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Uniformity thresholds for the asymptotic size of

extremal Berge-F -free hypergraphs

Dániel Grósz∗ Abhishek Methuku† Casey Tompkins‡

Abstract

Let F = (U,E) be a graph and H = (V, E) be a hypergraph. We say that
H contains a Berge-F if there exist injections ψ : U → V and ϕ : E → E
such that for every e = {u, v} ∈ E, {ψ(u), ψ(v)} ⊂ ϕ(e). Let exr(n, F ) denote
the maximum number of hyperedges in an r-uniform hypergraph on n vertices
which does not contain a Berge-F .

For small enough r and non-bipartite F , exr(n, F ) = Ω(n2); we show that
for sufficiently large r, exr(n, F ) = o(n2). Let th(F ) = min{r0 : exr(n, F ) =
o(n2) for all r ≥ r0}. We show lower and upper bounds for th(F ), the uni-
formity threshold of F . In particular, we obtain that th(△) = 5, improving a
result of Győri [5].

We also study the analogous problem for linear hypergraphs. Let exLr (n, F )
denote the maximum number of hyperedges in an r-uniform linear hypergraph
on n vertices which does not contain a Berge-F , and let the linear unformity
threshold thL(F ) = min{r0 : exLr (n, F ) = o(n2) for all r ≥ r0}. We show that
thL(F ) is equal to the chromatic number of F .

1 Introduction and main results

Let F = (U,E) be a graph andH = (V, E) be a hypergraph. Generalizing the earlier
definitions of Berge-path and Berge-cycle, Gerbner and Palmer [3] introduced the
notion of Berge-F hypergraphs.

Definition 1. We say that H is a Berge-F if there exist bijections ψ : U → V and
ϕ : E → E such that for every e = {u, v} ∈ E, {ψ(u), ψ(v)} ⊂ ϕ(e).

Given a hypergraph H, we denote by Γ(H) the 2-shadow of H, that is, the graph
on the same vertex set, containing all 2-element subsets of hyperedges from H
as edges. Observe that H contains a Berge-F as a subgraph if and only if Γ(H)
contains a copy of F such that H has a distinct hyperedge containing each edge of
this copy of F .

For a graph F , let exr(n, F ) denote the maximum number of hyperedges in an r-
uniform hypergraph on n vertices which does not contain a Berge-F as a subgraph.
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The case when r = 2 is the classical Turán function ex(n, F ). We will also consider
what happens if we impose the additional assumption that the hypergraph is linear
(i.e., any two hyperedges intersect in at most one element). We denote the maxi-
mum number of hyperedges in a linear r-uniform hypergraph on n vertices which
does not contain a Berge-F by exLr (n, F ).

Győri, Katona and Lemons [7] generalized the Erdős–Gallai theorem to Berge-
paths. Győri and Lemons [6] gave upper bounds, and in some cases constructions,
for ex3(n,C2k+1). Gerbner and Palmer [3] gave bounds on exr(n, F ) for Ks,t and

specifically C4. It follows from Győri’s results in [5] that exr(n,△) ≤ n2

8(r−2) if n
is large enough. For r = 3, 4 this result is asymptotically sharp. We studied this
problem in higher uniformities, and determined that, in fact, exr(n,△) = o(n2)
when r ≥ 5, improving Győri’s result. This will be obtained as a special case of
more general theorems presented later.

The following result can be proved easily.

Proposition 2 (Gerbner and Palmer [3]). For any graph F and r ≥ |V (F )|, we
have

exr(n, F ) ≤ ex(n, F ) = O(n2).

We include its proof in Section 3. By the Erdős–Stone theorem, for any bipartite
graph F , we have ex(n, F ) = o(n2). Moreover, in the graph case, if F is not
bipartite, then we have ex(n, F ) = Ω(n2). We will show that for any graph F and
for any sufficiently large r, we have exr(n, F ) = o(n2). We introduce the following
threshold functions.

Definition 3. Let F be a graph. We define the uniformity threshold of F as

th(F ) = min{r0 ≥ 2 : exr(n, F ) = o(n2) for all r ≥ r0}.

We define the linear uniformity threshold of F as

thL(F ) = min{r0 ≥ 2 : exLr (n, F ) = o(n2) for all r ≥ r0}.

Our first theorem gives an upper bound for the value of th(F ) for any graph F .
(Note that if F is bipartite, then th(F ) ≤ |V (F )| by Proposition 2.) The Ramsey
number of two graphs R(G,H) is defined to be the smallest n such that every
2-coloring of the edges of the complete graph Kn contains a copy of G in the first
color or H in the second color. For every G and H this number is known to be
finite by Ramsey’s theorem.

