) is not a feasible pair. Hence there exists a

vertexx in S such thadg[BUs](x) < b- 1. Recall thatdg(x) > a+ b - 1. Sodg[AUX X) > a. Thus AU x,B) is
a feasible pair, which is a contradiction with the maximpatif (A, B). This proves that4, B) is an @, b)-feasible
partition ofG. O

It is easy to check that the following proposition is alsaetru

Proposition 2. Let G be an edge-colored graph with(G) > Z!‘:l(ai —1)+ 1. If G contains k disjoint subgraphs

Hi, Ha, ..., Hk such thats®(H;) > a fori = 1,2,...,k, then G admits afey, a,, . . ., a)-feasible partition.

In what follows, we will keep the above propositions in mindtlaise these facts as a matter of course.
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We prove the theorem by contradiction. l@&tbe a counterexample such thatis chosen according to the
following order of preferences.

(i) kis minimum; (ii) |G| is minimum; (iii) |E(G)| is minimum; (iv)|col(G)| is maximum.

By the choice ofG, we know thais®(G) = g(k), k > 2 andG contains no rainbow triangles. L& = {u :
dg_,(u) = d§(u) - 1}. Then the following two claims obviously hold:

Claim 1. S, # 0 for all v € V(G).

Claim 2. For each edge we E(G), eitherue S, orv € S,,.

Now we prove the following claims.

Claim 3. For each color ie col(G), the subgraph Ginduced by edges colored by i is a star.

Proof. By the choice ofG, we know thaiG contains no monochromatic triangles or monochromgls. Thus
for every colori € col(G), each component @3, is a star. IfG; contains more than one component, then color
one of the components with a color notdal(G). Thus, we get a counterexample with more colors Bawhich
contradicts to the choice @. O

Claim 4. Foru,v e V(G), ifu e S, andv ¢ S, then § N Ng(v) # 0.

Proof. Suppose to the contrary that there exist vertigess V(G) satisfyingu € S,, v ¢ Sy, andSy, N Ng(v) = 0.
Thencol(vu) appears only once atand more than once at By Claim[3, the colorcol(vu) can only appear
at {v} U S,, particularly, not atS,. Now we construct a colored gra@i by deleting the vertexi and adding
edges{vx : x € S;} to G with all of them colored bycol(vu) (sinceS, N Ng(v) = 0, this is possible without
resulting multi-edges). For each vertex V(G')\S,, we havedg, (x) = di(x). For each vertey € S, we have
Ng (y) < (NE(»)\col(uy)) U col(vu). Since the colocol(vu) does not appear &, we havedg, (y) = NG ()| =
IN&()l = d&(y). This implies that*(G’) > 6°(G) = g(k). Note thaG’| = |G| — 1. By the assumption &, we
know thatG’ must admit a 2feasible partition. By Theore1.@/ containsk disjoint subgraphsiy, Ho, . . ., Hi
such thatd; is either a PC cycle or a minimally 2-colored g-bowtie withoontaining PC cycles far= 1,2, ..., k.

If U!‘Zl E(Hi) € E(G), then we can find a*2partition of G as desired, a contradiction.uj!‘:l E(Hi) ¢ E(G), then
all the edges im = (U!‘=1 E(H;)) \ E(G) form a monochromatic star with the verters a center. Thus, without
loss of generality, assume thatc E(H,).
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Fig. 1: Cases ofT|

SinceH; is either a PC cycle or a minimally 2-colored g-bowtie withoantaining PC cycles, for each vertex
a € H; and each coloj € col(H3), the colorj appears at most 2 timesain H;. Thus we have k |T| < 2.

If IT| = 1, then letxw be the unique edge ifi. Replacexw in H; with the pathxw (see Figurél3(a)). We obtain
a colored grapl} in G with 6°(H7) > 2. ThusH], Ha, ..., Hc implies a ¥-feasible partition o6, a contradiction.

If |T| = 2, then letT = {vx,vy}. Sincecol(vx) = col(vy), we know thatH; is a minimally 2-colored g-bowtie
with v being an end vertex of the connecting pattHn Delete the edgesx, vy and add vertex: and edges
o, ux, Uy in Hy (see Figurél3(b)). We obtain a g-bowti# in G with 6°(H;) > 2. ThusH/, Ha, ..., Hx implies a
2¢-feasible partition of3, a contradiction. O

Claim 5. There exists an edgeyx E(G) such that xc S, andy € Sy.