For a graph F containing an edge e, let F \ e denote the graph formed by deleting
e from F .

Theorem 4. For any graph F (with at least two edges), and any of its edges e, we
have

th(F ) ≤ R(F,F \ e).

Our next result is a construction giving a lower bound on th(F ).
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Theorem 5. Let F be a graph with clique number ω(F ) ≥ 2. For any 2 ≤ r ≤
(ω(F )− 1)2, there exists an r-uniform, Berge-F -free hypergraph on n vertices with
Ω(n2) hyperedges. Therefore we have

th(F ) ≥ (ω(F )− 1)2 + 1.

The above two theorems imply th(△) = 5.

Erdős, Frankl and Rödl [2] constructed a linear r-uniform Berge-triangle-free hy-
pergraph with more than n2−ε hyperedges for any r ≥ 3 and ε > 0. This implies
that when F = △, in our definition of the functions th and thL, o(n2) cannot be
replaced by a function of n with smaller exponent.

Finally, we consider linear hypergraphs. (In Section 5 we prove Theorem 5 by
blowing up a linear, Berge-F -free hypergraph.) It is easy to see that a linear
hypergraph on n vertices has at most

(n
2

)

hyperedges: fix a pair of vertices in
each hyperedge; by the definition of a linear hypergraph, all these pairs must be
distinct. Timmons [9] showed that (with our notation) thL(F ) ≤ |V (F )|. We prove
the following exact result.

Theorem 6. For any (non-empty) graph F , we have

thL(F ) = χ(F ),

and for any 2 ≤ r < χ(F ), there exists an r-uniform, linear, Berge-F -free hyper-
graph on n vertices with Ω(n2) hyperedges.

Note that χ(F ) may be bigger than the lower bound in Theorem 5, and it obviously
also bounds th(F ) from below. Generalizing the proof of Theorem 5, we prove the
following common generalization of Theorem 5 and the lower bound on th(F )
coming from Theorem 6.

For a graph F , we define a t-admissible partition of F as a partition of V (F ) into
sets of size at most t, such that between any two sets there is at most one edge in
F . ‘Contracting’ a set S of vertices in a graph produces a new graph in which all
the vertices of S are replaced with a single vertex s such that s is adjacent to all
the vertices to which any of the vertices of S was originally adjacent.

Theorem 7. Let F be a graph, and let 1 ≤ t ≤ |V (F )|−1. Consider all the graphs
obtained by contracting each set in some t-admissible partition of F to a point, and
let c be the minimum of the chromatic numbers of all such graphs. If c ≥ 3, then
th(F ) ≥ (c− 1)t+ 1.

For t = 1, the only t-admissible partition of a graph F is putting every vertex into
a different set, so c = χ(F ), and we just get back the lower bound in Theorem 6.
We also get Theorem 5 as a special case of Theorem 7 when t = ω(F )− 1: In any
(ω(F ) − 1)-admissible partition of F , every vertex in a maximal clique of F must
belong to a different set of the partition. Indeed, no set of the partition may contain
all vertices of an ω(F )-clique. But if a set A from the partition contained two or
more vertices of an ω(F )-clique, and another set B contained another vertex of that
clique, then there would be two or more edges between A and B, contradicting the
definition of a t-admissible partition. This means that the graph we get after
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contracting all the sets of an (ω(F ) − 1)-admissible partition contains an ω(F )-
clique, so its chromatic number is at least ω(F ). Therefore c ≥ ω(F ).

As an example where Theorem 7 gives an improvement, consider F = K2,1,1.
Putting t = 3 and c = 3, we get th(K2,1,1) ≥ 7. Indeed, the only 3-admissible
partition of K2,1,1 is to put every vertex of K2,1,1 into a different set. Theorem 5
gives a lower bound of just 5, while Theorem 6 gives 3. We give further corollaries
of Theorem 7 about blowups of graphs in Section 5.

Until now we focused on uniformities r for which exr(n, F ) is subquadratic. In
Section 2, we discuss the behavior of exr(n, F ) as r grows, more generally. In
particular, we discuss uniformities r for which exr(n, F ) is superquadratic using
the relationship between exr(n, F ) and the maximum number of Kr’s in an F -free
graph.

2 Behavior of exr(n, F ) as r increases

Alon and Shikhelman [1] studied the maximum number of copies of a graph T in
an F -free graph on n vertices, denoted ex(n, T, F ). For example, in the following
proposition, we paraphrase Propositions 2.1 and 2.2 in [1].

Proposition 8 (Alon and Shikhelman [1]). Let r ≥ 2. Then ex(n,Kr, F ) =
Ω(nr) if and only if r < χ(F ). Moreover, if r < χ(F ), then ex(n,Kr, F ) = (1 +
o(1))

(χ(F )−1
r

)(

n
χ(F )−1

)r
, otherwise ex(n,Kr, F ) ≤ nr−ǫ(r,F ) for some ǫ(r, F ) > 0.

For the r < χ(F ) case, a construction showing ex(n,Kr, F ) = Ω(nr) is a complete r-
partite graph on n vertices with roughly

⌊

n
r

⌋

vertices in each part. It has chromatic
number r, so it does not contain F , and it contains Ω(nr) copies of Kr.

Clearly ex(n,Kr, F ) ≤ exr(n, F ): Take an F -free graph with ex(n,Kr, F ) r-cliques,
and replace each r-clique with a hyperedge containing the vertices of the clique.
The resulting hypergraph cannot contain a Berge-F , as its 2-shadow does not even
contain a copy of F . The converse is not true. If we take a Berge-F -free hypergraph
with exr(n, F ) hyperedges, and we replace its hyperedges with r-cliques (i.e., we
take its 2-shadow), it might contain a copy of F . The upper bound in the following
proposition, which relates exr(n, F ) to ex(n,Kr, F ), was discovered by Gerbner
and Palmer [4]. As the proof is very simple, we include it for completeness.

Proposition 9 (Gerbner and Palmer [4]). For any r ≥ 3,

ex(n,Kr, F ) ≤ exr(n, F ) ≤ ex(n,Kr, F ) + ex(n, F ).

Proof. We have already seen ex(n,Kr, F ) ≤ exr(n, F ). To prove exr(n, F ) ≤
ex(n,Kr, F ) + ex(n, F ), let H be an r-uniform, Berge-F -free hypergraph on a ver-
tex set V of n elements. We consider the hyperedges of H one-by-one, and we will
mark elements of

(V
2

)

∪
(V
r

)

. For each hyperedge, we mark a pair of its vertices
that we have not marked yet; if all those pairs are already marked, then we mark
the hyperedge itself.

Let H̃ be the set of the marked pairs and hyperedges. H̃ ∩
(V
2

)

is a graph with
no copy of F . Indeed, since we only marked one edge for each hyperedge, if the
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graph contained a copy of F , its edges would be contained by distinct hyperedges
of H, which would form a Berge-F . So

∣

∣H̃ ∩
(

V
2

)∣

∣ ≤ ex(n, F ). Meanwhile each

hyperedge in H̃ ∩
(

V
r

)

was marked because each pair of vertices in it had already

been marked, so they form an r-clique in H̃ ∩
(V
2

)

. But H̃ ∩
(V
2

)

is F -free, so the

number of r-cliques in it is at most ex(n,Kr, F ). Thus,
∣

∣H̃ ∩
(V
r

)
∣

∣ ≤ ex(n,Kr, F ).

Since |H| =
∣

∣H̃
∣

∣, the proof is complete.

Proposition 9 implies that the two functions ex(n,Kr, F ) and exr(n, F ) differ by
only O(n2). So exr(n, F ) = O(n2) if and only if ex(n,Kr, F ) = O(n2), and
we have exr(n, F ) = ω(n2) if and only if ex(n,Kr, F ) = ω(n2). Moreover, if
ex(n,Kr, F ) = ω(n2), then exr(n, F ) = (1 + o(1)) ex(n,Kr, F ). If F is bipar-
tite, since ex(n, F ) = o(n2), the difference is even smaller — only o(n2). So
for bipartite F , exr(n, F ) = o(n2) if and only if ex(n,Kr, F ) = o(n2), and if
ex(n,Kr, F ) = Ω(n2), then exr(n, F ) = (1 + o(1)) ex(n,Kr, F ).

On the other hand, note that for any non-bipartite F , even if we know ex(n,Kr, F )
= o(n2), Proposition 9 does not imply exr(n, F ) = o(n2); so ex(n,Kr, F ) does not
tell us much about th(F ).

Combining Proposition 8 and Proposition 9, we can obtain the following nice propo-
sition discovered by Palmer et al. [8]. We note, however, that the proof given in
[8] is different from the simple proof mentioned here.

Proposition 10. Let r ≥ 2. If r < χ(F ), then exr(n, F ) = Θ(nr) and if r ≥ χ(F ),
then exr(n, F ) = o(nr).

More precisely, if r < χ(F ), then exr(n, F ) = (1 + o(1))
(

χ(F )−1
r

)(

n
χ(F )−1

)r
, and if

r ≥ χ(F ), then exr(n, F ) ≤ nr−ǫ(r,F ) for some ǫ(r, F ) > 0.