Proof. Suppose not. Then by Clainh 2 , we can construct an orientggzhddaby orienting each edge= wv €
E(G) fromutovif and only ifv € S,. Thend (v) > 2 for each vertex € V(D). LetT;(v) = {u: col(uv) = i}.

Subclaim 1. For each vertex € V(G) and colord, j € col(G) with i # j, if [Ti(v)l > 2 and|T;(v)| > 2, then the
following statements hold:

(@) Ti(v) N Tj(v) = 0 andE(Ti(v), Tj(v)) = 0.

(b) G[Ti(v)] contains at least one edge.

Proof. (a) By the definition, we know that;(v) N Tj(v) = 0. Since|Ti(v)| = 2 and|T;(v)| = 2, we know that
Ti() UTj(v) € S,. Lety; € Ti(v) andu;j € T;(v). Then colors and j appears only once at andu;, respectively.
If uiu; € E(G), thenuvujujv is a rainbow triangle, a contradiction. So we h&(&;(v), Tj(v)) = 0.

(b) Suppose thab[Ti(v)] is empty for some color with |Ti(v)] > 2. Then choose € Ti(v). We haveu € S,
andv ¢ S,. Apply Claim[4 tou andv, we obtainS, N Ng(v) # 0. For each coloi’ € col(G) with [T; (v)| > 2, by
Subclaini14) and the assumption th&T;(v)] is empty, we havé&(u, Ti (v)) = 0. Note that

Np (v) = U Ti(v).
Ty (v)>2.i" ecol(G)

We haveNg (u) "N (v) = 0. Recall thaS, N Ng(v) # 0 andSy < Ng(u). There must exist a vertexe S, N NS (v).
Itis easy to check th& = xwXx is a rainbow triangle i, a contradiction. O

Subclaim 2. For each vertex € V(G), there is exactly one coldre col(G) such thatT;(v)| > 2.

Proof. Given a vertew, by Claim[1, we can find a vertaxe S,. By the assumption d&, we havev ¢ S,. Let

i = col(uv). Then|T;(v)| = 2. This implies that for each vertexe V(G), there is at least one colore col(G)
such thaiT;(v)] > 2. Now, suppose to the contrary that there exists a vertexX/(G) and colorg, j € col(G)
with i # j satisfying|Ti(v)| > 2 and|T;(v)| > 2. By SubclainiIL, we can choose edges from G[T;(v)] andu;w;
from G[T;j(v)]. Let F = G[v, u;, wi, uj, w;]. Thené(F) > 2. Now we will discuss on the minimum color degree of
G-F.

If 6°(G—F) > g(k—1), then by the assumption & G—F has a ¥ -feasible partition. Together wiB[V(F)],
we obtain a B-feasible partition of3, a contradiction. So we hawé(G - F) < g(k - 1). Letx € V(G - F) be a
vertex satisfyinglg_-(x) = 6%(G - F). Sinces®(G) > g(k) > g(k— 1) + 3 and|F| = 5, we have

4 < |col(x, F)| < 5.



For verticesa € {u;, wi} andb € {uj, wj}, if [col(x, {a, b, v})| > 3, then it is easy to check that eithewx or xbvx
is a rainbow triangle, a contradiction. So we h@(x, {a, b, v})| < 2. Note thatcol(x, F)| > 4. This forces that
vx ¢ E(G) and|col(x, {u;, wi, uj, wj})| = 4. ThusC = xyou;x is a rainbow cycle of length 4. Suppose that there
exists a vertey € V(G - C) such thatlg_.(y) < g(k - 1). Then|col(y,C)| > 4. Note thau, u; € S,. Thus either
yUjvy Of yujuy is a rainbow triangle, a contradiction. Hence we h&(& — C) > g(k — 1). By the assumption
of G, the graptG — C has a ¥ '-feasible partition. Together witB[V(C)], we get a 3-feasible partition of3, a
contradiction. O