Below we outline some interesting facts about the behavior of exr(n, F ) as r grows.

Proposition 10 shows that as r increases from 2 until χ(F )−1, the function exr(n, F )
increases, and from r = χ(F ), it is o(nr). From r ≥ |F | (at the latest), it becomes
O(n2) again (by Proposition 2). However, the decrease does not stop there. As
shown by Theorem 4, from some point, it becomes o(n2).

In general, we do not know much about the behavior of exr(n, F ) when r is between
χ(F ) and |F | − 1. In the special case of F = Ks, we know more. As r increases
from χ(F )−1 to χ(F ), exr(n, F ) immediately jumps from Θ(nχ(F )−1) to O(n2) (by
Proposition 2 since |V (F )| = χ(F ) = s), and it is at most O(n2) for all r ≥ χ(F ).
It would be very interesting to determine the precise threshold th(Ks) for when it
becomes sub-quadratic.

It is also notable that exr(n, F ) may increase with r in the range χ(F ) ≤ r ≤ |F |−1
(as will be shown by the proposition below). Theorem 1.2 in Alon and Shikhelman’s
paper [1] shows that if s ≥ 2r − 2 and t ≥ (s − 1)! + 1, then ex(n,Kr,Ks,t) =

Θ
(

nr−(
r

2
)/s). It is easy to check that nr−(

r

2
)/s monotonously increases in r between

2 and
⌊

s
2

⌋

+ 1, and nr−(
r

2
)/s = Ω(n2.25) when 3 ≤ r ≤

⌊

s
2

⌋

+ 1. So combining this
with Proposition 9, we get

Proposition 11. For any 2 ≤ r ≤
⌊

s
2

⌋

+ 1 and t ≥ (s − 1)! + 1, we have

exr(n,Ks,t) = Θ
(

nr−(
r

2
)/s).
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Of course ex2(n,Ks,t) = o(n2), while ex3(n,Ks,t) = Ω(n2.25) if s ≥ 4, which implies
that th(F ) is not necessarily the smallest r ≥ 2 for which exr(n, F ) = o(n2). (Then
from some point later on — r ≥ s + t at the latest — it becomes sub-quadratic
again and remains so.)

For a non-bipartite graph F , Theorem 4 implies that for any r ≥ R(F,F\e), we have
exr(n, F ) = o(ex(n, F )). However, it is unclear if the same holds for some bipartite
graphs. If F is a forest, then it is known that exr(n, F ) = Θ(n) = Θ(ex(n, F )).

Question 12. Is there a bipartite graph F containing a cycle for which the following
statement holds: There exists an integer r0(F ) such that exr(n, F ) = o(ex(n, F )) for
all r ≥ r0(F )? If yes, is the same statement true for every bipartite F containing
a cycle?

The analogous question for linear hypergraphs was asked by Verstraëte [9]. For
F = C4, we ask the following, more precise question about the threshold.

Question 13. Is it true that exr(n,C4) = o(n1.5) for all r ≥ 7?

One can show that for 2 ≤ r ≤ 6, we have exr(n,C4) = Ω(n1.5). Consider a
bipartite C4-free graph G having Ω(n1.5) edges with parts A and B. Let 1 ≤ i ≤ 3
and 1 ≤ j ≤ 3. Now replace each vertex a ∈ A with i vertices a1, . . . , ai, and each
vertex b ∈ B with j vertices b1, . . . , bj , so that each edge ab ∈ E(G) is replaced by
the hyperedge {a1, . . . , ai, b1, . . . , bj}, Let A

′ and B′ be the sets replacing A and B
respectively. Clearly, the resulting hypergraph H is (i+ j)-uniform.

We claim thatH is Berge-C4-free. Indeed, suppose for a contradiction that abcd is a
C4 in the 2-shadow ofH such that ab, bc, cd, da are contained in distinct hyperedges.
Since i, j ≤ 3, it is impossible that the vertices of the C4 are all contained in A′ or
B′. Notice that two of the vertices a, b, c, d must correspond to the same vertex of
G, because otherwise abcd would be a C4 in G as well. Furthermore, if two adjacent
vertices of abcd are in A′ (or in B′), then they correspond to the same vertex of G.
We have the following cases.

• If two opposite vertices of abcd, say a and c, are in A′, and b and d are in B′,
then suppose w.l.o.g. that a and c correspond to the same vertex of G. Then
ab and bc are not contained in distinct hyperedges of H, a contradiction.

• If two adjacent vertices, say a and b are in A′, and c and d are in B′, then a
and b correspond to the same vertex of G, and so do c and d. Then ad and
bc are not contained in distinct hyperedges of H.