Subclaini2 implies that there are at leat) — 1 colors appear only once afor each vertex € V(G). Thus,
we haves~ (D) > g(k) — 1 > f(k). SoD containsk disjoint directed cycles, which correspondidlisjoint PC
cycles inG, a contradiction. O

Claim 6. For each edge xe E(G) satisfying xc S, andy € Sy, we have

(8) INS(¥) U NE(y) - col(xy)] < g(K) - 1, and

(0) No(¥) =y = No(y) —x = {vi : L <i < g(K) — 1}, where colxvi) = col(yv) and col(xv) # col(xv;) for
i,je[l,g(k)— 1] withi# j.

Proof. (a) SinceG contains no rainbow triangles andl(xy) appears only once atandy, respectively. we have
col(xu) = col(yu) for all u € Ng(X) N Ng(y). Now letG" = G/xy. ThenG’ is well defined andig, (v) = dg(v) for
all vertices inV(G)\{x, y}. Letzbe the new vertex resulted by contracting the exige

Suppose thaiNg (x) U N&(y) — col(xy)| > g(k), thendg, (2) > g(k). Thus we havé®(G’) > g(K). By the choice
of G, we know thatG’ must admit a 2feasible partition. By Theorefi 1.2’ containsk disjoint subgraphs
Hi,Ho,...,Hx such thatH; (i = 1,2,...,K) is either a PC cycle or a minimally 2-colored g-bowtie witlho
containing PC cycles.

If z¢ U!‘zl V(Hi), thenHy, Ho, . . ., Hy arek-disjoint subgraphs oB. This implies a 5-feasible partition oG,
a contradiction. So we can assume thatV(H;). Apparently, 2< dy,(2) < 4.

If du,(2) = 2, then letNy, (2 = {u, v} (see Figur€l2). I, v € Ng(x), then replace with x. If u € Ng(x) and
v ¢ Ng(X), then replace the patim with uxyv. In all cases, we can transforiy into a graphH; < G such that
6°(H;) > 2 andV(H;) N V(H;) = 0 fori = 2,3...,k. ThusHj, Ha,..., Hx imply the existence of a2feasible
partition of G, a contradiction.
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Fig. 2:dy, (9 =2

If dn,(2) = 3, thenH; must be a minimally 2-colored g-bowtie witbeing an end-vertex of the connecting
path. LetNy, (2 = {u, v, w} with u,v on a same cycle ifl; (see Figur€&l3). Ifu,v, w} € Ns(x), then replace with
X. If {u,v} € Ne(X) andw ¢ Ng(X), then replacew with xyw. If {u,w} € Ng(X) andv ¢ Ng(X), then replacew
with xyv. Constructions of the remaining cases are similar. Finellgll cases, we can transforrh into a graph
H; ¢ G such that®(H;) > 2 andV(H;) N V(H;) = 0 fori = 2,3..., k. ThusH}, Ho,..., Hc implies a Z-feasible
partition of G, a contradiction.

If du,(2) = 4, thenH; is a minimally 2-colored g-bowtie with two cycles overlagpen the vertexz. Let
Nu, (2 = {u,v, U, v’} with u,v on one cycle and’, v’ on the other cycle (see Figure 4). {lf, v, u', v’} € Ng(X),
then replace with x. If {u, v, U’} € N¢(X) andv’ ¢ N¢(x), then replace the path’ with xyv’. If {u, v} € N°(x) and
{u, v’} N Né(x) = 0, then splitzinto the edgew such that the resulting graph is still a g-bowtie{ufu’} € N¢(x)
and{v, v’} N N°(x) = 0, then splitzinto the edgexy in an orthogonal direction such that the resulting graph is a
cycle with one chordy. Constructions of the remaining cases are similar. Finallgll cases, we can transform
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Hj into a graphH; c G such that®(H;) > 2 andV(H]) N V(H;) = 0 fori = 2,3...,k. ThusH/, Ha,..., Hk
implies a Z-feasible partition of3, a contradiction.