• If three vertices, say a, b, c, are in A′, and d is in B′ (or vice-versa), then
a, b, c correspond to the same vertex of G, so ad and cd are not contained in
distinct hyperedges of H.

As 2 ≤ i+j ≤ 6, this shows that exr(n,C4) = Ω(ex(n,C4)) = Ω(n1.5) for 2 ≤ r ≤ 6.

3 Upper bound — Proof of Theorem 4

First we prove Proposition 2 by showing that ex(n, F ) is an upper bound for
exr(n, F ), whenever r ≥ |V (F )|.
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Proof of Proposition 2. Assume H = (V, E) is an r-uniform hypergraph which
contains no Berge-F . One by one, for every hyperedge h ∈ E we take an edge e ⊂ h
which has not yet been taken. By our assumption r ≥ |V (F )| we can always do
this, for otherwise we would have a complete Kr, and the corresponding hyperedges
would form a Berge-F . After completing this procedure, we obtain a graph G in
which the number of edges is equal to the number of hyperedges in H. Clearly G
is F -free and thus has at most ex(n, F ) edges, completing the proof.

Another essential tool in some of our proofs is the graph removal lemma. We recall
it here without proof.

Lemma 14 (Graph removal lemma). Let F be a fixed graph. For any ε > 0, there

is a δ > 0 such that for every graph G which has at most δ |V (G)||V (F )| copies of F ,
there exists a set S ⊆ E(G) of εn2 edges such that every copy of F in G contains
at least one edge from S.

We wish to apply the removal lemma to the 2-shadow of F , denoted Γ(F ). To this
end, we prove the following claim.

Claim 15. Let F be a fixed graph, and let e ∈ E(F ) and r ≥ |V (F )|. Let H be an
r-uniform hypergraph on n vertices with no Berge-F . Then the number of copies
of F in Γ(H) is o(n|V (F )|).

Proof. Any copy of F in Γ(H) has at least two edges (and therefore at least three
vertices) in some hyperedge of H, otherwise the hyperedges containing the edges
of F would form a Berge-F . Thus we have the following upper bound:

#{F -copies in Γ(H)} ≤ |E(H)|

(

|V (F )|

3

)

n|V (F )|−3.

(

|V (F )|
3

)

is considered constant, and by Proposition 2 |E(H)| = O(n2). So the

number of copies of F is O(n|V (F )|−1) and so o(n|V (F )|).

From now on, we consider F to be a fixed graph, e ∈ E(F ), and r ≥ R(F,F \ e).
We consider an r-uniform hypergraph H with no Berge-F .

By Claim 15 and the graph removal lemma, there are o(n2) edges such that every
copy of F in the 2-shadow of H contains one of these edges. Call the set of these
edges R.

Claim 16. Every hyperedge of H contains an edge from R which is contained in
at most |E(F )| − 1 hyperedges.

Proof. By contradiction, assume that there is a hyperedge h such that every edge
from R contained in h is in at least |E(F )| hyperedges. By the definition of R,
Γ({h})\R cannot contain a copy of F . Applying Ramsey’s theorem with the edges
of Γ({h}) \R colored with the first color and those in Γ({h})∩R colored with the
second, we obtain that Γ({h})∩R must contain a copy of F \e. Let ê be an edge in
h whose addition would complete this copy of F . By our assumption we can select
|E(F )| different hyperedges to represent every edge in this copy of F : h itself for
ê, and other hyperedges containing the rest of the edges. These hyperedges form a
Berge-F in H, a contradiction.
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v1,1 v1,3v1,2

v2,1 v2,2 v2,3

Figure 1: The construction in Section 4.1 (with r = 4, n = 48). The solid, dashed and
dotted lines represent ex,0’s, ex,1’s and ex,2’s respectively.

We are now ready to complete the proof of Theorem 4. For every hyperedge h ∈ H
we apply Claim 16 to find an edge e ∈ R, e ⊂ h which is contained in at most
|E(F )| − 1 hyperedges. It follows that the number of edges in H is bounded by
|E(F )| − 1 times the number of edges found in this way, and thus

|E(H)| ≤ (|E(F )| − 1) |R| = o(n2).

4 Linear hypergraphs — Proof of Theorem 6

4.1 Construction showing thL(F ) ≥ χ(F )

First, we show that for any F we have thL(F ) ≥ χ(F ). Let 2 ≤ r ≤ χ(F ) − 1.
We construct an r-uniform linear hypergraph on n vertices with Ω(n2) edges and
no Berge-F . Take r sets V1, V2, . . . , Vr of

⌊

n
r

⌋

vertices each. For each i, 1 ≤ i ≤
r, let Vi = {vi,1, vi,2, . . . , vi,⌊n/r⌋}. The hyperedges are the sets of vi,j’s of the
form ex,m = {v1,x, v2,x+m, . . . , vr,x+(r−1)m} where x ∈

{

1, 2, . . . ,
⌊

n
2r

⌋}

and m ∈
{

0, 1, . . . ,
⌊

n
2r(r−1)

⌋}

.

The number of hyperedges in this hypergraph is
⌊

n
2r

⌋(⌊

n
2r(r−1)

⌋

+ 1
)

. The hyper-
graph is linear: if two different vertices vi1,j1 and vi2,j2 are contained in a hyperedge,
then i1 6= i2; and the two vertices uniquely determine the parameters of the hy-
peredge as m = j2−j1

i2−i1
and x = j1 − (i1 − 1)m, so they cannot be contained in two

hyperedges. The hypergraph has no Berge-F since the 2-shadow contains no copy
of F : a copy of F would have to contain two adjacent vertices from the same Vi
(otherwise the Vi’s would form the classes of an r-coloring of F ); but no hyperedge
contains two vertices from the same Vi.

4.2 Proof of sharpness: thL(F ) ≤ χ(F )

Now we show that thL(F ) ≤ χ(F ). Let H be an r-uniform (r ≥ χ(F )) linear
hypergraph on n vertices. A w-blowup of Kχ(F ) is a complete χ(F )-partite graph
with w vertices in each class.

Lemma 17. For large enough w (which depends on F and r, but not on n), if the
2-shadow of H, denoted Γ(H), contains a w-blowup of Kχ(F ), then H contains a
Berge-F .
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Proof. Let U be the vertices of a w-blowup of Kχ(F ) in Γ(H), and let U1, . . . , Uχ(F )

be its vertex classes. Let v1, . . . , v|V (F )| be the vertices of F , and fix a proper
coloring c : V (F ) → {1, . . . , χ(F )}. Consider a map ψ : V (F ) → U such that
∀i : ψ(vi) ∈ Uc(vi). For every edge vivj ∈ E(F ), c(vi) 6= c(vj), so ψ(vi)ψ(vj) is an
edge of Γ(H). If the hyperedges of H containing the edges ψ(vi)ψ(vj) are distinct,
then they form a Berge-F . We prove that H contains a Berge-F by estimating the
number of maps ψ : V (F ) → U such that ∀i : ψ(vi) ∈ Uc(vi), and upper bounding
the number of such maps that do not yield a Berge-F .

There are more than (w − |V (F )|)|V (F )| = Ω(w|V (F )|) such maps in total. Indeed,
we can choose the image of v1, v2, . . . ∈ V (F ) one after the other. For each vertex
vi,

∣

∣Uc(vi)

∣

∣ = w, out of which at most i − 1 vertices may already be taken, so we
have more than (w − |V (F )| choices.

Now fix two edges e1, e2 ∈ E(F ). We upper bound the number of maps such that
the images of e1 and e2 are contained in the same hyperedge. There are w2 ways
to choose the images of the endpoints of e1 = vivj in Γ(H), since they have to be
in Uc(vi) and Uc(vj) respectively. Because H is linear, there is only one hyperedge

containing the image of e1, so there are less than
(r
2

)

ways to choose the image of
the endpoints of e2 in Γ(H) so that it is contained in the same hyperedge as e1.
For the image of the remaining vertices V (F )\(e1∪e2) we have less than w

|V (F )|−3

or w|V (F )|−4 choices (e1 ∪ e2 contains 3 or 4 vertices depending on whether e1 and
e2 share a vertex).

In total, considering all pairs e1, e2 ∈ F , we have less than
(

|E(F )|
2

)(

r
2

)

w2w|V (F )|−3 =

O(w|V (F )|−1) maps ψ which do not yield a Berge-F . So for large enough w, H must
contain a Berge-F .

By Proposition 8, if a graph contains Ω(nχ(F )) copies of Kχ(F ), then (for large
enough n) it contains any graph of chromatic number χ(F ), including an arbitrarily
large (constant) blowup of Kχ(F ). Therefore, by Lemma 17, assuming that H does

not contain a Berge-F , Γ(H) contains only o(nχ(F )) copies of Kχ(F ).

By the graph removal lemma, there is a set S of o(n2) edges in Γ(H) such that
every copy of Kχ(F ) in Γ(H) contains at least one edge from S. Since r ≥ χ(F ),
the 2-shadow of every hyperedge contains a Kχ(F ), and therefore it contains an
edge from S. Since H is a linear hypergraph, every edge in Γ(H) is contained by
only one hyperedge, so |E(H)| ≤ |S| = o(n2).