(b) By Claim[8) and the fact thad (x), d (y) > g(k), we haveNg(x) = N&(y) anddg(x) = d(y) = g(k). For
each colorj € N§(x) andj # col(xy), sinceG; is a star and the colgrappears ax andy, we know thatx, y must
be leaf vertices 06;. Letv; be the center dB;. The proof is complete. ]

Now let{x,y} U {vj : 1 <i < g(k) — 1} be the set of vertices described in Cldim 6. Without loss ofegality,
let col(xv;) = i fori € [1,g(K) — 1]. Let H be the subgraph d& induced by{x,y} U {vi : 1 <i < g(k) — 1} and
R=G-H.

Claim7. For1<i <g¢g(k) -1, col(vi, S,,) = {i}.

Proof. Suppose to the contrary that there exists a vautexS,, such thatol(us) # i. If u = v; for somej with
1< j<g(k)-1andj # i, thencol(uv) = j (sincexvivjx is not a rainbow triangle). Since the colpappears at
least 2 times at;j(= u), we know thau ¢ S, a contradiction. Now the vertaxmust belong td/(R). Since each
Gj (1< j<g(k) —1)is a star andol(uy) # i, we havecol(uy) ¢ [1, g(K) — 1]. If v; € Sy, then by applying Claim
[ to the edgeuw;, we haveNg(u) — v; = Ng(vi) — u. Sincex € Ng(vi), we havex € Ng(u), namely,u € Ng(X),
a contradiction. So we haug ¢ S,. Applying Claim[4 touv;, we obtain a vertex € Sy N Ng(v;). Note that
col(uy) ¢ [1, g(k) — 1] andG contains no rainbow triangle, we have R— u. LetF = G[X, y, v;, U, v]. It is easy
to check that®(F) > 2.

We will show that for each vertexe G-F, |col(z F)| < 3. Forz e Rn (G - F), the assertion holds sinedas
no neighbor tax or y. Thus we may assume that vj for somej with 1 < j < g(k) — 1 andj # i. If z; ¢ E(G)
or col(z;) = j, then we have the desired conclusion. So we may assume ithatljacent ta; andcol(z) = i
(otherwisezxjz is a rainbow triangle). Since there is no rainbow triangld @nis a star, we can easily check
thatzu ¢ E(G). Soz satisfies the desired property.



Now, 6%(G - F) > g(k) — 3> g(k — 1). SoG - F admits a & *-feasible partition. Together witB[V(F)], we
obtain a 2-feasible partition of3, a contradiction. O

Claim 8. There exists a vertex with 1 <i < g(k) — 1 such that § = {X, y}.

Proof. Suppose not. Then there exists a verigxe S, \{x,y} for all i with 1 < i < g(k) - 1. By Claim[7,
col(up) =iforl<i<g(k)-1. LetG = G- {X y}. Thens®(G) > 6°(G) > ¢g(k). By the choice of5, the graph
G’ must admit a ®-feasible partition, which implies th& has a 5-feasible partition, a contradiction. O

We are now in a position to prove the theorem. idte the vertex in Clairil8. Sinag,(v;) < g(k) — 1 and
d&(vi) = g(K), there is a vertew € RN Ng(v;). Note thatu ¢ S,,. By Claim[2, we have; € S,. Now apply Claim
[ to the edgeuw;, we haveS,, N Ng(u) # 0. This implies that eithex € Ng(u) or y € Ng(u), a contradiction.

This completes the proof of Theorém]1.4. O

4 Proof of Theorem[1.7

Lemmal. Letk xq, %o, ..., Xk be positive integers anch’a non-negative integer with < Xy < ‘g Let{vij 1<

i <k 1< j<x}beaset 012!‘:1 X vertices such that each verte}ds colored by i. Divide these vertices into
two sets S and T, randomly and independently, Wit@ithr S) = Pr(vij eT) = % Let Ps(xo, X1, ..., Xk) be the
probability of the event that there are at most(® < xp < 'g) differently colored vertices in S. Then

& (k)1
Ps(x0, X1, %) < D[ ](5)% 4.1
(0. xk><§(1)(2) @1)

Proof. For convenience, we say a vectgr= (X0, X1, X2, - . ., Xk) is goodif k, X1, Xo, ..., X« are positive integers
andx is a non-negative integer with€9 x, < &. Proving Lemmall is equivalent to verify Inequatibn{4. 1) dd
good vectors. For good vectors = (Xo, X1, ..., X) andy = (yo,y1,- - - , yk ), We sayX < 3 if (&) or (b) holds.