5 Lower bound — Proof of Theorems 5 and 7

Definition 18. Given a k-uniform hypergraph H on a vertex set V , a blowup
of H by a factor of w is a kw-uniform hypergraph H′ obtained by replacing each
vertex ui of H by w vertices vi,1, . . . , vi,w; the hyperedges of the new hypergraph are
{{vi,j : ui ∈ e, j = 1, . . . , w} : e ∈ H}. We say that the vertices vi,1, . . . , vi,w of H′

originate from the vertex ui of H, and the hyperedge {vi,j : ui ∈ e, j = 1, . . . , w}
originates from the hyperedge e of H. We may also blow up the vertices of H by
different factors, replacing a vertex ui ∈ V with w(ui) vertices (w(ui) ≥ 1). If
∑

u∈ew(u) = r for every e ∈ H, then the new hypergraph is r-uniform.

9



Note that this blowup definition is not analogous with the graph blowup definition
used in Section 4.2.

To motivate the reader, we first show the (simpler) proof of Theorem 5, and then
generalize it to prove Theorem 7.

Proof of Theorem 5. Let ω(F ) = s. Assume for simplicity that s − 1 divides
n (if it does not, then take the construction below on (s − 1)

⌊

n
s−1

⌋

vertices, and

supplement it with a few isolated vertices). We construct an (s − 1)2-uniform hy-
pergraph on n vertices which does not contain a Berge-Ks. Since Ks is a subgraph
of F , it is easy to see that it does not contain a Berge-F either. By Theorem 6, we
have a linear (s−1)-uniform hypergraph L on

⌊

n
s−1

⌋

vertices with Ω(n2) hyperedges

that does not contain a Berge-Ks. Let H be the (s − 1)2-uniform hypergraph ob-
tained by blowing up L by a factor of s− 1. H has the same number of hyperedges
as L.

Assume by contradiction that H has a Berge-Ks. Then there is an s-clique in the
2-shadow graph Γ(H). Let v1, . . . , vs be the vertices of an s-clique in Γ(H) which
corresponds to a Berge-Ks in H. Let ui be the vertex of L that vi originates from.
Because the blow-up factor is s − 1, it is impossible for all ui’s to be the same
vertex. It is also impossible for all ui’s to be different, since then the Berge-Ks in
H would correspond to a Berge-Ks in L. Thus we have ui = uj 6= uk for some
i 6= j 6= k. But since L is linear, there is at most one hyperedge in L containing
ui = uj and uk, so there are no distinct hyperedges in H containing the edges vivk
and vjvk, contradicting that those vertices are part of a Berge-Ks in H.

Using the construction in Section 4.1, we can construct r-uniform hypergraphs for
r < (s−1)2 similarly. Let the sets Vi be defined as in Section 4.1. If r > s−1, then
blow up each vertex in Vi by the same factor wi, where 1 ≤ wi ≤ s − 1, in such a
way that

∑

iwi = r. If r ≤ s − 1, then just take an r-uniform linear hypergraph
with no Berge-Ks.

Proof of Theorem 7. For any r between 2 and (c−1)t, we construct an r-uniform
hypergraph on n vertices with Ω(n2) hyperedges and no Berge-F . Since putting
each vertex of F in a separate set is a t-admissible partition, c ≤ χ(F ). If r < c,
just take an r-uniform linear hypergraph with no Berge-F (given by Section 4.1).
Otherwise let L be the linear (c − 1)-uniform hypergraph with Ω(n2) hyperedges
given by Section 4.1 with c in the place of r. L does not contain any Berge-G
with χ(G) ≥ c. Now fix blow-up factors w1, . . . , wc−1 between 1 and t such that
∑

wi = r, and let H be a blow-up of L obtained by blowing up every vertex in Vi
by wi, for all i. H is r-uniform, and it has Ω(n2) hyperedges.

Let |V (F )| = s. Assume that H contains a Berge-F . Let v1, . . . , vs be the vertices
of F , and let ψ be the bijection that maps the vertices of F to the vertices of the
Berge-F in H (as in Definition 1). Let ψ̃(vi) be the vertex of L from which ψ(vi)
originates. Now partition the vertices of F with vi and vj belonging to the same set
if ψ̃(vi) = ψ̃(vj). We claim that this is a t-admissible partition. Indeed, first notice
that at most t vertices of H originate from any vertex of L because the blow-up
factors were taken between 1 and t. So the size of each set in the partition is at
most t. Now assume for a contradiction that there are two different edges of F , vivj
and vkvl, between some two sets of the partition. In other words, let ψ̃(vi) = ψ̃(vl),
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and ψ̃(vj) = ψ̃(vl). But L is linear, so there is at most one hyperedge containing
both ψ̃(vi) and ψ̃(vj), so there are no distinct hyperedges in H containing the edges
ψ(vi)ψ(vj) and ψ(vk)ψ(vl) of Γ(H), contradicting the assumption that ψ maps to
a Berge-F in H.