(@ k<K.

(b) k = K" and there existse [1, K] such that < y; andx = y; foralliwith0 <i < t.

Now we will prove Inequatiori{4]1) for every good vec®r= (X, X1, . . . , X).

By induction. First, it is easy to check that Inequation}{4dlds in the following three cases: (%) = 0; (2)
k=1;(3)x = 1foralli with1<i < k Nowassumethaty > 1,k > 2, x > 2 for some with1 <i <k, and
each good vectoy with 5/ < X satisfies Inequatioii{4.1). Consider the verfexWe have

Ps(X) = Pr(vt € T)Ps(Xo, X1, . - . X1, % — 1, Xis1, - . ., Xk) + Pr(vt € S)Ps(Xo — L, X1, . .+, Xiot, Xisds - - - » Xk)-

Lety = (X0, X, - > X1, X — 1, Xis1,..., %) @andZ = (Xo— 1, X4, . ..., Xi—1, Xi+1, - - . , X&)- It is easy to see thaf and
Z are good vectors witly, Z < X. By induction hypothesis, we have

3, (k) , 1
P < A=
s(7) < j§0(J)(2)
and

elik-1\ 1
P < (SR
sﬁ><;( e



Thus, we have
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The proofis complete. O
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Proof. AssumeV(G) = {1,2,---,n}. We divideV(G) into two disjoint partsA, B randomly withPr(i € A) =
Pr(i € B) = 3 for each vertex € V(G). For each vertex € A, the bad even#\ means that for vertek
{dg[A](i) < a-1}. By Lemmd1, we have

20
Pr(A) < Z( G('))(Z)d°<'> > ( G('))( )%0 = Pr(X > dg(i) —a+ 1),

j=0 j=dg()-a+1 )
whereX ~ B(dS(i), 3).
Recall that Chernd's bound:Pr[X — E(X) > ne] < e 2 whereX ~ B(n, ). We get

0]

+1) < @ 2T aHIP/0

Sincedg(i) > 6°(G) > 2(a- 1), we have
Pr(A) < e—z(@—aﬂ)z/dg(i) < efz(ﬁ;élfau)?/a%e)'

Similarly, for each verte) € B, the bad everB; means thatd (j) < b - 1} andPr(B;) < e 2R -bHP O <
e 2E2-ar12/60) gq

Pr_JA) U (B < > Pri) + ) Pr(B)) < ne 25 - 17/5@),
ieA jeB ieA jeB
If ne2"£2-a+17/50G) < 1, which means Pr[(U A) U (U B)] > 0, then™2 _ 2(a— 1) + Zéi‘(Gl)) > Inn. The
last inequality holds by the condition théf{(G) > 2Inn + 4(a 1). Thus there exists a partition such that neither
eventA; nor B; happens. So we have am )-feasible partition. O




5 From (a, 2)-feasible partitionsto Bermond-Thomassen’s conjecture

Firstly, we give the proof of Thorem1.5.
Proof of Theorer 115.
In order to prove the theorem, we use the following fact.

Lemma?2. [5] In any rainbow triangle-free coloring of a complete giaghere exists a vertex partitiqiv'y, Vo . .., Vi)
of V(K,) with t > 2 such that between the parts, there are a total of at most tdareand, between every pair of
parts \, Vj with i # j, there is only one color on the edges.

If K, contains a rainbow trianglg, then letA = C andB = K, — C. It follows that6®(A) > 2 ands®(B) > a.
So (A, B) is an @, 2)-feasible partition. Now we assume tlgtcontains no rainbow triangle. Utilizing Lemrh 2,
we can easily find arg( 2)-feasible partition. Thus Theordm11.5 holds. O

In this section, we will point out a relationship betweean2)-feasible partitions in edge-colored graphs and
Bermond-Thomassen’s conjecture in digraphs. In fact, BedrThomassen’s conjecture has not even been con-
firmed in multi-partite tournaments. Recently, Li et all [éjealed a relationship between PC cycles in edge-
colored complete graphs and Bermond-Thomassen’s congemtumulti-partite tournaments.

We prove the following proposition.
Proposition 3. Fork > 1letd, ..., dx be positive integers, and let{d, do, . . ., dk), g(d1, do, ..., d) and H(dy, do, . . ., dk)
be the minimum values which make the following three stateneie:
(1) Every oriented graph D with" (D) > f(d1,dy, ..., dy) has a vertex-partitioV1, Vo, . . ., Vi) with 67 (D[ Vi]) =
dfori=12, ...,k
(2) Every edge-colored graph G witfi(G) > g(dy,da, ..., dk) has a(ds, d, . . ., dy)-feasible partition.
(3) Every edge-colored complete graph K wétt{K) > h(dy, do, . . ., dk) has a(d;, do, . . ., dy)-feasible partition.

Then we have

f(dy-Ldp—1,....0k— 1) < g(dp, dp, ..., k) <h(dy + L, dp + 1,..., ¢ + 1)

Proof. Given an oriented grapB, we construct an edge-colored gra@hwith V(G) = V(D), E(G) = {uv :

u € A(D)orvu € A(D)} andcolg(uv) = v if and only if uw € A(D). If 67(D) > g(di,dy,---,dk), then by
the construction, we know thaf(G) > ¢g(di,dy,---,dk). Thus,G admits a partitiorVy, Vo, ..., Vi such that
OC(G[Vi]) = difori =1,2,...,k Inturn, by the construction, we hav&(D[V;]) > di—1fori =1,2,...,k Recall
the definition of functionf. We know that

f(dl—l,dz—1,...,dk—1)Sg(dl,dg,...,dk).

Given an edge-colored graf) we construct an edge-colored complete grigphith V(K) = V(G), colk(e) =
cols(e) for all e € E(G), colk(€) = co forall e e E(K)\E(G) andcgy ¢ col(G). If 6°(G) > h(d1+1,d2+1,...,dc+1),
thens®(K) > h(d1+1,d>+1,...,dc+1). By the definition oh, we know that there exists a partitidh, Vo, . . ., Vi
of K such thats®(K[Vi]) > di + 1 fori = 1,2,...,k. By the construction oK, we haves®(G[Vi]) = d; for
i=1,2,...,k Recall the definition of. We know that

g(d, do, ..., d) <h(di+1,dp + 1,..., 0k + 1).
O

Remarkl. The existence of (d1,d,,...,dy) fordi > 2 (i = 1,2,...,K) andk > 2 is still unknown according
to [1]. PropositioriB implies that we could show the existen€ f(dy, dy, . .., dy) by proving the existence of
g(di+1,d2+1,...,dk+1)orh(dy +2,da + 2,...,dk + 2).
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Whend; = d; = --- = d¢ = d, for simplicity, we writef(d, d, - -- ,d)x instead off (d, dy, - - - , d«). This also
applies to functiong andh.

The following result provides us the direct consequencehafofeni_1.B.

Proposition 4. If g(a, 2) < a+tfor aninteger t and all & N, then

f(LL.. . 1k<g22.. 2x<tk—t+2

Proof. According to Propositiohl3, we only need to prove thé,2,...,2) < tk —t + 2. By induction onk.
Sinceg(a,2) < a+tforallae N. We havey(2,2) <t + 2. Assume tha#(2,2,...,2).1 < (k- 2)t + 2. and let
x=¢g(2,2,...,2)k-1. Then

9(2,2,...,2x < g(x,2)<x+t<(k-Dt+2=tk—-t+ 2
S0¢(2,2,...,2)x <tk—t+2forallk > 2.
The proof is complete. O

Remark2. Bermond and Thomassen [3] conjectured th@t 1,. .., 1)« = 2k — 1 (the conjecture is proposed for
simple directed graphs and it isfBaient to prove it in oriented graphs). Recall that the beswkmupper bound
of f(1,1,...,1) is 64k (by Alon [1]). In view of Propositioii 4, we suggest that catesing @, 2)-feasible par-
titions in edge-colored graphs could be a reasonable apiprfoaimproving Alon’s result concerning Bermond-
Thomassen'’s conjecture in digraphs.
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