So we have a t-admissible partition of F . Let G be the graph obtained by con-
tracting each set in the partition. G is isomorphic to the graph G̃ with vertex set
{

ψ̃(v) : v ∈ V (F )
}

and edge set
{

ψ̃(vi)ψ̃(vj) : vivj ∈ E(F ), ψ̃(vi) 6= ψ̃(vj)
}

. All
the edges ψ(vi)ψ(vj) of Γ(H) corresponding to edges vivj of F are contained in
distinct hyperedges of H, since ψ maps to a Berge-F . Since the hyperedges of H
originate from distinct hyperedges of L, all edges ψ̃(vi)ψ̃(vj) of G̃ are contained in
distinct hyperedges of L, so L contains a Berge-G. But χ(G) ≥ c, contradicting
the assumption that L does not contain any Berge-G with χ(G) ≥ c.

We show two corollaries of Theorem 7. The following is a simple observation
that helps in reasoning about admissible partitions (already alluded to after the
statement of Theorem 7).

Observation 19. If two vertices v and w are in the same set A of a t-admissible
partition of F , and a third vortex u is connected to both of them, then u ∈ A: if
it was in a different set B, then uv and uw would be two edges between A and B,
which is not allowed in a t-admissible partition.

In the following corollaries, a blowup F of Ks is a blow up of Ks in the usual graph
sense, where each vertex vi ∈ V (Ks) may be blown up by a different factor wi.

Corollary 20. Let s ≥ 3, and let F be an arbitrary blowup of Ks. Then th(F ) ≥
(s − 1)(|V (F )| − 1) + 1.

Proof. Let t = |V (F )| − 1. Let V (F ) = V1 ∪ . . .∪ Vs, and let Vi = {vi,1, . . . , vi,w(i)}
where vi,j and vk,l are adjacent in F if i 6= k.

We claim that the only t-admissible partition of F is into singletons. Assuming
this claim, there are no contractions to be made, so we have c = χ(F ) = s, proving
the corollary.

Assume that vi,j and vk,l are in the same set A in a t-admissible partition (where
i and k may be different or equal). For every p /∈ {i, k} and q ∈ 1, . . . , w(p),
vp,q must be in A by Observation 19, since vp,q is connected to both vi,j and vk,l.
Now A contains at least one vertex from every Vi, and by choosing appropriate
pairs of vertices, it is easy to see that the remaining vertices must be in A too. But
t < |V (F )|, so putting all vertices in the same set is not a t-admissible partition.

Corollary 21. Let G be a connected graph on the vertex set u1, . . . , us, and let
F be a sufficiently large blowup of G: Let Vi = {vi,1, . . . , vi,w(i)} with w(i) ≥ i
and w(1) ≥ 2, and let V (F ) = V1 ∪ . . . ∪ Vs, where vi,j and vk,l are connected if
uiuk ∈ E(G). Then th(G) ≥ (χ(F )− 1)(|V (F )| − 1) + 1.

Proof. Let t = |V (F )| − 1. We claim that in any t-admissible partition of F , no
two vertices in the same Vi belong to the same set. First we prove the corollary
assuming this claim is true. Given a t-admissible partition of F , we select vertices
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v1,j1 , . . . , vs,js one-by-one such that they belong to different sets in the partition.
In step i, we have at least i choices of a vertex in Vi, out of which at most i−1 may
belong to the partition that contains a vertex selected earlier, so we can choose the
vertex vi,ji greedily from the rest. The vertices v1,j1 , . . . , vs,js induce a copy of G in
F . Since they belong to different sets, the graph obtained by contracting the sets
will still contain a copy of G, so its chromatic number is χ(G). This holds for all
t-admissible partitions of F , so c = χ(G), proving the corollary.

To prove the claim, assume that vi,j and vi,l are in the same set A in a t-admissible
partition of F . Let up be a neighbor of ui in G. Then every vp,q is connected
to both vi,j and vi,l, so Vp ⊂ A by Observation 19. Since G is connected, and
|Vi| = w(i) ≥ 2 for every i, it follows that every Vi is a subset of A. But then
|A| = |V (F )| > t, contradicting that the partition is t-admissible.
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[5] D. Győri. Triangle-Free Hypergraphs. Combinatorics, Probability and Comput-
ing, 15 (1-2): 185–191 (2006). doi:10.1017/S0963548305007108
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